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Abstract
This article presents background information related to methodology for estimating brain
metabolite concentration from Magnetic Resonance Spectroscopy (MRS) and Magnetic
Resonance Spectroscopic Imaging (MRSI) measurements of living human brain tissue. It reviews
progress related to this methodology with emphasis placed on progress reported during the past
ten years. It is written for a target audience composed of radiologists and MRI technologists. It
describes in general terms the relationship between MRS signal amplitude and concentration. It
then presents an overview of the many practical problems associated with deriving concentration
solely from absolute measured signal amplitudes and demonstrates how a various signal
calibration approaches can be successfully used. The concept of integrated signal amplitude is
presented with examples that are helpful for qualitative reading of MRS data as well as for
understanding the methodology used for quantitative measurements. The problems associated with
the accurate measurement of individual signal amplitudes in brain spectra having overlapping
signals from other metabolites and overlapping nuisance signals from water and lipid is presented.
Current approaches to obtaining accurate amplitude estimates with least squares fitting software
are summarized.

Keywords
Brain; Magnetic Resonance Spectroscopy; Metabolite; Concentration

1. Introduction
Magnetic Resonance Spectroscopy (MRS) detects magnetic resonance signals produced by
atomic nuclei located within molecules in living tissue. Quantification of the MRS signal
amplitude can provide a means of estimating the tissue concentration of the signal
generating molecules. The molecules that produce readily detected MRS signals tend to
have relatively low molecular weight and are able to move freely within the fluid
compartments of biological tissues. Many such molecules are components of metabolic
pathways and MRS is thereby sensitive to certain aspects of tissue metabolism.

Signal quantitation has increased significance for MRS compared with many other forms of
biomedical magnetic resonance. The majority of other MR techniques produce reasonably
high resolution images enabling the trained reader to identify image contrast differences that
are related to known anatomy or to lesions by visual examination. This form of visual
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interpretation does not translate well to MRS because of its limited ability to form images. It
has never been feasible to perform a sufficient number of single voxel MRS (SV-MRS)
acquisitions at different brain regions to build an image. Magnetic resonance spectroscopic
imaging (MRSI) provides some improvement in this regard. However MRSI’s spatial
resolution and volume coverage are considerably limited compared to other forms of MRI
making it difficult to visually interpret MRSI results. Accordingly, the importance of
expressing MRS results in a numerical format (e.g. as a table of derived metabolite
concentrations) has been emphasized since the emergence of MRS as a medical evaluation
technique (1).

This review article will summarize the problems and solutions related to quantitative
measurement of MRS signal strength and to the interconversion between MRS signal
strength and metabolite concentration. It is written for a target audience of radiologists and
MRI technologists. While emphasis is placed on progress made during the past 10 years,
considerable attention is devoted to background material to help the target reader understand
the many complex issues that are involved. Similar recent articles written by other authors
are available (2,3). The majority of progress related to MRS quantitation has been based on
SV MRS technology. Recent years have seen an increased emphasis on the clinical use of
MRSI. For this reason this article pays particular attention to MRSI signal quantitation. The
presentation will be limited to discussion of 1H MRS signal quantitation because 1H MRS is
far more routinely performed in a medical imaging context compared with 31P- or 13C-
MRS.

While this article will focus on the problem of deriving numerical estimates of metabolite
concentration from MRS, it is worth noting at the outset that reporting of metabolite
concentrations may not always be an absolute requirement for clinical utility. Indeed, it is
both feasible and useful to develop semiquantitative approaches to MRS evaluation in which
the trained reader identifies normal and abnormal patterns of signals in spectra. Disease can
sometimes produce large changes in metabolite levels that can be readily identified by a
trained reader without conversion of the underlying spectral information into numerical
format. Examples are the profound elevation of lactate signal levels in ischemic brain tissue
and the elevated choline signal levels produced by some neoplastic or inflamed tissues.
Nevertheless, signal level measurement is still important for the following reasons. One
must consider that the identification of more subtle disease, such as psychiatric illness,
might benefit from quantitative approaches. Living tissues, whether normal or abnormal,
tend to use similar metabolism and MRS differences between diseased and normal brain
tissues may be very difficult to detect without a complete quantitative approach. MRS signal
quantitation is very important in the context of research. The general goals of clinical
research are to learn about disease mechanism and to discover effective treatments. For
these purposes a reliable metabolite concentration measurement that can be compared
between patients and across time points is highly desirable.

2. General approach to metabolite signal quantitation
A metabolite’s tissue concentration is related to the integrated amplitude of the MRS signal
it produces. Integrated amplitude is the area under the MRS signal curve (Figure 1). The
terms “integrated intensity” or “intensity” or “signal level” or simply “signal” are frequently
used as synonyms for “integrated amplitude”. While MRS signals are usually acquired in the
time domain as free induction decays or echoes, they are usually viewed and analyzed in the
frequency domain. The frequency domain representation is derived from the acquired time
domain data by the Fourier Transform (FT). This process is convenient because the MRS
data collection is most efficient when performed in the time domain but the evaluation and
analysis of the results are best done when the data are expressed as a series of signals in a
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frequency spectrum. The ideal time domain MRS signal (SR and SI) is an exponentially
decaying function of time (t) with oscillatory modulation at specific frequency (Figure 1).

[1]

φ is the phase, which for simplicity is assumed to be zero until phase correction is discussed
(see below), and A is the strength of the signal at time zero. The frequency domain
representation of this ideal MRS signal has a shape described by the complex-valued
“Lorentzian” lineshape

[2]

H is the height of the signal. The signal’s center position, F0, identifies the atomic nucleus
and the molecule that produced the signal. W is signal’s full width at half maximum
(FWHM) is related to the time domain signal decay rate (T2*) as follows.

[3]

Both the time domain and frequency domain signal representations are “complex” functions
that have “real” (SR(t), SR(f)) and “imaginary” (SI(t), SI(f)) components. “Real”, “imaginary”
and “complex” are terms that are widely used in physics and engineering to describe
processes that oscillate or have “frequency”. It is usually the real frequency domain signal
that it presented on the scanner console, although both the real and imaginary signals have
importance for signal quantitation. The integrated signal amplitude is specifically defined as
the integral (area under the curve) of the real part of the frequency domain signal (Figure 1),
which is equivalent to the initial value (A) of the time domain signal.

The integrated signal amplitude produced by the atomic nuclei of metabolite M is directly
proportional to the number (moles) of signal generating molecules (NM) in the volume of
brain (VB) that is being examined.

