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ATVB In Focus
Noninvasive Assessment of Atherosclerosis: From Structure to Function

Series Editor: William G. Haynes

MRI and Characterization of Atherosclerotic Plaque
Emerging Applications and Molecular Imaging

Robin P. Choudhury, Valentin Fuster, Juan J. Badimon, Edward A. Fisher, Zahi A. Fayad

Abstract—Noninvasive high-resolution magnetic resonance has the potential to image atherosclerotic plaque and to determine
its composition and microanatomy. This review summarizes the rationale for plaque imaging and describes the characteristics
of plaque by use of existing MRI techniques. The use of MRI in human disease and in animal models, particularly in rabbits
and mice, is presented. Present and future applications of MRI, including real-time vascular intervention, new contrast agents,
and molecular imaging, are also discussed. (Arterioscler Thromb Vasc Biol. 2002;22:1065-1074.)
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The introduction of percutaneous arteriography by
Fariñas1 in 1941 and selective coronary arteriography

by Sones2 in 1957 made clinical imaging of atherosclerosis
possible. Arteriography provides useful anatomic informa-
tion that has been used to guide decisions about treatment
and to enable the delivery of therapy in the case of
percutaneous interventions.3–5 However, arteriography im-
ages only the vessel lumen and the silhouette of lesions
that impinge on the lumen. Atherosclerosis can develop in
the arterial wall and be accommodated by outward (or
positive) arterial remodeling.6,7 At sites of positive remod-
eling, lumen caliber may be unaltered or minimally altered
and, therefore, not detected by arteriography. The impor-
tance of this has been highlighted in angiographic studies
demonstrating that nonsevere stenoses are more often
associated with acute coronary events than are severe
coronary stenoses.8,9 From a pathological perspective,
plaques with large lipid cores and thin fibrous caps are
more prone to rupture, leading to thrombosis and vascular
events, than are plaques with small securely contained
lipid cores and thick caps.10,11 The present challenge is to
develop imaging technology capable of characterizing
atherosclerosis, particularly in human coronary arteries.
This may allow identification (and treatment) of plaques
that are at risk of future rupture and thrombosis.12

See page 1064

Numerous imaging modalities, including thermography, near
infra-red spectroscopy, Raman spectroscopy, ultrafast CT, and
ultrasound have been applied to the characterization of plaque
and are reviewed in detail elsewhere.13–15 However, MRI has the
greatest potential for clinical application. Magnetic resonance
(MR) is well suited to this role because it is noninvasive, does
not involve ionizing radiation, can be repeated serially, and
provides high-resolution images of the vessel wall and lumen.

Atherosclerosis usually develops silently over many years,
although significant lesions are commonly present as early as
the second decade.16 Lipid-lowering drugs have demonstrated
efficacy and safety in the primary prevention of the compli-
cations of atherosclerosis,17,18 but the present guidelines do
not include the presence of subclinical atherosclerosis in
decisions about therapy.19 In the future, risk stratification,
which includes noninvasive identification and characteriza-
tion of atherosclerosis, may direct the type and intensity of
treatment in individual patients, even before clinical disease
has been allowed to manifest itself.

Our expanding knowledge of plaque composition, biology,
and behavior demands that imaging modalities provide quan-
titative and qualitative information about the plaque.10,20–23

The present review will summarize the rationale for plaque
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imaging, provide a technical overview of MRI, and describe
the characteristics of plaque by use of existing MRI tech-
niques. Present and future applications of MRI, including
targeted contrast and molecular imaging, will also be
discussed.

Principles of MRI
MRI has emerged as the potential leading noninvasive in vivo
modality for atherosclerotic plaque imaging in experimental
animals24–30 and in humans.26,31–35 The principles of MRI are
described in detail elsewhere.36–38 In brief, MR characterizes
plaque on the basis of the biophysical and biochemical
properties of its different components. Representative MR
images can be seen in Figures 1 through 4.

During the examination, the subject is positioned in a
high-external-static magnetic field (usually 1.5 T for human
studies; see Tables 1 and 2), which aligns the protons in the
body. Thus far, the application of an external static magnetic
field to the spins will result in a net magnetization that is
parallel to the applied field. This longitudinal magnetization
is not detected. Instead, the longitudinal magnetization must
be converted into a transverse magnetization, perpendicular
to the applied static field, before it can be detected. This
conversion can be accomplished by the application of a
time-varying electromagnetic radiofrequency (RF) pulse, ap-
plied at the resonance frequency. The protons can then absorb
that energy. The transverse magnetization created does not
remain in the transverse plane indefinitely. After the RF pulse
is turned off, 3 events begin to happen simultaneously: (1)
The absorbed RF energy is retransmitted (at the resonance
frequency). This is the “MRI signal.” (2) The excited spins
begin to return to the original equilibrium longitudinal mag-
netization. The rate at which the recovery occurs is deter-

mined by the spin-lattice relaxation time (T1). Fortunately,
the T1 relaxation times vary among tissue types, providing a
highly useful means of generating image contrast. (3) Ini-
tially, in phase, the excited protons begin to dephase at a rate
characterized by the spin-spin relaxation time (T2). The T2
relaxation times also vary with tissue type, providing another
means of generating tissue contrast. The resulting “MRI
signal” is detected by receiving RF coils.

