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We introduce AMARES (advanced method for accurate, robust, Noninteractive methods exist that are noniterative and
and efficient spectral fitting) , an improved method for accurately computationally efficient and which can be fully automatic.
and efficiently estimating the parameters of noisy magnetic reso- A serious drawback however is the fact that only very limited
nance spectroscopy (MRS) signals in the time domain. As a refer- prior knowledge can be incorporated in these algorithms and
ence time domain method we take VARPRO. VARPRO uses a that the model function is restricted to a sum of complex
simple Levenberg–Marquardt algorithm to minimize the variable

exponentially damped sinusoids. Among this class of meth-projection functional. This variable projection functional is derived
ods are the algorithms based on Kumaresan–Tufts’ linearfrom a general functional, which minimizes the sum of squared
prediction (LP) method (1) combined with singular valuedifferences between the data and the model function. AMARES
decomposition (SVD) (2) . Kung et al.’s state-space ap-minimizes the general functional which improves the robustness
proach (3) combined with SVD (called HSVD (4)) is aof MRS data quantification. The newly developed method uses a

version of NL2SOL, a sophisticated nonlinear least-squares algo- more efficient and more accurate alternative to the LP meth-
rithm, to minimize the general functional. In addition, AMARES ods as it circumvents the polynomial rooting and root selec-
uses a singlet approach for imposition of prior knowledge instead tion. Rapid and more accurate variants of the state-space
of the multiplet approach of VARPRO because this greatly extends algorithms have been recently proposed (5–8) , but the limi-
the possibilities of the kind of prior knowledge that can be invoked. tations to the imposition of prior knowledge about model
Other new features of AMARES are the possibility of fitting echo function parameters are inherent to these types of methods.
signals, choosing a Lorentzian as well as a Gaussian lineshape for

On the other hand, interactive methods exist that are itera-
each peak, and imposing lower and upper bounds on the parame-

tive, with more user-involvement, in some cases computa-ters. Simulations, as well as in vivo experiments, confirm the better
tionally less efficient, but that do allow inclusion of priorperformance of AMARES compared to VARPRO in terms of accu-
knowledge. The algorithms fit the data to the nonlinearracy, robustness, and flexibility. q 1997 Academic Press

model function in a least-squares sense, leading to maximum
likelihood parameter estimates in the case of white Gaussian
noise. See (9) for an overview of time domain methods.

In this paper we introduce AMARES (advanced method
INTRODUCTION for accurate, robust, and efficient spectral fitting), an im-

proved interactive time domain method for accurate and ef-
For medical diagnosis or biochemical analysis accurate ficient parameter estimation of MRS signals with use of

and efficient quantification of magnetic resonance spectros- prior knowledge. As a reference interactive method we take
copy (MRS) signals is of utmost importance. MRS signals VARPRO (10) , a method that has proven to be very reliable
however are often characterized by a low signal-to-noise in recent years (11, 12) . Our method improves VARPRO
ratio and overlapping peaks. In these circumstances simple in several ways. First of all, we minimize a different func-
signal processing algorithms like numerical integration are tional than in VARPRO, leading to more robust quantifica-
not adequate. In recent years a number of more advanced tion of MRS signals. In addition, we use a more sophisticated
time domain techniques based on a mathematical model nonlinear least-squares (NLLS) algorithm which has a more

robust behavior than the simple Levenberg–Marquardtfunction have been developed.
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36 VANHAMME, VAN DEN BOOGAART, AND VAN HUFFEL

(LM) algorithm used in VARPRO. The robustness is also
G(a , d , f , f , t0) Å ∑

N01

nÅ0

Éyn 0 ∑
K

kÅ1

ake
jfke (0dk/j2p fk ) tnÉ

2
increased by imposing lower and upper bounds on the pa-
rameters. This allows one to impose the physical requirement

Å \y 0 Cl\ 2 , [2]that all damping factors are positive. It is shown here that
this strategy leads to greater robustness than the transforma-
tion of variables used in VARPRO. We also greatly extended where y Å [y0 , . . . , yN01]T is the signal vector, l Å
the possibilities of imposing prior knowledge. This leads to [a1e

jf1 , . . . , aKe jfK ]T , and a , d , f , and f are the vectors
more accurate parameter estimation since the precision of of amplitudes, dampings, frequencies, and phases, respec-
the quantitative analysis is increased by using all available tively. The superscript T denotes the transpose, \r\ the Eu-
information (9) and increases the flexibility for the user. In clidean vector norm, and
addition, using all available prior knowledge leads to an
optimization problem in a smaller number of variables which
can be solved more consistently in less time. As extra fea-