[4]

KG is a “global” constant of proportionality that encapsulates a number of factors discussed
in the next section. In some instances there can be concern about whether a metabolite is
“visible” to MRS. For instance a metabolite that is bound to slowly moving macromolecules
may be invisible to MRS because of a very short T2. This visibility problem is not
considered at all in this article. When amount (numbers of molecules or concentration) of
metabolite is discussed, amount of MRS “visible” metabolite is implied. The tissue
concentration of the metabolite is
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[5]

Several different unit systems can be used to report metabolite concentration and certain unit
systems work more naturally for specific quantitation procedures (4). Here for the sake of
generality VB can refer to the volume (ml or cm3) or the mass (g) of brain tissue being
studied. It could also refer to the volume, mass or amount of water in the brain tissue being
studied. A simple expression for the concentration in terms of integrated signal amplitude
can be obtained from [4] and [5]

[6]

This summary makes determining a metabolite’s concentration from the area under the MRS
signal it produces seem very simple. One needs only to 1) measure the real component
signal area, 2) determine the value of the global constant and 3) establish how much brain
volume is being sampled. Unfortunately there are a number of very complex matters that
must be considered to accomplish each of these steps. Measurement of signal area is very
challenging because of complex metabolite signal characteristics and overlap between
various signals. Determining the value of the global constant (KG) is far from trivial because
it is dependent on many complex interrelated factors that are specific to the MRI scanner
system (both hardware and software) and the pulse sequence that is used to acquire the data
and the patient’s physical characteristics. Determining the brain volume is somewhat more
straightforward but can still have potential pitfalls related to MRS volume localization
procedures.

3. Signal Calibration
The global constant (KG) defined in the previous section encapsulates a number of
multiplicative factors that are described in this section.

MRI scanners are (unfortunately) not designed to measure absolute signal intensity using a
standard system of electric measurement units. In many MRI scanners, the electronic
receiver system introduces a “receive gain”, or “amplification” (GA) into the signal before it
is converted to digital form. MR systems tend to amplify signals arbitrarily to optimize
conversion of the analog signal arriving from the radio frequency (RF) receive coil system
into a digital record. The digital processing stream may also incorporate various arbitrary
scale factors and this may be considered as a component of GA. As a result, GA may vary
from study to study, even if the same subject is being studied. This situation is complicated
by the fact that the receive gain used in a particular examination is often not directly
reported to the user. From an MRS perspective, the use of uncontrolled or hard to find gain
factors seems illogical, but one has to remember that the design of the modern MRI scanner
is targeted at forming images in which all that practically matters is accurate rendering of
relative signal at different points in the imaged space. Because relative signal is all that is
necessary for diagnostic MRI, there is no reason to control the receive gain or even to report
its value.

A factor, GRC, expresses that the sensitivity of the receive RF coil system to detect signal
produced by a particular brain volume must also be considered. GRC depends on 1) subject
specific parameters 2) Static magnetic field strength (B0), 3) the location of the volume of
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interest in the brain and 4) the design of the coil system. B1 field imaging allows GRC to be
estimated (5,6), but such measurements are usually are not made because they are subject
specific and consume valuable scanner and patient time.

The increasing popularity of parallel imaging techniques for accelerating the acquisition of
MRI data has introduced new technical complications for MRS quantitation. In general each
coil in the parallel array has a different distance from the MRS volume element and
produces a spectrum having its own unique signal strength and phase characteristics. It
remains somewhat unclear how to optimally recombine the spectral information arriving
from each of the coils in the array although several approaches have been proposed (7–9).

A very complex factor, GT, expresses how efficiently the transmitter coil and the RF pulses
in pulse sequence excite a particular signal. This factor depends on the detailed designs of
all RF pulses in the pulse sequence. These details include the RF pulse amplitudes, shapes
(both temporal and phase characteristics) and frequencies relative to the signal’s
characteristic frequency. The GT term encapsulates all pulse sequence design features
related to the RF pulses, including volume selection (e.g. spin echo, stimulated echo, volume
saturation), water suppression and spectral editing. Usually some form of prescan is
performed to optimize the value of GT before the MRS measurement is run. From this
perspective it is sometimes reasonable to assume that GT equals one, but caution must
always be exercised, particularly in MRSI studies. For MRSI studies, it is specifically
important to consider that a particular metabolite signal may have an absolute frequency
dependent on brain location (because it is usually not possible to make the B0 completely
homogeneous over the entire volume of brain being examined), while the RF pulse
frequencies will be constant over the entire volume. Furthermore the RF transmitter coil
may have relevant spatial dependencies. Therefore variation of GT with voxel location
should be anticipated. An example is that inopportune (anatomy-induced) B0 shift in some
location could create a situation in which the entire spectrum is shifted with respect to the
water suppression pulse frequency causing the water suppression pulse sequence component
to suppress metabolite signal instead of water signal.

Signal averaging is used in virtually all MRS studies because of the prominence of noise.
For typical MRS-acquisition conditions, the noise level is often similar in magnitude to the
metabolite signal levels. Noise is thereby a limiting factor in determining metabolite signal
amplitude. Here, the term “noise” specifically means randomly fluctuating “signal” that
would be present in the absence of artifacts associated physiological characteristics, scanner
performance or other nonideal factors. Figure 2 illustrates typical MRS data characteristics
with a computer-simulated spectra composed of the principal signals of water (Wat), choline
(Cho), creatines (Cre) and N-acetylaspartate (NAA) to which random frequency independent
Gaussian noise has been added. It is apparent from the 1 average spectrum shown in the
figure that the noise interferes with signal identification and determination of the integrated
signal amplitudes. While noise performance can depend on the MRI scanner’s system
design, much of the noise detected in the typical MRI or MRS study derives from the
electrical properties of living tissue and there is not much that can be done to ameliorate it.
The only practical way of dealing with noise is to increase the Signal-to-Noise Ratio (SNR)
by averaging the signals obtained in repeated measurements. When this is done the signal
grows in proportion to the number of averages and the noise grows in proportion to the
square root of the number of averages as is illustrated in Figure 2. Therefore use of signal
averaging causes the measured signal level to increase in proportion to the number of
individual FIDs or echos (NAV) that are collected. The figure also illustrates that the
precision of the NAA amplitude determination measured with the coefficient of variance
(COV) improves as the number of averages increases. One practical limitation to signal
averaging arises when substantial physiological motion is present during the collection of
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the signal averaged data. Motion may produce variations in signal phase and frequency
during the averaging process and less than the expected SNR enhancement may be realized
due to destructive averaging (10).

The last of the primary factors, GRLX, accounts for the T1 and T2 relaxation. In general
terms, the signal amplitude depends on pulse sequence’s TE parameter and the T2 according
to

[7]

A0 is the signal amplitude that would be measured in the absence of T2 relaxation and TE is
the characteristic time to echo for the pulse sequence. Figure 3 illustrates the appearance of
TE-related signal decay (T2 relaxation) with a series of computer simulated spectra
containing the principal signals of Wat, Cho, Cre and NAA for different TE times. The
integrated signal amplitudes decay as TE is increased. The behavior of the lactate signal is
discussed below. The noise is independent of TE, so that the SNR decreases with increasing
TE. The precision of the NAA amplitude measurement (assessed with the COV) decreases
with increasing TE because of the corresponding SNR decrease. For this reason it is
generally desirable to acquire brain spectra at the lowest available TE. Several recent
publications have demonstrated that very short TE acquisitions have advantages for
metabolite concentration quantitation (11–13), but another report comes to a different
conclusion (14). This difference undoubtedly is related to the measurement conditions,
which underscores the complexity associated with MRS signal amplitude measurements. All
signals within the spectrum may not have identical relaxation times and care should be taken
with respect to inferring a direct relationship between signal amplitude and metabolite
concentration when the pulse sequence has a finite TE. In Figure 3 the water signal decays
with TE more quickly than the metabolite signals do because the simulation used a water T2
value that is 3-fold lower than the metabolite T2’s, which is typical for brain. Long TE (eg
136 – 282 msec) was used for some of the first brain MRS studies because system instability
created artifact related to the water signal strength and also because of analog to digital
conversion limitations. Long TE conditions eliminated the problems because of its water
suppression properties. Indeed, long TE is sometimes still used as a means of suppressing
unwanted water signal, particularly in MRSI applications (8,15). However use of this form
of water suppression complicates quantitative analysis because knowledge of the metabolite
signal T2 value becomes more important and because of SNR loss. The relaxation term
GRLX also includes potential contributions from T1 relaxation that influence signal
quantitation.