Images in which most of the contrast between tissues is
derived from differences in tissue T1 are termed T1-weighted
(T1W) and, analogously, T2-weighted (T2W) images. A
proton density–weighted (PDW) image is obtained when the
differences in contrast are proportional to the density of water
and fat protons within the tissue.

Three additional mutually perpendicular magnetic fields
(gradient fields) are applied during MRI: 1 to select the slice
and 2 to encode spatial information. As a result, each voxel
within the imaged tissue is uniquely identified.

Determination of Plaque Components
With MR

Atherosclerotic plaques are of heterogeneous composition.
Angiographic and pathological21,23 studies have determined
the plaque types at greatest risk of acute rupture or erosion. In
human coronary arteries, location,39 geometry,10,40 and com-
position10,40–43 are all useful indicators of vulnerability. In
particular, the presence of a large extracellular lipid core, thin
fibrous cap, and inflammatory cell infiltrate indicates plaques
at risk.10,44 Can MRI rise to the challenge of discerning these
factors?

Plaque Characterization by
Non–Contrast-Enhanced MRI

In MRI, the emitted RF signal differs between the nuclei of
different atoms and further varies according to the molecular
environment of the nuclei. In this way, it is possible to obtain
quantitative information about specific molecules of interest
within a given tissue. In early MR studies of atherosclerosis,
characterization was directed toward chemical shift imaging
by use of the lipid signal.45,46 These studies were designed to
image plaque lipids with long T2 and short T1 relaxation
times, similar to triglycerides. However, unlike periadventi-
tial fat, which is composed of fatty acyl triglycerides, the lipid
components of the plaque are predominantly cholesterol,
cholesteryl ester, and phospholipid,47 whose MR characteris-
tics are different from the fat of adipose tissue.48 Furthermore,
chemical shift imaging aimed at directly imaging lipid com-
ponents of the plaque is intrinsically disadvantaged, because

Figure 2. In vivo MR black-blood cross-
sectional images of human coronary
arteries demonstrating a plaque presum-
ably with deposition of fat (arrow, panel
A), a concentric fibrotic lesion (panel B)
in the left anterior descending artery, and
an ectatic, but atherosclerotic, right cor-
onary artery (panel C). RV indicates right
ventricle; LV, left ventricle. Figure modi-
fied from Fayad et al.34

Figure 1. A 67-year-old male with atherosclerotic disease in the
common carotid artery imaged with in vivo high-resolution MR.
Multicontrast (T1W, PDW [not shown], and T2W) MR images are
obtained to characterize all the plaque components. A, T1W
image. B, T2W image. A complex lesion is detected with a fissure
(at 12 o’clock). Black arrows indicate calcium; asterisk, lipid depos-
its; and white arrows, thrombus.
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even in relative lipid-rich plaque, the signal from water
predominates by �10-fold.49,50 For these reasons, recent
studies have focused on MRI of water protons.50,51

By use of a combination of inherent MRI contrast gener-
ated in T1W, T2W, and PDW images (Table 1), it has been
possible to determine plaque anatomy and composition in
experimental animals,24,30 in ex vivo specimens,33,50,52 and in
human carotid arteries (Figure 1)33,53 and aortas in vivo.54

Recently, atherosclerosis has also been identified, in vivo, in
human coronary arteries.34,55,56 These applications are dis-
cussed further below.