C Å F e (0d1/j2p f1) t0 ??? e (0dK/j2p fK ) t0

: ??? :

e (0d1/j2p f1) tN01 ??? e (0dK/j2p fK ) tN01
G [3]

tures of our new algorithm we made it possible to use a
more general model function than in VARPRO and to fit
entire spin echo signals instead of having to truncate the
first part of the echo as in VARPRO. As a result our method is an N 1 K matrix of full rank.
allows for more robust, accurate, flexible, and efficient quan- The second functional is derived as follows. Suppose that
tification of MRS signals. the nonlinear parameters f and d are known; then the matrix

In the first part of the paper we will explain the algorithmic C can be computed and an estimate for the linear parameters
differences between VARPRO and AMARES and we will l is obtained by solving a linear LS problem: l̂ Å C †y , with
point out the extended possibilities of imposing prior knowl- C † Å (CTC)01CT , the pseudo-inverse of C. Substituting
edge in AMARES. The differences in robustness and effi- this estimate into the original functional G of Eq. [2] results
ciency between VARPRO and AMARES are illustrated in in
the second part of the paper. In the third part we illustrate
the extended possibilities of imposing prior knowledge using

V (d , f , t0) Å \y 0 CC †y \ 2 , [4]
an in vivo signal.

which is called the variable projection functional (13) andMETHODS
denoted by V from now on. In this way the amplitudes a
and the phases f are eliminated. As a result we obtain aThe most commonly used model function in MRS signal
minimization problem where the number of variables is re-processing to fit N measured data points yn is a sum of
duced but where the functional has become more compli-exponentially damped sinusoids (Lorentzian lines after FT),
cated.

Both functionals consist of a sum of squared residuals and
yn Å yP n / en Å ∑

K

kÅ1

ake
jfke (0dk/j2p fk ) tn / en , give rise to typical NLLS problems. The available biochemi-

cal prior knowledge can be expressed as a set of linear
n Å 0, 1, . . . , N 0 1, [1] relations between parameters resulting in a minimization

problem with linear equality constraints. These constraints
are substituted in the original functional in order to obtainwhere j Å

√
01, ak is the amplitude, fk is the phase, dk is

the damping factor, and fk is the frequency of the k th sinusoid an unconstrained NLLS minimization problem. As a conse-
quence, regardless of which of the two functionals in Eq.(k Å 1, . . . , K) ; tn Å nDt / t0 with Dt the sampling interval

(nonuniform sampling vectors are also valid) , t0 is the time [2] or Eq. [4] is used, we always have to solve an uncon-
strained NLLS optimization problem.between the effective time origin and the first data point to

be included in the analysis, and en is complex white Gaussian The latter can be solved using local or global optimization
theory. Global optimization has already been used in MRSnoise. The caret on y indicates that this quantity represents

the model function rather than the actual measurements. (14, 15) but the main disadvantage of these methods is the
poor computational efficiency. The methods are too timeOther types of model line forms can be used; we will come

back to this. consuming to be useful in practical situations. On the other
hand it is possible to obtain good starting values by peakTo obtain maximum likelihood estimates in the case of

white Gaussian noise, one has the choice between minimiz- picking for use in local optimization methods, resulting in
an acceptable solution in a reasonable time in most circum-ing two functionals. The first one, denoted by G throughout

the paper, is straightforwardly derived using probability the- stances. Therefore, in this paper we focus our attention on
methods based on local optimization theory.ory and is given by the formula
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37IMPROVED METHOD FOR QUANTIFICATION OF MRS DATA

VARPRO: Algorithmic Aspects AMARES fits the data to the following model function
in a least-squares sense:

VARPRO minimizes the variable projection functional V
using a modified version of Osborne’s Levenberg–Mar-

yn Å yP n / en Å ∑
K

kÅ1

ake
jfke (0dk(10gk/gktn ) tn )e j2p fktn / en ,quardt algorithm (16) . The basic model function of Eq. [1]

is extended so that one has the choice between a pure
n Å 0, 1, . . . , N 0 1. [6]Gaussian (g Å 1) or a pure Lorentzian (g Å 0) lineshape

for the entire signal:

The basic model function of Eq. [1] is extended so that one
now has the choice between a pure Lorentzian (gk Å 0) oryn Å yP n / en Å ∑

K

kÅ1

ake
jfke (0b2

k(10g/gtn ) tn )e j2p fktn / en ,
a pure Gaussian line form (gk Å 1) for every peak separately
as opposed to VARPRO where the line form used must ben Å 0, 1, . . . , N 0 1. [5]
the same for all peaks.