While using T1 and T2 relaxation expressions (e.g. [7]) to correct for the effects of
relaxation seems straightforward, there are significant practical limitations. One limitation
has to do with the fact that the relaxation correction function must be derived for each pulse
sequence. [7] is completely correct only for the specific case of a basic spin echo pulse
sequence. It is not even completely correct for the typical volume localizing pulse sequence
that is used in SV-MRS. A more accurate rendering requires exact knowledge of all pulse
sequence parameters. A second limitation relates to the fact that all metabolite signals may
not have identical T1 and T2 relaxation time values. Recent publications report
characteristic T1 and T2 values for brain tissue in certain populations and but also give
evidence suggesting that metabolite signal relaxation times vary with physiological factors
such as age and brain location (16–19). This suggests that T1 and T2 of the relevant signals
should be measured to avoid a biased metabolite concentration determination. Approaches
for measurements of metabolite signal relaxation times contemporaneously with SV-MRS
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on an individual subject basis have been reported (6,20) but are rarely used. Usually it is
necessary to use the available time for signal averaging to obtain a single water-supressed
spectrum with particular TR and TE settings and there is no additional time available to
make measurements with additional TR and TE settings from which metabolite T1 and T2
information could be derived. Note however this is not the case for water strength. The
strength of its signal permits relaxation measurements to be completed rather quickly and
therefore water signal relaxation properties can be known if necessary.

The foregoing discussion gives a better approximation of the global constant

[8]

Many experimental factors including the patient (p), the MRI scanner system (s), the details
of the pulse sequence (ps), the brain location being evaluated (r ), the absolute frequency of
the metabolite signal being evaluated ( ) and the relaxation times of the metabolite signal
being evaluated have a potential influence on the signal amplitude that is actually measured.
Only one of the factors (NAV) in [8] is readily known, readily generalizable, readily
measureable, or easy to compute from known experimental parameters for a particular MRS
measurement. The complex dependencies in [8] show why quantitation of MRS signal level
to obtain metabolite concentration has been so problematic.

The approach to dealing with the complexity described in the previous paragraphs has been
to use “signal calibration”. Here the measured brain metabolite signal amplitudes are
calibrated against a “reference signal” that is produced by a known concentration of
metabolite or some other material. If appropriate care is taken to match the conditions under
which the reference signal is acquired to those used for the brain signals, the unknown
factors can be eliminated as follows. Expressions for the reference (AR) and metabolite
signal amplitudes (see [4], [5] and [8]) are

[9]

[10]

If the reference signal and brain signal measurement conditions are closely enough matched,
VB will equal VR and the terms GA, GRC and GT, will be the same for both measurements.
Accordingly ratio of the brain metabolite and reference signals amplitudes will be

[11]

Rearrangement leads to an expression for the brain metabolite concentration in terms of the
brain signal to reference signal ratio

Alger Page 7

Top Magn Reson Imaging. Author manuscript; available in PMC 2011 May 27.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[12]

[12] permits estimation of brain metabolite concentration from measured parameters.
Knowledge of the relax factors (GRLX) is sometimes problematic due to practical difficulties
associated with relaxation time measurements (see above). Accordingly some calibration
approaches report only normalized concentration

[13]

which is equivalent to the true concentration multiplied by a relaxation factor (21,22)

[14]

The reference signal may be generated by a metabolite, by water or by some other chemical
compound in a phantom object (23). Relevant literature is somewhat confusing with regard
to the terms “internal” and “external” in relation to the reference signal. In this article the
term “external reference signal” is used to describe the situation in which the reference
signal is produced by a phantom object that is external to the brain. The reference signal
may also be generated by a metabolite or by water that is within the brain, in which case the
term “internal reference signal” is used.

The phantom object used to generate an external reference signal may be a small object that
fits within the RF coil system with the patient’s head or it may be a larger phantom object
whose signal is measured before or after the patient examination. This article will use the
terms “near-brain phantom” to describe a phantom object that that fits within the RF coil
system with the patient’s head and “brain-replacement phantom” to describe a phantom
object that is measured before or after the patient examination.

Calibration using near-brain phantoms seems to be a straightforward approach, but is used
infrequently. While this method effectively controls for receive coil loading, there is often
not sufficient space available inside modern day close fitting head RF coils for a phantom
having dimensions on the order of a typical MRS voxel. Furthermore when such RF coil
systems are used, near-brain phantoms tend to be placed in close proximity to the RF coil
elements where substantial spatial B1 inhomogeneity exists and the reproducibility of the
phantom signal level may become limited by the ability to accurately reposition the phantom
from study to study. Another negative feature of near-brain phantoms is that they tend to
perturb the B0 magnetic field in the space surrounding them and this may introduce
difficulty with attaining the necessary B0 homogeneity in regions of brain that are physically
close to the phantom. Similarly the head perturbs the B0 magnetic field outside of it and it
may not be possible to attain adequate B0 homogeneity within the phantom for accurate
reference signal measurements. Many of the negative features of near-brain phantoms can be
eliminated with the use of small near-brain phantoms. It is possible to realize the benefits of
near-brain phantom signal referencing by the addition of internal water signal referencing
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approach (see below) even if the near-brain phantom is small compared with the MRS voxel
size (24).

Calibration using a brain-replacement phantom object avoids the disadvantages of the
internal phantom methodology by using a head-sized phantom that fits within and fills the
RF coil. However it suffers from the disadvantage that it may load the RF coil system
differently from the head or its signal may be acquired with a different receive gain than the
brain spectrum. Care must be taken to avoid either of these problems. The use of a brain-
replacement phantom also requires a separate study, which can be suboptimal in busy
imaging centers. Furthermore there is no clear understanding about when, with respect to the
patient study, or how frequently the calibrating measurement of the brain replacement
phantom should be made.