Toussaint et al33 demonstrated that fibrous cap, lipid core,
media, and adventitia could be distinguished by use of
high-field/high-resolution MRI. Differences in water T2 con-
trast, ex vivo33,50 and in vivo,33 identified lipid core versus
fibrous cap, normal media versus lipid core, and media versus
adventitia. Compared with the fibrous cap or media, the
atheromatous core is associated with a shortened water T2
and, therefore, appears dark compared with the adjacent cap
and media, which appear bright on T2W images. Calcified

areas of plaque do not generate appreciable signal because of
the low water content, but they can be detected as areas of
low signal (black) on T1W images.14,57

Characterization of plaque in vivo in humans has been
achieved in the aorta and carotid artery.33,53 Fayad et al54

found good correlation of multicontrast MRI with aortic
plaque quantification and characterization by using trans-
esophageal echocardiography. Hatsukami et al53 used a 3D
multiple-overlapping thin-slab MR/multiple-overlapping
thin-slice angiography/time-of-flight technique to image the
fibrous cap of carotid arteries before endarterectomy. In their
study of 22 patients undergoing carotid endarterectomy (with
a best voxel size of 254�254�1000 �m3), thick fibrous caps
were seen as a dark band between the lumen (white) and the
vessel wall (gray). The presence of a thin cap was inferred
from the absence of any discernible dark band. Plaque rupture
was identified in vivo by MRI in 8 of the 9 cases in which it
was subsequently identified on the atherectomy specimens.
Also, in human carotid arteries that were imaged in vivo,
Yuan et al58 have identified lipid core with sensitivity 85%
and specificity 92% by using time-of-flight–based bright
blood and spin-echo–based black blood multicontrast tech-
niques. Although lipid-rich necrotic cores were typically
hypointense with T2W, this was variable, and as reported
previously,52 the comparison of vessel wall appearances
under different contrast weightings provided the greatest
diagnostic yield.

The same authors have recently demonstrated the clinical
significance of carotid plaque characterization.59 In a case-
control study of patients undergoing carotid endarterectomy,
a recent (within 90-day) history of transient ischemic attack
or stroke was strongly associated with the presence of thin or
ruptured plaque identified preoperatively by MRI. The risk of
recent ischemic neurological symptoms was increased by an
impressive 23-fold in cases in which ruptured plaque was
identified compared with a thick fibrous cap. These encour-
aging observations will pave the way for studies that prospec-
tively examine plaque behavior.

Coronary Artery Imaging
Recently, coronary arteries have been imaged in vivo by MRI
(Figure 2).34,55,56,60 Coronary imaging poses considerable
technical difficulties. The coronary arteries are relatively
small and have a tortuous and unpredictable course. In
addition, to obtain MR images, cardiac and respiratory
motion must be overcome. Use of MR navigator echoes that
assess cardiac or diaphragmatic position accounts for move-
ment and eliminates the time constraint imposed by imaging
in a single breath-holding, as shown in a recent multicenter
study of coronary MR angiography.61 This provides longer
effective image acquisition to enable submillimeter spatial
resolution (Botnar et al55). Botnar et al60 have further refined
their 3D coronary wall imaging technique by the application
of a local inversion technique, improving contrast between
lumen and vessel wall in a series of normal subjects and
attaining a resolution of 0.66�0.66�2 mm3.60 Current coro-
nary MRI techniques have limited spatial resolution mainly
because of the available signal-to-noise ratio. One way to
increase the signal-to-noise ratio directly is to improve the

Figure 3. A, In vivo MR images (T2W) of rabbit abdominal aorta.
B, Corresponding histopathological section (combined Masson
elastin stain). MRI differentiates fibrotic (high-signal, yellow
arrow) and lipid (low-signal, black arrow) components of the
plaque. Figure modified from Helft et al.30

Figure 4. T1W MR image (magnified; see scale) of atheroscle-
rotic lipid-rich complex plaque in an apoE-knockout (apoE-KO)
mouse. MR pixel size is 97�97�500 �m3. At the top left of the
abdominal aorta, an atherosclerotic small branch vessel (br) is
seen by MR (panel A, white arrow) and by histopathology (panel
B) in 21-month-old apoE-KO mouse. This lesion had a focal cal-
cium deposit in abdominal aorta (yellow arrow) that appeared as
a signal void (panel A) and was correlated with histopathological
findings (panel B), as show by hematoxylin-eosin stain (original
magnification �40). Inferior vena cava (IVC) is shown at right of
the abdominal aorta (A). Figure was modified from Fayad et al.27
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receiver coils. This has been shown by Fayad et al,62 who
used a 4-element anterior phased-array coil that enabled in a
series of patients in vivo coronary wall imaging at a resolu-
tion of 0.39�0.39�2 mm3. This in-plane resolution was
found to be adequate in providing an accurate (measurement
error �20%) assessment of the “normal” and diseased vessel
wall area, as shown by numerical simulations and phantom
measurements.63

Acquisition of isotropic voxels, which facilitate reconstruc-
tion of the coronary arteries in arbitrary and exhaustive
views,64 may compensate for the problem of tortuosity.

MRI characterization of human coronary atherosclerotic
plaque components has been demonstrated ex vivo.65 Al-
though not yet accomplished, there is well-founded opti-
mism63 that in vivo human coronary plaque characterization
will be attainable relatively soon.