AMARES allows the imposition of all kinds of linear
It is very important to note here that in VARPRO minimiza-

relations between individual parameters by using a singlet
tion is done w.r.t. the square roots of the damping factors

instead of a multiplet approach, thereby greatly increasing
bk , i.e., b 2

k Å dk (k Å 1, . . . , K) , to make sure that the the prior knowledge that can be used in the data processing.
damping is positive as required by physical considerations. This is explained in more detail under AMARES: Singlet
This variable transformation works in most practical situa- Approach for Prior Knowledge and is illustrated under Quan-
tions, but is not without danger as explained by Gill and co- tification of an in Vivo Signal Using Prior Knowledge.
workers (17) and as we will show under Simulations. AMARES also offers the ability to fit echo signals, an

Different forms of multiplet prior knowledge can be im- echo being modeled as two FIDs back to back. The left and
posed as relations between parameters of the same type; the right part of the echo are considered to have the same
a detailed explanation is given under VARPRO: Multiplet amplitudes, frequencies, and phases but different dampings.
Approach for Prior Knowledge. The dampings of the right and left part can however be

With VARPRO it is possible to do frequency-selective linked to each other. In VARPRO the first part of the echo
quantification in the time domain (18) . As a measure of is truncated in order to be able to work with the model
precision we compute approximations to the Cramér–Rao function of a FID signal. As a consequence, part of the signal
lower bounds as explained in (9) . and thus part of the information is destroyed.

Like in VARPRO the user has the possibility to perform
frequency-selective quantification in the time domain (18) .AMARES: Algorithmic Aspects
The approximations to the Cramér–Rao lower bounds are
used as a measure of precision. Note that the Cramér–Rao

AMARES uses dn2gb (available from the Port library of bounds do not change by imposing simple bounds on the
netlib (19)) , the most recent version of NL2SOL to mini- variables as proven in (21) .
mize the general functional. NL2SOL is a secant method
recommended in (20) and has the advantage of handling
large-residual or very nonlinear problems better than a Lev-

Computational Considerationsenberg–Marquardt algorithm (as used in VARPRO). An
additional advantage of using dn2gb is the fact that the

VARPRO and AMARES both make use of evaluationsalgorithm allows the user to specify upper and lower bounds
of the residuals and the Jacobian, the Jacobian being theon the variables. We can use this feature to impose the
matrix consisting of the first derivatives of the residuals withnatural bounds on the variables. The physical requirement
respect to the unknown parameters. In both methods theof a positive damping can thus easily be imposed. Likewise
residuals and Jacobian are provided analytically. Evaluationamplitudes (like the dampings) cannot become negative
of the residuals and the Jacobian of V (VARPRO) is far(negative amplitudes correspond to a 1807 phase shift) ,
more complicated than in the case of G (AMARES). Inwhereas the upper and lower bounds on the frequencies are
VARPRO a simplification introduced by Kaufman (22) isdetermined by the spectral width. Phases can be constrained
used which results in a more efficient computation of theto lie between 01807 and /1807. In general it is recom-
Jacobian of V .mended to add those extra bounds on the variables in order

To perform the actual minimization, the data and theto ensure maximum accuracy and robustness (17) . We show
model function are split in a real and imaginary part asunder Simulations that this new approach of ensuring the

positiveness of the dampings leads to a more robust method
than VARPRO. V Å \yV 0 CV lV \ Å \yV 0 CVCV †y \, [7]
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38 VANHAMME, VAN DEN BOOGAART, AND VAN HUFFEL

where

CV Å

e0d1t0 cos(2pf1t0) 0e0d1t0 sin(2pf1t0) ??? e0dKt0 cos(2pfKt0) 0e0dKt0 sin(2pfKt0)
e0d1t0 sin(2pf1t0) e0d1t0 cos(2pf1t0) ??? e0dKt0 sin(2pfKt0) e0dKt0 cos(2pfKt0)

: : ??? : :

e0d1tN01 cos(2pf1tN01) 0e0d1tN01 sin(2pf1tN01) ??? e0dKtN01 cos(2pfKtN01) 0e0dKtN01 sin(2pfKtN01)
e0d1tN01 sin(2pf1tN01) e0d1tN01 cos(2pf1tN01) ??? e0dKtN01 sin(2pfKtN01) e0dKtN01 cos(2pfKtN01)

[8]

yV Å

Re(y0)
Im(y0)

:

Re(yN01)
Im(yN01)

, lV Å

a1cos(f1)
a1sin(f1)

:

aKcos(fK)
aKsin(fK)

Å

Re(c1)
Im(c1)

:

Re(cK)
Im(cK)

[9]

with ck Å ake
jfk (k Å 1, rrrK) .