The use of either type of phantom object has additional disadvantages. Even if brain
metabolites are used to produce the phantom reference signals, it is difficult to match the
phantom signal relaxation times to the brain signal relaxation times and the relaxation
correction factor in [12] is not necessarily one for this reason. The use of phantoms of either
type may also be limited by the potential for injury or chemical toxicity in the event of
breakage or leakage. It is also important to consider whether a phantom is stable over the
time period (perhaps years) that is needed to complete a study. The phantom’s solvent may
slowly evaporate or the signal generating metabolites in the phantom may change over time
as a result of mirco-organism activity. Either of these may lead to undesirable changes in the
absolute value of the reference signal amplitude over time. If the phantom will be used in a
multiple center study it is also important to control phantom production to assure that the
phantoms used at each participating center are equivalent.

Calibration against an internal signal is used far more frequently than is calibration against
an external phantom signal. This is undoubtedly due to the many practical disadvantages of
phantom calibration that are identified above. Typically the internal reference signal is either
the principal Cre signal (3.05 ppm) or the water signal (4.69 ppm). When Cre is used as a
reference signal it is more common to report results as signal amplitude ratios (ie NAA/Cre)
although it is feasible to estimate the unknown metabolites concentration with [12] and
estimates of the brain Cre concentration and relaxation times. If water signal is used as a
calibration signal, its amplitude must be measured by performing a separate measurement in
the same brain region without using water suppression. This requirement limits the use of
brain water signal calibration in MRSI studies that use conventional phase encoding because
it mandates the collection of a time-consuming “water reference” MRSI acquisition without
water suppression. Recently this limitation has been overcome through the use fast MRSI
acquisition technology for both long TE MRSI (21, 25) and short TE MRSI (12). When
brain water signal is used as reference signal it is routine to assume a brain water
concentration and use this in [12] to estimate the brain metabolite concentrations, although it
is also feasible to express the results as signal ratios.

Water and Cre calibration approaches each have their own positive and negative features.
Cre referencing has the advantage of using a well-defined and typically very sharp signal
that is part of the routinely collected spectrum. Negative features include that the Cre signal
amplitude measurement can be limited by overlap with other signals (primarily the Cho
signal) or by noise given that it tends to be the weakest of the prominent signals of the water
suppressed spectrum. It is also now clear from MRSI studies that Cre signal level is not as
uniform throughout the normal brain (22) as once was asserted. More significantly, Cre
referencing makes an implicit, but largely unsubstantiated, assumption that the Cre levels do
not change with disease or other physiological characteristics. Water referencing has the
advantage of using a very strong signal that can be quickly acquired as a reference, although
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this must be done in a separate measurement without water suppression. At least one MRI
manufacturer (GE Medical Systems) provides an MRS acquisition package that
automatically collects a water reference signal for SV-MRS and uses this signal for
calibration (26). Another positive feature of water referencing is that measurement of water
signal can be made so quickly that is possible to measure the water T1 and T2 values and
correct for these factors, although this does not fully define the value of the relaxation terms
in [12] unless the brain metabolite signal T1 and T2 are known. Negative features of water
signal referencing include that water signal level may be altered by disease or may depend
on brain location or subject hydration status, that the MRI scanner may change the gain
factor (GA) between the water reference signal acquisition and the brain metabolite signal
acquisition, and that it is not all that clear what the true concentration of mobile water is in
the brain. There is a great deal of evidence from relaxometry studies and magnetization
transfer studies suggesting some fraction of the total brain water is immobile and therefore
not detected at the TEs used in a typical MRS study.

Internal reference signals need not be produced by the same brain location that produces the
metabolite signals. Water or metabolite signal from a different brain location may be used as
a reference signal. For SV-MRS this approach requires study of at least two brain locations.
Use of this type of reference signal is more natural for MRSI because the more brain volume
is sampled. Such approaches are frequently used when focal brain lesions are present (eg
tumor, epilepsy, multiple sclerosis) and some signal produced by normal appearing brain
can be used as a reference signal. Of course use of referencing of this type is limited by
spatial homogeneity of the B1 fields used for transmit and the spatial uniformity of receive
coil sensitivity.

The relevant literature can sometimes be misleading and confusing with respect to the use of
the term “absolute concentration” and use of this term is avoided in this article. Some
authors use this term in a general sense to mean only that the concentration results are
expressed in conventional concentration units (moles per unit mass or moles per unit
volume). Other authors are more restrictive and reserve the use of the term for absolute
concentration determination by a specific calibration procedure. The use of “absolute” can
also give the (untrue) impression that the brain metabolite concentration has been derived
without using a signal ratio. In fact [12] shows that all forms of MRS concentration
derivation use a signal ratio, but the methods differ with respect to how the reference signal
is obtained. Use of “absolute” also conveys the misleading impression that reporting of
absolute concentration is more precise than reporting of signal ratios. This may not be true.
Data scatter in a measured absolute concentration is implicitly limited by the precision with
which both the metabolite and reference signals can be determined. For example, absolute
concentration determined by internal water reference calibration may show less pronounced
data scatter compared to the scatter in the NAA/Cre signal ratio in the same population. This
may not be necessarily true because the absolute methodology is better but because a less
noisy reference signal was used. Furthermore the term “absolute” may be confused with
“true”. In fact all absolute concentration determinations can be biased by the methodology
and assumptions used in the calibration procedure. At best each methodology produces an
estimate of the true concentration. Some methodologies may produce a more accurate
estimate or a more precise estimate (less scatter) compared with others. Accordingly
absolute brain metabolite concentrations determined by two different methods may not
agree.

The above described calibration approaches permit the estimation of brain metabolite
concentrations or ratios for across-time, across-center and between-patient comparisons.
Proof of concept has been demonstrated in small scale studies (4,23,27–30). The approach
has been used successfully in larger scale studies (22,26,31–36).
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4. Signal properties and confounds of signal amplitude measurement
This section and the next describe the measurement of the integrated signal amplitude and
confounds associated with it. This section introduces key MRS signal properties and
describes a few problems that are encountered when MRS signals are qualitatively
evaluated. In doing so it lays groundwork for understanding quantitative MRS signal
measurement.

The integrated signal amplitude is not the same as the signal height. Consider the six signals
presented in Figure 4. Each pair of signals has been computer-simulated to resemble the
principal Cho and Cre signals that might be present in a brain or a brain tumor spectrum.
Which of the Cho-Cre signal pairs has the higher Cho signal amplitude? Which of the pairs
has the lower Cho signal amplitude? Which of the pairs has the same Cho and Cre signal
amplitudes? In fact each pair was simulated using identical Cho and Cre signal amplitudes.
All three Cho amplitudes are identical to each other and to all three Cre signal amplitudes.
This can be appreciated by review of the signal integral curves that are drawn on each pair
signals. This simple example illustrates the importance of identifying differences in signal
area as opposed to differences in signal height. Use of signal height or even signal height
ratio is therefore not an appropriate way of determining the concentration of metabolites
responsible for a particular signal. The correct interpretation of the Figure 4 data is that the
FWHM changes. The FWHM of Cho and Cre are identical in the left panel. The Cho signal
is sharper than the Cre signal in the middle panel. The Cre signal is sharper than the Cho
signal in the right panel. The changes in FWHM may have their own clinical significance,
but discussion of this point is beyond the scope of this article.