Plaque and Thrombus Characterization With
Use of Contrast Agents

Plaque Characterization
The characterization techniques described above use the
inherent relaxation properties of different plaque components.
Despite the use of multispectral MR58 or of high (200-�m3)
resolution in 3D imaging,66 it has still not been possible to
identify uniquely plaque components. An overlap of signal
intensities occurs, particularly between the lipid core and
vessel media.58,66 Moreover, approaches that are directed at
the identification of the lipid core and fibrous cap are focused
on relatively advanced lesions. More subtle distinctions
within plaque and preatheromatous artery may be detectable
by the introduction of paramagnetic contrast agents, such as
gadolinium.

TABLE 1. MRI Parameters in Selected Cited Studies

Species Setting Magnet, T Contrast Weighting TR/TE, ms/ms Voxel, �m Time Reference

Xenopus In vivo embryo 11.7 3D-spin echo–T1W 400/21 27�16�16 3 h 45 min Louie, 2000133

Mouse In vivo tumor 1.5 T1W, T2W na 300�300�700 3–7 min Weissleder, 2000132

Mouse Ex vivo tumor 7.1 T1W, T2W na 39�39�39 5.5 h Weissleder, 2000132

Mouse Ex vivo brain 9.4 T1W 200/4 40�40�40 7 h Sipkins, 2000137

Mouse In vivo aorta 9.4 T2W 2000/30 48�48�500 17 min Fayad, 199827

PDW 2000/13

Rabbit In vivo aorta 1.5 T2W 2300/60 35�35�3000 70 min Helft, 200130

PDW 2300/17

Pig In vivo coronary 1.5 T2W 2 RR�/42 390�390�500 na Worthley, 200028

PDW 2 RR�/17

Human In vivo carotid 1.5 T2W 1 RR�/20 & 55 390�390�5000 na Toussaint, 199633

Human In vivo carotid 1.5 MOTSA-T1W 34; 22/2.9; 4.4 254�254�1000 1–5 min Hatsukami, 200053

Human In vivo coronary 1.5 T2W 2 RR�/25 500�1000�5000 na Botnar, 200056

Human In vivo coronary 1.5 T2W, BBI 2 RR�/40 460�460�3000 1 BH Fayad, 200034

RR� indicates R-R� interval measured from electrocardiogram; MOTSA, multiple-overlapping thin-slab angiography; BBI, black blood imaging; BH, breath hold; na,
data unavailable; TR, repetition time; TE, echo time.

TABLE 2. Specific Contrast Agents Used in Selected Cited Studies

Species Setting Target Contrast Agent Contrast Weighting Magnet, T Reference

Human Aorto-iliac plaque Neovasculature MS-325 (Gd) 1 (T1W) 1.5 Maki 200175

Human Carotid plaque Neovasculature Omniscan (Gd) 1 (T1W) 1.5 Yuan 200173

Rabbit Aortic plaque Macrophages SPIO 2 (T2W) 1.5 Schmitz 200179

Rabbit Aortic plaque Macrophages USPIO 2 (T1W) 1.5 Ruehm 200178

Pig Venous thrombus �IIb�3 integrin RGD-USPIO 1 (T1W) 1.5 Johansson 200191

Ex-vivo Thrombus Fibrin ACPL (Gd) 2 (T1/2W) 4.7 Yu 200088

Rabbit Tumor angiogenesis �v�3 integrin ACPL (Gd) 1 (T1W) 1.5 Sipkins 1998138

Rabbit Corneal angiogenesis �v�3 integrin ACPL (Gd) 1 (T1W) 4.7 Anderson 2000139

Mouse Tumor Transferrin receptor (transgenic) Tf-MION 2 (T1/2W) 7.1 Weissleder 2000132

Mouse Encephalitis ICAM-1 ACPL (Gd) 1 (T1W) 9.4 Sipkins 2000137

Xenopus Embryonic gene expression �-galactosidase activity E-gadMe 1 (T1W) 9.4 Louie 2000133