G Å \yG 0 CGlG\, [10]

where

CG Å

e0d1t0 cos(2pf1t0 / f1) ??? e0dKt0 cos(2pfKt0 / fK)
e0d1t0 sin(2pf1t0 / f1) ??? e0dKt0 sin(2pfKt0 / fK)

: ??? :

e0d1tN01 cos(2pf1tN01 / f1) ??? e0dKtN01 cos(2pfKtN01 / fK)
e0d1tN01 sin(2pf1tN01 / f1) ??? e0dKtN01 sin(2pfKtN01 / fK)

[11]

strained or they can be linked to each other when the inten-
sity ratios of the peaks are known. Dampings are treated in
the same way, but with the extra possibility of fixing the

yG Å

Re(y0)
Im(y0)

:

Re(yN01)
Im(yN01)

, lG Å F a1

:

aK

G . [12] damping to a value which must be the same for all peaks
in that group. Frequencies within a group can be left uncon-
strained or they can be linked if the frequency splittings
between neighboring peaks are known exactly. If the fre-

Re(r) and Im(r) denote the real and imaginary parts of a quency splittings between neighboring peaks are unknown,
complex quantity. but equal for all the peaks in the group, a new variable D

In VARPRO and AMARES starting values for the fre- is introduced. One then has f1 , f2 Å f1 / D, f3 Å f1 / 2D,
quencies and dampings need to be provided by the user. In . . . , fk Å f1 / (k 0 1)D, for all k peaks belonging to the
AMARES, the starting values for the amplitudes and phases same group; fk is the arbitrarily chosen reference peak, and
are computed by solving the LS problem l̂V Å CV †yV, with neighboring peaks in the spectrum are denoted by consecu-
the starting values for the frequencies and dampings inserted tive numbers. In addition, the frequency of the first compo-
in CV . nent (chosen arbitrarily) can be fixed together with the fre-

VARPRO and AMARES are both written in Fortran77. quency splitting of the multiplet. In that case all the frequen-
They can be used as stand-alone programs, but they are also cies of a group are fixed. Note that it is impossible to fix
implemented within the MRUI software package (23) , a the frequencies of the peaks of a certain group indepen-
graphical user interface to facilitate use of sophisticated dently: the frequency differences between neighboring peaks
spectral analysis routines in biomedical /biochemical labora- are the same. The overall phase fk of a peak is considered
tories and the clinic. AMARES is available from the authors to consist of an individual phase f *k and a so-called zero-
upon request. order phase f0 which is the same for all peaks: fk Å f *k /

f0 . The individual phases can be left unconstrained, in which
VARPRO: Multiplet Approach for Prior Knowledge

case the zero-order phase must be fixed. The phases of all
VARPRO puts peaks belonging to the same multiplet into peaks within a group can be fixed to a value (the same for

all the peaks within the group) relative to the zero-orderone group. Amplitudes within one group can be left uncon-
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39IMPROVED METHOD FOR QUANTIFICATION OF MRS DATA

phase, which can be estimated or kept fixed. Of all the groups
with constraints on amplitudes one group can be taken as a
reference and the other groups can be linked to the reference
group. This means that the relative amplitude of the first
component (chosen arbitrarily) of the reference group w.r.t.
the first component of a linked group can be imposed. Groups
with constrained dampings are treated in the same way.
Groups with variable frequency splittings can also be linked
in the same way, the only difference being that the frequency
splitting ratio between the linked groups must be one.

We illustrate some of the above-mentioned possibilities
using the 31P simulation example. The peaks belonging to
the b-ATP triplet are put into one group. The amplitude
ratios are a1 :a2 :a3Å 1:2:1. If we impose this prior knowledge
in VARPRO and we leave the corresponding phases uncon-
strained, the program will automatically assume these phases
to be equal ( this is not the case when amplitudes are left

FIG. 1. Frequency domain representation of simulated 31P MRS signal;
unconstrained). This is equivalent to linking the complex the standard deviation of the noise is 15. See Table 1 for the parameter
amplitudes ake

jfk or in this example Re(c1) :Re(c2) :Re(c3) values of the signal.
Å 1:2:1 and Im(c1) :Im(c2) :Im(c3) Å 1:2:1. Peaks 4 and 5
belong to the a-ATP doublet and are put in a second group.
We know that a4 :a5 Å 1:1 and that a4 :a1 Å 2:1. VARPRO Each of the parameters can be left unconstrained or kept
offers the possibility of imposing this prior knowledge be- fixed. One can impose a fixed shift or ratio w.r.t. any uncon-
tween the two groups as long as the constraints on the phases strained parameter of the same type. Finally, it is possible
are equal for both groups. to impose a variable shift or ratio w.r.t. any unconstrained