Figure 5 illustrates a related problem. The simulated signals shown in this figure are
identical to the ones shown in Fig 4. However each pair has been plotted in a way that scales
the plot so the highest point on the spectrum coincides with a fixed maximum point on the
paper or computer screen. A reader who is not trained to assess signal area and who is
unfamiliar with the characteristics of the plotting software might conclude that the Cre
signal is lower in the center panel and Cho signal is lower in the right panel. An
inexperienced reader might also incorrectly conclude that both signals in the left panel are
larger than those shown in the center or right panels.

The signal FWHM has an effect on the accuracy of the signal amplitude determination as is
illustrated in Fig 6. The three signal traces shown in the figure were computer-simulated
using identical signal amplitudes but different FWHM values. As the signal becomes wider,
the signal deviation above noise becomes smaller. There is a corresponding subtle
deterioration in the precision (the COV) with which the signal area can be measured.

A signal’s FWHM is influenced by noise filtering that occurs during the post acquisition
signal processing. Figure 7 illustrates this feature of MRS signal processing with computer
simulated signals to which random noise has been added. The unfiltered spectrum (bottom
left) shows a greater amount of noise compared to the filtered spectrum (bottom right), but
the integral trace illustrates that the determination of the signal amplitudes is feasible even in
the presence of this noise. The integration process essentially acts to filter high frequency
noise. The filtered spectrum (bottom left) shows that the noise filter processing has two
effects on the frequency domain spectra. It filters noise, but does so at the expense of
creating wider signals. It is for this reason that this particular filter is often referred to as a
“line broadening filter”. The integral trace shows that the determination of the signal integral
for the combination of the two signals is equivalent to that determined from the unfiltered
spectrum, but that the filtering has added the complication of making it more difficult to
determine the two overlapping signal amplitudes independently. This example illustrates
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that, not only is noise a potential problem, but also that the use of too much noise filter
processing can lead to amplitude measurement bias when there are nearby signals that
overlap with the signal being evaluated.

For actual brain spectra the signal shape and FWHM is somewhat more complex than has
been implied in the article thus far. In Figure 8 a brain spectrum and the spectrum obtained
from a standard phantom are shown. The phantom was made up to contain many of the same
metabolites that are present in the brain. Therefore the brain and phantom spectra resemble
each other in terms of signal position, but the brain spectrum has wider signals. Furthermore
the shapes of the signals in the two spectra differ. The phantom spectrum has sharper more
pointed signals. The brain spectrum signals are wider and more rounded. Figure 9 illustrates
the widely accepted reason for these differences. The signal broadening and shape change
are usually attributed to the existence of a distribution of B0 fields within the voxel (ie B0
field inhomogeneity). The Figure 9 data were computer-simulated assuming Lorentzian line
shapes (left panel). Increasing the FWHM term, while maintaining the Lozentzian shape, is
not the most accurate way of modeling the effect of B0 inhomogeneity. A more appropriate
approach is to construct a family of Lorzentzian shaped signals in which each signal has a
subtle frequency shift with respect to the other signals and add then add together the family
of signals to form a composite (right panel). Usually a Gaussian distribution of frequency
shifts is used to model the distribution of B0 field strengths within the voxel and the signal
shape is said to be a Lorzentzian-Gaussian shape. The same integrated signal amplitudes and
noise levels were used to computer-simulate the two spectra shown in Figure 9. The figure
illustrates that the Gaussian broadening causes the maximum signal deviations relative to
noise to be reduced and leads to some loss in the precision of integrated signal amplitude
measurement.

Signal phase is an important signal property that must be taken into consideration when
evaluating spectra qualitatively or quantitatively. The MRS signal is a complex quantity that
has real and imaginary components (Figure 1). The integrated signal amplitude is measured
only from the real component. However many MRI scanners are not designed to acquire the
true real and imaginary signal components independently. Instead it has been typical to
acquire two channels of signal information (S1 and S2) in which each channel contains a
mixture of the true real and imaginary signals

[14]

[15]

Where c1 and c2 are positive and the sum of c1 and c2 is 1. The true real component signals
are then derived by a post-acquisition phase correction procedure that is usually done in the
frequency domain. This procedure forms the observed real signal as

[16]

The value of p1 is then adjusted to create a real signal that resembles the real component of
the Lorzentzian signal shown in Figure 1. Frequently this process is done by a trained
person. It may also be done automatically by software.
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Phase correction is straightforward provided the signal being phase corrected is well
separated from other signals, but this is rarely the case in real brain spectra. A commonly
encountered problem related to phase correction in the presence of overlapping signals is
illustrated in Figure 10. The concentration of brain tissue water protons is more than 3000
times that of the protons that produce the NAA signal. Without the use of a water signal
suppression procedure, the spectrum of interest (Cho, Cr, NAA) is superimposed on the
curving tail of the water signal even if the spectrum is properly phase corrected (top left
panel). It is not possible to adequately determine the areas under the Cho, Cre and NAA
signals in this case without assuming a specific curvature for the baseline (which is actually
not a baseline, but part of the water signal). Ideally the water suppression works well and the
water signal is reduced by many factors (top right panel). Note that the routinely used water
suppression method reduces the entire area of the water signal including the signal tail that
underlies the spectrum of interest. If the water suppression is less than optimal, a situation
resembling that shown in the lower left and lower center panels might be seen. Here in
addition to inadequately suppressing the water signal, the water suppression procedure has
introduced a phase shift into the water signal that is not present in the metabolite signals. In
general, the water suppression procedure shifts water signal phase by an unknown amount.
The presence of a poorly suppressed water signal that has been phase shifted by an unknown
amount creates a situation in which there is uncertainty about metabolite signal phase
correction and the true baseline that underlies the brain metabolite signals. This may then
result in errors in determining the integrated signal amplitude. Phase correction software and
human experts tend to have difficulty making the appropriate phase corrections when a large
poorly suppressed water signal having an arbitrary phase shift is present. The lower right
panel shows what happens when the phase correction procedure uses the residual water
signal as a reference for phase correction of the entire spectrum. In this situation the
metabolite signal amplitude determination becomes totally flawed because the signals are
not properly phase corrected. The most useful approach to avoiding such errors is to acquire
a second spectrum from the same region without water suppression. The true phase
correction can be determined from this “water reference” spectrum and then this correction
can be applied to the water suppressed spectrum (26). The water reference acquisition can
also be used for signal quantitation (see above), for acquiring information about the signal
lineshape and about additional signal imperfections, such as those due to imperfect gradient
switching.

Phase correction in MRSI can be a particularly severe problem. The RF pulses used for
volume selection in MRSI can impart phase shifts that depend on position and therefore all
voxels in the MRSI array do not use the same phase correction. The typical MRSI study has
too many voxel spectra for a human expert to manually phase correct and automated phase
correction software must be used. Phase correction software works well for voxel spectra in
which water signal is fully suppressed, but tends to fail (discussed above) for voxel spectra
that have poor water suppression. This in turn leads to errors in signal amplitude
measurement and errors in metabolite signal images. For this reason, it is highly desirable to
use an MRSI procedure that permits efficient collection of a water reference MRSI.

Errors in metabolite signal amplitude measurement can also result in instances in which
there are large signals produced by mobile lipids in the spectrum. Lipid molecules are
composed of chains of methylene (CH2) groups that produce signals at approximately 1.28
ppm terminated by a methyl (CH3) group that produces a signal at approximately 0.9 ppm.
While the brain contains a relatively large amount of lipid, lipid signal is not prominent in
brain spectra, because most of the brain’s lipid is molecularly packaged within relatively
immobile macromolecular myelin structures. The lipid proton spins associated with such
structures have T2 relaxation times that are significantly less than the TE value used by most
MRS pulse sequences and the lipid signals are effectively suppressed by T2 relaxation.
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However this is not true for the tissues that surround the brain. Bone marrow in the cranial
bone and the soft tissues of the head and neck contain a significant portion of adipose cells.
Such cells store lipid as triacylglyceride. Triglyceride lipid chains are significantly more
mobile than is the case for lipid packaged within myelin. Triglyceride lipid proton spins
therefore have longer T2 values. Tissues containing adipose cells thereby produce large lipid
signals which can obscure brain metabolite signals and render it almost impossible to
accurately measure metabolite signal area. This is a particular problem for MRSI. MRSI
imaging procedures are far from perfect in avoiding the excitation of the lipid signals the
arise from outside the brain (37,38). As a result, it is not uncommon for MRSI voxel spectra
to include detectable “outer volume” lipid signals, which may be phase shifted relative to,
and overlap with, metabolite signals, and thereby interfere with signal quantitation. A post
processing procedure has been developed to minimize this complicating factor in MRSI and
use of this procedure can reduce errors in MRSI signal quantitation (38,39). Lipid signals
may even complicate SV-MRS when a neurodegenerative process causes breakdown of
myelin and releases the myelin lipid into a more mobile form. Furthermore it is important to
remember that SV-MRS pulse sequences do not always have perfect outer volume lipid
suppression and determining whether a lipid signal present in a SV-MRS spectrum arose
from within the actual sampled volume or from outside the volume is an ongoing problem.
In this regard, it is unfortunate that a widely referenced study that asserted brain MRS lipid
signals are biomarkers of neural progenitor cells failed to acknowledge the possibility of
accidental detection of lipid signals from the tissues outside the intended volume as a
limitation (40,41).

Signal amplitude quantitation is further complicated by “J-modulation” when the typical
MRS spin echo pulse sequences are used. The well-known J-modulation of the lactate 1.33
ppm signal is illustrated in Figure 2, which shows that the lactate signal phase changes in a
characteristic fashion as TE is changed. The phase modulation is the result of quantum
mechanical processes known as “J-coupling” which causes the signal from a particular
proton to break apart into a group of signals (i.e. a multiplet) whose positions depend on the
presence of other protons on the same metabolite molecule. Furthermore when spin echo
pulse sequences are used, each of signals in a multiplet acquires a unique TE-dependent
phase. The phase of each signal in the multiplet depends in a complex, but predictable,
fashion on type of pulse sequence that is employed and its timing. Software that performs
quantum mechanical calculations can be used to predict metabolite multiplet signal patterns
(frequencies, phases and relative signal intensities) with a high degree of accuracy (42–46).
J-coupling and J-modulation do not occur for the water, or the principal Cho, Cre and NAA
signals because the signal-producing molecules do not have other protons that are close
enough to the signal generating protons to produce the coupling effect. However many other
MRS-detectable metabolites produce similar characteristic TE-dependent patterns of signal
phase. Figure 11 illustrates how J-modulation can produce quite complex signal patterns.
The figure shows simulated TE = 136 spectra of two commonly sought after brain
metabolites, glutamate and glutamine. J-modulation and J-coupling impact on quantitation
because they effectively reduce signal relative to noise by breaking a particular signal into a
multiplet of smaller signals. Furthermore the signal phase patterns in such situations may
take a very bizarre appearance compared to the case of a single signal shown in Figure 1.
This is particularly true when there is substantial signal broadening due B0 inhomogeneity
and overlap of the multiplet component signals as is illustrated by the broadened signals
shown in the Figure 11. At certain TE values the phase modulation may cause much of the
signal to be absent from one or the other signal channels. At other TE values inverted and
upright signals may cancel each other as a result of close frequency proximity and
broadening.
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J-modulation is the basis of many spectral editing techniques that are designed to enhance or
suppress certain signals relative to overlapping signals in the brain spectrum. Description of
such editing pulse sequences are somewhat beyond the scope of this article, but from the
standpoint of metabolite concentration measurement, their use has positive and negative
features. The primary positive aspect is that spectral simplification enhances quantitation by
reducing overlap of the signal of interest with other signals. The primary negative feature is
that additional factors that describe how efficiently the pulse sequence detects a particular
signal or group of signals must be used to obtain concentration estimates. In many cases, it
is quite challenging to derive the values of these factors. Signal referencing approaches as
described above that use the particular molecule of interest may be helpful in this regard.

5. Signal Amplitude Measurement though Signal Modeling
In view of the many complexities discussed in the previous paragraphs, it has been
recognized that the “running sum” signal integration approach that has been used to
illustrate concepts throughout this article can not be used as a means of determining
integrated signal amplitude in short TE brain spectra. The situation for long TE spectra is
somewhat more relaxed. For long-TE spectra, J-modulation and T2 signal decay tend to
produce a situation in which only the prominent singlet signals can be detected above noise
and signal integration can be used because there are relatively few overlap problems. For
short TE spectra, it has become commonplace to assume that the brain spectrum is
represented by a “spectrum model”, which is the sum of many complex valued signals
arising from many metabolites. “Optimization” or “fitting” software is then used to
repetitively adjust the frequencies, phases and amplitudes of the signals until a simulated
model that agrees with the observed data to some prespecified level of accuracy is found.
The general fitting process is illustrated in Figure 11. The signal amplitudes that produce the
best fit are then used to estimate metabolite concentration. Typically used spectral models
include adjustable signal characteristics (phase, frequency and amplitude) of all signals. For
metabolites the fitting process can be constrained by the expected phase and frequency
signal patterns produced by quantum mechanical calculation or they may come from
measuring in vitro spectra of particular metabolites under the same conditions used to obtain
brain spectra. In some cases models include “nuisance” signals such as poorly suppressed
phase-shifted water and lipid signals. There is also evidence to suggest that small proteins or
other macromolecules that are present in brain tissue produce a baseline spectrum composed
of rather wide signals that underlies the metabolite spectrum. A practically useful model
should also therefore include baseline components (47–49).