In the case of the b-ATP triplet we can impose a fixed or fixed parameter of the same type. These variable shifts
frequency splitting of 16 Hz between the individual peaks or ratios can then be linked between different groups of
within the triplet, leading to f2 Å f1 / 16 and f3 Å f1 / 32. peaks. Imposing a fixed shift or ratio and a variable shift or
Suppose however that we do not know the exact frequency ratio deserves some more explanation; the other forms of
splittings between the peaks but that we do know that these prior knowledge are trivial to implement.
splittings are the same. We can express this by introducing As an arbitrary example, take a signal consisting of three
a new variable D. We then get f2 Å f1 / D and f3 Å f1 / peaks. Imposing a fixed ratio is done in the following way,
2D. We can also express that the frequency splitting in the e.g., for the amplitudes a2 Å a1x , a3 Å a1y , x , y √ R. x and
a-ATP doublet is the same as that in the b-ATP triplet. y are values provided by the user. Imposing a variable ratio
Using VARPRO we express this as f5 Å f4 / D. leads to the introduction of a new variable D, a2 Å a1(xD) ,

This implementation of prior knowledge in VARPRO al- a3 Å a1(yD) , x , y √ R. x and y are values provided by the
ready offers many possibilities of imposing various linear user. Imposing a variable shift or ratio is useful only if the
relations between parameters and has proven crucial in ear- new variable is shared by at least two peaks, otherwise the
lier studies (12, 24, 25) . However, in recent years, more total number of unknowns is not changed.
prior knowledge has become available and the present imple-
mentation of VARPRO can no longer satisfy all the needs SIMULATIONS
(11) . One example is formed by the six glycogen resonances

In this section we demonstrate the differences betweenin 13C MRS, for which the relative frequency shifts are
VARPRO and AMARES. To this end we perform a Monteknown but different. This can therefore not be implemented
Carlo study. The simulation signal we used was derivedas a regular multiplet in the VARPRO algorithm. For the
from an in vivo 31P spectrum measured in the human brainquantification of a 13C MRS signal using AMARES, we refer
and consisted of 256 complex data points and 11 exponen-to (26) .
tials (see Fig. 1 and Table 1). The 31P peaks from brain
tissue, from left to right phosphomonoesters, inorganic phos-AMARES: Singlet Approach for Prior Knowledge
phate, phosphodiesters, phosphocreatine, g-ATP, a-ATP,
and b-ATP, can all be observed. From the noiseless signalIn AMARES we have chosen for a singlet approach, mak-

ing an identical treatment of all parameters possible. This 300 noisy realizations were generated with noise standard
deviation sn (on both the real and the imaginary parts) . Weapproach allows everything that was previously possible us-

ing the multiplet approach of VARPRO and much more. used a low, intermediate, and high noise level (sn Å 5, 15,
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40 VANHAMME, VAN DEN BOOGAART, AND VAN HUFFEL

TABLE 1 TABLE 2
Exact Parameter Values of the Simulated 31P MRS Signal, Sample Mean and Standard Deviation Values of Monte Carlo

Simulation (300 Runs), No Prior KnowledgeModeled by Eq. [1]

Peak k fk (Hz) dk (Hz) ak (a.u.) uk (7)a sn Criterion VARPRO AMARES

5 % fail 0 01 086 50 75 135
2 070 50 150 135 jev { std 10.4 { 1.0 11.5 { 1.7

fev { std 13.5 { 1.3 15.6 { 2.43 054 50 75 135
4 152 50 150 135 cpu { std 2.6 { 0.3 2.1 { 0.3

15 % fail 12.3 0.335 168 50 150 135
6 292 50 150 135 jev { std 11.5 { 3.8 14.7 { 3.2

fev { std 15.8 { 6.9 20.9 { 5.87 308 50 150 135
8 360 25 150 135 cpu { std 2.9 { 1.0 2.6 { 0.6

25 % fail 13.0 7.09 440 285.7 1400 135
10 490 25 60 135 jev { std 11.3 { 4.2 15.0 { 6.1

fev { std 14.1 { 5.8 20.4 { 9.711 530 200 500 135
cpu { std 2.8 { 1.0 2.6 { 1.1

Note. t0 Å 0, Dt Å 0.333. The values are based on the fit of an in vivo
31P MRS signal. Note. VARPRO and AMARES are compared. The computed quantities

are % fail, the percentage of failures; jev, the average number of Jacobiana uk Å fk∗180/p expresses the phase in degrees.
evaluations; fev, the average number of functional evaluations; cpu, the
average cpu time in seconds. std denotes the standard deviation.