Typically spectrum fitting techniques make use of well established linear least squares
optimization procedures that are used to solve analogous optimization problems in other
scientific and engineering fields, although neural network approaches have also been
invstigated (50). MRI manufacturers offer least squares fitting software as a part of their
MRS accessories. Alternative software packages are available as freeware and for a cost.
The most popular spectrum fitting software is currently LCModel (51,52). The spectral
models used by these software packages fall into two broad categories (48). The model may
be a group of individual signals each of which has its own signal frequency, FWHM, phase
and amplitude. An alternative is to use a model that recognizes that the individual
metabolites are most correctly modeled as a pattern of signals produced by the entire
molecule. LCModel was the first software package to use entire molecule approach (51,52).
Spectrum fitting software that takes either time domain (21,44,53–55) or frequency domain
(56–59) input is available. Efforts to compare results obtained by various methods have been
published (60–62). Time domain methods have the advantage of reducing the likelihood that
some inappropriate filtering has been used prior to performing the fit. It is also more
straightforward to compute the time domain representation non-Lorentzian inhomogeneity
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broadened lineshape as opposed to the frequency domain representation. Frequency domain
fitting does a better job at fitting models that contain wide baseline signals that might arise
from water, lipids or macromolecules. Frequency domain fitting tends to do a better job at
determining accurate signal positions while time domain methods give better estimates of
linewidths. In general either type of fitting may be regarded as adequate.

The use of fitting procedures has some notable shortcomings. Optimizing a fit to a large
model containing thousands of signals is sometimes required. This is a very large job even
for a modern day computer system. It is not unusual for a fit to require minutes to hours of
computer time depending on the level of complexity. While long fitting times are tolerable
for SV-MRS, they can severely limiting for MRSI because there are large numbers of voxel
spectra to fit. Approaches to breaking the optimization problem into smaller more
manageable subproblems is one approach to reducing computing time (54,63,64). Fitting
methodology requires an initial estimate of the model parameters and the optimal approach
for incorporating prior knowledge is rarely clear, although efforts to define optimal
approaches are underway (63,65). The metabolite signal frequencies and phases used in the
model as prior information can come from either quantum mechanical calculations or from
measurements of metabolite spectra. A recent study indicates that the approaches to
obtaining this prior information are equivalent (42). The methodology can be substantially
limited by the presence of “nuisance” signals, such as poorly suppressed water signal and
outer volume lipid signal. There is a need for better approaches to either filtering these
signals for the data prior to fitting or to including these signals into the models to be fit
(47,60,62,66–68). Appropriate lineshape estimation must also be included in the model (69).
Furthermore there always exists the possibility that the software may fail to arrive at a
correct solution and it is sometimes hard to know when this has occurred. Here the problem
is that parameters may couple in ways that cause incorrect combinations of signal values to
fit the data as well as the correct combinations. Many programs give estimates for the
uncertainty of the best fit results (i.e the Cramer-Rao bounds) but these estimates report how
well the model fits the data and not necessarily how accurate the result is.

The validity of metabolite concentration estimates determined using the methodology
described in this article can be assessed by performing repeated measures on individuals
(20,28,29,62,70–75) or by assessment of variance in cross-sectional studies of normal
populations (19,22,29,36,75,76). Comparisons between brain and phantom spectra have also
been used to assess and validate accuracy, but this validation approach is somewhat circular
when an external phantom is used in the calibration approach. These studies suggest that the
coefficient of variation for the largest metabolite signal (NAA) is 6% to 15%. It is not well
understood what factors or assumptions implicit in the rather complex signal processing
chain play a significant role in limiting the accuracy, precision or reproducibility.
Investigation of which factors contribute to the variance are underway. Variance depends on
the metabolite, its concentration, and on the brain area studied (28). A recent study of
metabolite concentrations in the human anterior cingulate found that interindividual
differences are more important contributors to the variance than are time of day and voxel
and/or subject repositioning (70,77). On the other hand another recent study found
physiologic variability to be an important source of measurement variability for temporal
lobe NAA (74). Nevertheless careful repositioning of voxel location may improve
reproducibility (75,76,78,79). SNR and linewidths are also an important factors (73,80).

6. Summary
Metabolite concentration is directly related to the area under an MRS signal produced by the
metabolite. While this fact seems to point to a straightforward approach to determining brain
metabolite concentration, the approach is actually very complicated due to many complex
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factors. In general, concentration estimation is achieved by calibrating the measured brain
signal levels against a reference signal measurement to control for many factors related to
instrumentation and signal detection methodology. Internal signal (Wat or Cre) may be used
for this purpose, or signals produced by an external phantom object containing metabolites
or other materials may be used. Determining the relative integrated amplitudes of the
overlapping signals within a brain spectrum is typically approached by fitting a complex
model to the data because of overlapping signals and several complex features related to
signal phase and signal overlap. Merging signal calibration with spectral fitting then
provides numerical estimates of metabolite concentration. There is often an additional
requirement to merge the concentration determination with a tissue content analysis that
determines gray, white matter and CSF content within the MRS voxel or voxels as a means
of correcting for the fact that different tissue types may have different metabolite
concentrations (81). This matter has not been discussed in this article, because tissue
segmentation is primarily an MRI quantitation problem. The numerical estimates of
metabolite concentration can be used in longitudinal or cross sectional studies.

7. Concluding perspective
Clinical and research applications of proton MRS have grown more slowly than applications
involving other MRI techniques. Nevertheless, there has been definite progress in clinical
MRS applications development during the past two decades. Several clear clinical uses of
MRS have emerged. Most neuroradiologists and neurosurgeons would now agree that MRS
provides useful diagnostic and prognostic information about intracerebral neoplastic lesions.
Similarly MRS can be valuable for epilepsy, particularly for evaluation of iodiopathic forms
of this disease that may or may not originate in the temporal lobes. There is also evidence to
suggest that MRS is useful in the diagnostic workup of inborn genetic problems in infants.
The further enhancement of MRS quantitation methodology would help to further
substantiate the utility of MRS in these important areas of clinical neuroscience. Additional
clinical applications of MRS are on the horizon. The present author sees a not too distant
future in which MRS and MRSI will play important roles in the differential diagnosis of
certain dementias and in the evaluation of functional disorders such as traumatic brain injury
and multiple sclerosis. Use of MRS for diagnosing and studying psychiatric disorders may
be somewhat more distant, but there is certainly reason to believe that MRS-detectable
amino acid metabolites (glutamine, glutamate, NAA) play a role in certain psychiatric
conditions. These potential future applications of MRS will require very careful signal
quantitation considering that existing studies show that these conditions produce less
prominent changes in metabolite levels in comparison with neoplasia and epilepsy.

Difficulty associated with MRS quantitation is sometimes suggested as an impediment to the
development of MRS as a clinical tool. It is the present author’s opinion that this is not the
primary cause. This review demonstrates that reliable quantitative evaluation of MRS
metabolite signal levels is feasible for studies involving groups of subjects or individual
patients, although it also shows that accurate quantitation requires significant attention to
detail. A more probable explanation for the slow growth of clinical MRS applications is the
contemporaneous emergence of other MRI technologies (e.g. magnetic resonance
angiography, diffusion MRI, perfusion MRI and blood oxygenation-dependent functional
MRI). Some of these alternate technologies could be used with little or no practical
quantitation. Such technologies offered more payoff for less work compared with MRS.
Resources that would have otherwise been used to perfect MRS technology and develop
new clinical MRS applications were directed instead to these competing technologies.
Another possible reason for the slow emergence of clinical MRS applications is the relative
lack of familiarity with the biochemical aspects of disease within the radiology community.
Radiology is largely a non-quantitative anatomically-based discipline in which the majority
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of the practitioners stop thinking about biochemistry after completing their course work in
medical school. The successful use of MRS within this community requires some lateral
learning about biochemistry and biochemical quantitation, which many busy radiologists
find difficult to undertake.