25) . A method is considered to fail if the minimization
algorithm claims not to have found the solution (according

In the first experiment no prior knowledge is imposed;to its corresponding stopping criterion) or if not all 11 peaks
hence four parameters for each of the 11 peaks are to beare resolved within specific intervals lying symmetrically
estimated. AMARES minimizes a problem in 44 variables,around the exact frequencies. The half-widths of these inter-
whereas VARPRO minimizes a problem in 22 variables.vals are 8.6, 7.3, 8.7, 3.2, 3.2, 3.5, 3.6, 0.7, 5.6, 2.4, and 7.8
The results are displayed in Table 2. We see that VARPROHz, respectively. These values are derived from the Cramér–
performs poorly in terms of failures compared to AMARES.Rao lower bounds on the frequencies at that noise standard

We did several tests to find the reason for this significantlydeviation where the two intervals of two neighboring peaks
poorer robustness of VARPRO. First, we changed the VAR-in the b-ATP triplet touch.
PRO code so that G was minimized instead of V . The resultsFor all our results we verified that these simple criteria
are displayed in Table 3. We see that the failure rate dropsguarantee that all methods find the same minimum if no

failure occurs. As a result, root-mean-squared error, bias,
and standard deviation of the parameter estimates computed

TABLE 3by any method as a function of the noise level are the same
Sample Mean and Standard Deviation Values of Monte Carloand will not be shown.

Simulation (300 Runs), No Prior Knowledge
Starting values for the dampings and the frequencies can

be obtained by peak picking or by using a noninteractive sn Criterion VARPRO-G VARPRO-d VARPRO-N
method like HSVD. In a previous study (27) we found that

5 % fail 0 0 0for signals with a high signal-to-noise ratio HSVD is the
jev { std 9.9 { 0.3 9.0 { 0.3 8.5 { 0.5best way of providing starting values. However, for low
fev { std 10.9 { 0.3 12.1 { 0.5 11.5 { 0.5

signal-to-noise ratio signals peak picking is preferred. Here cpu { std 1.7 { 0.1 2.2 { 0.07 2.1 { 0.1
only peak picking is considered. For every noise level used 15 % fail 0.33 0 0

jev { std 10.6 { 1.3 10.2 { 0.9 11.8 { 1.5in the Monte Carlo simulation we randomly picked one sig-
fev { std 11.7 { 1.7 14.4 { 1.1 14.8 { 2.0nal out of 300 for which damping and frequency starting
cpu { std 1.8 { 0.2 2.8 { 0.2 2.7 { 0.3values were determined by peak picking. These starting val-

25 % fail 7.0 6.7 6.7
ues were then used to process all the signals affected by the jev { std 12.7 { 4.5 11.4 { 3.5 12.3 { 3.7
same noise level. fev { std 14.5 { 5.9 14.9 { 3.6 15.1 { 4.1

cpu { std 2.2 { 0.8 2.9 { 0.8 2.8 { 0.8We compared VARPRO and AMARES in terms of ro-
bustness and efficiency. The robustness could be assessed by

Note. VARPRO-G is the original VARPRO code adapted to minimizethe number of times a method fails. To compare the efficiency
the general functional G instead of the variable projection functional V.

we looked at the average number of functional and Jacobian VARPRO-d is the original VARPRO code modified to minimize w.r.t. dk,
evaluations and the average overall CPU time. All experiments k Å 1rrrK. VARPRO-N is the original VARPRO code where the LM

algorithm is replaced by NL2SOL. See also the footnote to Table 2.were performed on a SUN ULTRA2 (200 MHz).
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41IMPROVED METHOD FOR QUANTIFICATION OF MRS DATA

When more prior knowledge is imposed or the starting
values improve, leading to a reduction in complexity of the
optimization problem, the differences in robustness between
VARPRO and AMARES decrease. In these situations VAR-
PRO can still be more efficient, due to the less complicated
nature of the underlying optimization algorithm.

QUANTIFICATION OF AN IN VIVO SIGNAL USING
PRIOR KNOWLEDGE

To illustrate the features of the new algorithm we tested
it on a challenging data set provided by Dr. A. Heerschap
of the University Hospital Nijmegen (see Acknowledg-
ments) . An in vivo spectrum was acquired from the prostatic
gland of a benign prostatic hyperplasia patient, at 1.5 T using
a PRESS localization sequence (t1 Å 11 ms, t2 Å 67.5 ms)

FIG. 2. In vivo spectrum of the prostate gland of a BPH patient. Peak and an endorectal coil for signal reception; 256 scans of
1 is choline, peak 2 is creatine, and peaks 3 to 6 constitute the citrate 1024 complex FID data points were acquired from a volume
multiplet. of 8 cc, with a TR of 1.6 s (see Fig. 2) .

The goal of this measurement was the quantification of
the citrate content, which is an important tool in the discrimi-
nation between prostate adenocarcinoma and benign pros-to a level comparable to that obtained with AMARES. This

suggests that minimization of G is easier than that of V . tatic hyperplasia (BPH). The citrate protons form a compli-
cated AB-type multiplet, consisting of four Lorentzian linesWe see an equal improvement in failure rate when we

take the VARPRO code and modify it so that minimization with different phase. Relative intensities of the citrate lines
and their phase deviations from the rest of the spectrum canis done w.r.t. dk , k Å 1, . . . , K , directly. The dampings are

forced to be positive by imposing a penalty on the function if be calculated (29) and were provided to us by Dr. M. van
der Graaf (see Acknowledgments) . It is also known that thethe algorithm computes damping estimates that are negative.

Note however that this approach can lead to slow conver- linewidths of the main peaks should be equal as well as
those of the side peaks.gence in some cases as pointed out in (28) .

To investigate the influence of the minimization algorithm To analyze the signal with VARPRO we put all the peaks
in separate groups. We could have put the peaks of cholineused, we replaced the LM algorithm in VARPRO by the

NL2SOL algorithm used in AMARES. The results are dis- and creatine in one group but that would not have made any
difference. The four peaks of citrate must be put in separateplayed in Table 3. Although the functional minimized is V

and the minimization is done w.r.t. bk , k Å 1, . . . , K , the groups in order to impose the fixed (but different for each
peak) phase shifts w.r.t. the zero-order phase. This impliesfailure rate drops to the same level as that obtained using

AMARES. This clearly shows that AMARES is a more that we cannot impose the known frequency shifts between
the citrate peaks since these can only be imposed betweenrobust algorithm, able to deal with more difficult optimiza-

tion problems. peaks belonging to the same group. Amplitudes were linked

TABLE 4
Results of Analysis of the Citrate Signal with VARPRO

Peak k fk { std (kHz) dk { std (kHz) ak { std (a.u.) u*k (7)a

1 00.0949 { 0.0004 00.0222 { 0.0032 9.70 { 1.30 0
2 00.1069 { 0.0003 00.0251 { 0.0040 10.42 { 1.97 0
3 00.1140 { 0.0005 00.0111 { 0.0023 1.55 { 0.05 098.74
4 00.1296 { 0.0001 00.0126 { 0.0006 19.51 { 0.64 35.60
5 00.1317 { 0.0001 00.0129 { 0.0006 19.51 { 0.64 035.60
6 00.1472 { 0.0005 00.0111 { 0.0023 1.55 { 0.05 98.74

Note. Fitted zero-order phase (7) 225.6297 { 25.8974. Fitted begin time (ms) 2.4339 { 0.5528.
a u*k Å f*k∗180/p expresses the phase in degrees.
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TABLE 5 estimated amplitudes are identical for the citrate multiplet.
Results of Analysis of the Citrate Signal This is mainly due to the available prior knowledge for the

with the New Algorithm amplitude ratios with respect to the prominent main peaks,
and to the precise phase constraints. As an aside, it can be

Peak k fk { std (kHz) dk { std (kHz) ak { std (a.u.) u*k (7)a

noted that, perhaps because of the improved fitting of the
left side peak of citrate, the fitting of creatine and choline1 00.0949 { 0.0004 00.0227 { 0.0032 9.93 { 1.27 0
is more according to our expectations for the new method.2 00.1068 { 0.0003 00.0240 { 0.0037 9.95 { 1.83 0

3 00.1137 { 0.0001 00.0117 { 0.0025 1.55 { 0.05 098.74 Their linewidths (damping factors) should not differ too
4 00.1296 { 0.0001 00.0127 { 0.0005 19.50 { 0.63 35.60 much, due to the leveling effect on the effective linewidths
5 00.1317 { 0.0001 00.0127 { 0.0005 19.50 { 0.63 035.60 of the magnetic field inhomogeneities and magnetic suscepti-
6 00.1477 { 0.0001 00.0117 { 0.0025 1.55 { 0.05 98.74

bility effects. Creatine may indeed be a little broader than
choline, as its T2 is shorter than that of choline (33) .Note. Fitted zero-order phase (7) 221.1242 { 25.2350. Fitted begin time