Looking forward, the academic MRI science community can do a great deal to further
enhance MRS quantitation methodology. One important step would be the development of a
more rationale framework for performing MRS quantitation and reporting the results.
Hopefully this review article has made it clear that the present tendency to classify MRS
quantitation in terms of ‘absolute’ or ‘ratio’ is overly simplistic. Wider acceptance of the
facts that ‘absolute’ quantitation is largely based on taking ratios and that there can be
different forms of ‘absolute’ quantitation is in order. Furthermore the common practice of
criticizing findings that use signal ratio measurements needs to be based on the value and
validity of the findings as opposed to a categorical decision about a ‘good’ or a ‘bad’
procedure. Sometimes ratio measurements can be more accurate in terms of reporting
disease status than absolute measurements. The academic community also needs to focus
more on quantitation of individual patient data as opposed to group data. All too frequently
mean metabolite level differences between groups (e.g. patients having a particular disease
versus normal controls) are reported as statistically significant at the p = 0.05 level and the
research stops without further evaluation of what would be needed to apply the findings in
an individual patient. Development of practical and statistically sound means of translating
such findings to diagnosing and longitudinally following individual patients is needed. The
academic community can also offer a great deal more in terms of explaining why certain
metabolite levels change in certain diseases. Presently used explanations for observed
changes (e.g. ‘NAA has changed because it is a reporter of neuronal function or neuronal
density or both’) tend to be largely inferential and somewhat superficial. There is a great
deal of room for studies that use modern quantitative cytology and molecular techniques to
explain why changes in metabolite levels occur in certain diseases. Such studies might
employ animal models of disease or well-characterized patients who provide tissue as a
result of neurosurgical procedures or autopsy. In particular, there needs to be a much better
understanding of whether disease-related MRS signal level changes result from changes in
cellular composition (e.g. cellular atrophy, cell-level immune response, stem cell migration)
as opposed to changes in metabolism within a population of existing cells.

The commercial MRI technology community can also do a great deal to enhance the
feasibility of MRS quantitation. The introduction of automated acquisition/processing
modules for SV MRS into commercial MRI products about 10 years ago was an important
first step. A major problem in existing commercial MRI systems is that important
information is hidden from the user. Examples of hidden information include transmit and
receive gain levels, the excitation profiles of the volume selection and water suppression RF
pulses, pulse sequence timing parameters and the exact methodology used for MRS signal
fitting and baseline correction. Products that automatically collect a not-water-suppressed
reference spectrum, but do not provide the user the opportunity view or otherwise work with
this spectrum, is another example of hidden information. Still another ‘hidden information’
problem is the failure to deliver raw MRS information to the user via widely accepted
DICOM protocols or to publish information about the formats used to store raw spectral
data. Hidden information is highly counterproductive for both the academic and commercial
MRI communities. Academic investigators eventually learn how to obtain the hidden
information, but doing so consumes valuable resources that could otherwise be devoted to
scientific and clinical exploration that, in turn, would be highly valuable in the commercial
MRI community. Hidden information also runs contrary to clinical trial design principles,
which require keeping verifiable records of the smallest details about the experimental
procedures used in a clinical trial. A practical reality is that multicenter clinical trials
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involving MRS biomarkers will use MRI scanners produced by different manufacturers and
manufacturer-specific hidden information severely impedes integrating clinical trial results
coming from different scanners. Results presentation is also an area which the commercial
MRI community could improve. It has become customary to present MRS results as x-y
plots of the spectrum with numerical summaries of signal areas. As is discussed above, such
results displays can lead to confusion about vertical scaling and signal area versus signal
height. In this context a bar graph that reported the signal areas or metabolite concentrations
(including the water reference signal if it is collected) may be more helpful and would also
appeal to the visual nature of radiologist training.
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Figure 1.
Schematic illustration of time domain and frequency domain MRS signals and their
properties. See text for further explanation.
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Figure 2.
MRS signal averaging. Number of averages used for each simulation are shown to the right
of each simulated spectrum. Coefficient of variance (COV) calculated as standard deviation
divided by mean. COV values were determined by repeating each simulation 100 times,
measuring the amplitude of the simulated NAA signal by integration as shown and then
determining the mean and standard deviation over the 100 amplitude measures.
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Figure 3.
Computer-simulated MRS data for various TE settings for a spin echo pulse sequence. COV
values were determined as described in Figure 2 caption.
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Figure 4.
Computer-simulation of Cho and Cre signals for three different conditions. See text.
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Figure 5.
The same data shown in Figure 4 is presented except that a different y-scaling approached is
used for display.
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Figure 6.
Computer simulation of the effect of signal broadening in the presence of noise on signal
amplitude measurement statistics. COV values were determined as described in Figure 2
caption. See text for further details.
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Figure 7.
Schematic illustration of noise filtering in the time domain. The top panels of the figure
show computer simulated unfiltered FID (left) and the same FID after multiplication by an
exponentially decaying filter function (top center and right). The corresponding spectra
derived from Fourier transformation are shown in the bottom panels.
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Figure 8.
Comparison between 3 Tesla short TE SV-MRS data taken from gray matter (GM), white
matter (WM) and a phantom containing brain metabolites.
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Figure 9.
Computer simulation of characteristic MRS signal line shapes. Left panel: Cho and Cre
signals having Lorentzian shape with FWHM of 0.075 ppm. Right panel: The same Cho-Cre
frequency difference was used to simulate signals having the same amplitudes, but mixture
of Lorentzian and Gaussian shapes. The data were simulated by repeating the Lorentzian
shape calculation 100 times with 1% intensity, a FWHM of 0.037 ppm and a frequency shift
that was randomly chosen from a normal (Gaussian) distribution having a FWHM of 0.37
ppm. The data presented are the sum of the 100 simulations. COV values were determined
as described in Figure 2 caption.
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Figure 10.
Illustration of a quantitation problem that can arise from the combination of incomplete
water suppression and phase correction errors.
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Figure 11.
Glutamine and glutamate MRS signals in the 1.75 – 4.0 ppm region. Data were simulated
using the GAVA program. A PRESS localizing pulse sequences with TE = 136 was
assumed. Phase corrected real (solid line) and imaginary (dotted line) channels are shown.
The data were simulated with a uniform FWHM values of 0.005 ppm and 0.075 ppm.
Simulation using narrow FWHM illustrates the complexity of the spectral patterns that
underlie the typical in vivo spectrum FWHM (0.075 ppm).
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Figure 12.
Illustration of non-linear signal fitting of a 3 T short TE water suppressed human brain
spectrum (solid line) to a complex spectral model (dashed line) generated by the GAVA
program. The residue (model –data) is shown below each pair. a – d show progressive
improvement in the model in terms of agreeing with the data.
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