(ms) 2.3313 { 0.5380.
a u*k Å f*k∗180/p expresses the phase in degrees. CONCLUSIONS

We have presented AMARES, a new algorithm which
outperforms the currently used reference time domainbetween the different groups and the individual phases of the
method VARPRO in two ways. First, we made an appro-peaks fixed relative to the zero-order phase. Since VARPRO
priate choice of the functional and the nonlinear least-squaresallows only one overall linking for dampings between
algorithm. When estimating the parameters of a magneticgroups, we could link all four peaks to each other ( theoreti-
resonance spectroscopy signal in the time domain using opti-cally incorrect) , to the side peaks, or to the main peaks. In
mization methods one has the choice between two function-this example with the VARPRO method the linewidths of
als. On the one hand, we can minimize a general functional,the small side peaks were linked, as these are more difficult
consisting of the sum of squared differences between theto fit. Zero-order phase and begin time are estimated. The
data and the model function. On the other hand, a so-calledresults are displayed in Table 4. Only with the new algorithm
variable projection functional can be derived from the gen-are we capable of imposing all the available prior knowledge.
eral functional by eliminating all linear parameters and beThe results are displayed in Table 5.
optimized. We showed here that minimizing the generalThe most important difference between the VARPRO re-
functional leads to a more robust determination of parametersults and those of the new method is that the latter can be
estimates. In addition we showed that the functional shouldobtained in a much more consistent fashion. This is entirely
be minimized with respect to the damping with impositiondue to the increased use of important prior knowledge on
of a positivity constraint instead of minimizing the functionalthe AB-type multiplet of citrate, in particular the chemical

shift differences between its respective components. This is
especially crucial at echo times where the side peaks reach
their minimum intensities and sink into the noisy baseline
(30, 31) . With the combined prior knowledge of the chemi-
cal shift differences and amplitude (peak area) ratios with
respect to the prominent main peaks of the quartet, the small
side peaks can still be estimated reliably. Including the small
side peaks in the fit is not only necessary for complete quanti-
tation of the citrate multiplet, but also enhances the accuracy
of the creatine fit, as their resonances overlap closely (see
Fig. 3) . Another advantage of the new method is that, in
combination with all other prior knowledge, the linewidths
of the side peaks can be linked to each other, and those of
the main peaks can be linked to each other; see the results
in Table 5. The main peaks were found to be a little broader
than the side peaks, which corresponds to the expectations
for the citrate multiplet (32) . With the VARPRO method
where we could only link the side peaks to each other, we
obtained slightly different (although not significant, due to

FIG. 3. Graphical result of the analysis of the citrate signal with the
the high level of the noise) linewidths of the main peaks, new algorithm. From bottom to top: the FT spectrum of the original signal,
which is undesired. Despite the slight differences in line- the individual Lorentzians (FT of fitted sinusoids) , and the residual, which

is the difference between the original signal and the reconstructed signal.widths and chemical shifts between the two methods, the
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11. C. Decanniere, P. Van Hecke, H. Chen, S. Van Huffel, C. van derwith respect to the square root of the damping as is done in
Voort, B. van Tongeren, and D. van Ormondt, J. Magn. Reson. BVARPRO. In this way numerical problems are avoided.
105, 31 (1994).

Second, AMARES allows the inclusion of more prior
12. A. van den Boogaart, F. A. Howe, L. M. Rodrigues, M. Stubbs, and

knowledge about the signal parameters, the model function J. R. Griffiths, NMR Biomed. 8, 87 (1995).
(Lorentz, Gauss) , and the type of signal (FID or echo). 13. G. H. Golub and V. Pereyra, SIAM J. Numer. Anal. 10, 413 (1973).
This results in increased accuracy and user flexibility. In 14. F. S. DiGennaro and D. Cowburn, J. Magn. Reson. 96, 582 (1992).
addition, imposing all prior knowledge leads to a problem 15. G. J. Metzger, M. Patel, and X. Hu, J. Magn. Reson. B 110, 316
in a smaller number of variables which can be solved in less (1996).
time. Overall we obtain an algorithm which outperforms 16. M. R. Osborne, in ‘‘Numerical Methods for Non-linear Optimiza-

tion’’ (Lootsma, Ed.) , Academic Press, London (1972).VARPRO in terms of accuracy, robustness, and flexibility.
17. P. E. Gill, W. Murray, and M. H. Wright, ‘‘Practical Optimization,’’
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