ACPL indicates antibody-conjugated paramagnetic liposome; E-GadMe, (1-(2-�-galactopyranosyloxy)propyl)-4,7,10-tris(carboxymethyl)-1,4,7,10-
tetraazacyclododecane)gadolinium(III); Gd, gadolinium-based contrast agent; ICAM-1, intercellular adhesion molecule 1; Tf-MION, human transferrin receptor–low-
molecular weight-dextran–monocrystalline iron oxide nanoparticle complex; RGD-SPIO, arginine-glycine-aspartic acid peptide-SPIO conjugate; (U)SPIO, (ultra-small)
superparamagnetic particles of iron oxide.
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Gadolinium chelates enhance T1 relaxation and, therefore,
increase contrast enhancement on T1W pulse sequences with
short repetition times and echo times.67 For the purposes of
MR angiography, gadolinium has been used to improve
blood-tissue contrast,68 but it can potentially enhance the
contrast in any tissue in which it resides. New microvessels
form in atherosclerotic plaque, and these may be associated
with features of inflammation, such as upregulation of adhe-
sion molecules and leukocyte infiltration.69 The presence of
new vessels has also been associated with carotid plaque
instability.70 These vessels may also be abnormally perme-
able, allowing the extravasation of plasma proteins, such as
albumin and fibrinogen.71,72 In recent reports, contrast MRI
has used these features to aid plaque characterization. On
T1W images of carotid arteries, a gadolinium-based contrast
agent has been reported to differentially enhance areas rich in
plaque microvascularization and may offer a further means of
distinguishing the necrotic core and fibrous cap and of
highlighting at-risk plaque.73 By use of MS-325, a
gadolinium-based contrast agent that binds albumin, areas of
high signal intensity, comparable to highly vascular tissue
such as liver, have been observed in the aortic or iliac arterial
wall. It has been speculated that this reflects not only
increased plaque vascularity74 but also a leakiness of these
microvessels, which suggests active inflammation.75 This is
consistent with a recent report in which increased wall
thickness, T2W signal, and/or gadolinium contrast enhance-
ment in carotid arteries and aorta was associated with
elevated serum levels of the inflammatory markers
interleukin-6, C-reactive protein, intercellular adhesion
molecule-1, and vascular cell adhesion molecule-1.76

Contrast agents that specifically identify components of
vulnerable plaque are of considerable interest. Macrophage-
rich areas are a pathological correlate of unstable plaque.42

Superparamagnetic nanoparticles of iron oxide (SPIO) alter
the MRI reaction times and are taken up avidly by macro-
phages. In recent small studies, injection of SPIO into
hyperlipidemic rabbits was associated with accumulation in
macrophages and, after 2 hours77 to 5 days,78 the appearance
of signal voids studded on the luminal surface of the aorta.
Similar appearances have been observed incidentally in the
aorta and intrapelvic arteries of humans that have received
SPIO for oncological imaging.79 This type of specific cellular
targeting approach warrants further investigation.

Thrombus Characterization
Plaque rupture or erosion exposes the prothrombotic core to
circulating blood,10,21 which can lead to acute vessel occlu-
sion and myocardial infarction, unstable angina, or death.
Recent evidence suggests that layering and organization of
the thrombus may be responsible for plaque progression.23

Johnstone et al80 have identified the location and size of
plaque-associated mural thrombus in vivo in an atheroscle-
rotic rabbit model.80 Rapid noninvasive identification and age
characterization of the thrombus may be clinically useful (eg,
if treatment risk versus benefit is related to the timing and
location of a thrombotic event). Time-related changes in the
water-diffusion properties of the thrombus have been identi-
fied by using pulse-field gradient methods.81 MR signal

intensities of hemorrhage and “altered blood” depend on the
structure of hemoglobin and its oxidation state.82 For exam-
ple, the generation of methemoglobin within an evolving
thrombus is known to cause T1 shortening. This phenomenon
has been exploited for the detection of fresh thrombus in the
setting of deep vein thrombosis,83,84 pulmonary embolus,85

and acute carotid thrombus.74 In these studies, direct imaging
of the thrombus against a suppressed background with the use
of a 3D magnetization-prepared rapid gradient echo86 has
been found to be effective in the imaging of thrombi.

The potential of MRI to detect arterial thrombotic obstruc-
tion and define thrombus age has been very recently evalu-
ated by using black-blood T1W and T2W.87 Carotid thrombi
were induced in swine by arterial injury. Serial high-
resolution in vivo MR images were obtained at 6 hours, at 1
day, and at 1, 2, 3, 6, and 9 weeks. Thrombus appearance and
relative signal intensity revealed characteristic temporal
changes in the MR images, reflecting histological changes in
the composition. Age definition using visual appearance was
highly accurate (Pearson �2 with 4 df ranging from 96 to 132
and Cohen � 0.81 to 0.94).

Contrast agents that characterize thrombi are under devel-
opment: fibrin can be identified by lipid-encapsulated per-
fluorocarbon paramagnetic nanoparticles in vitro88,89 and in
vivo89 or by a paramagnetic dendrimeric contrast agent,90

whereas activated platelets can be targeted via the interaction
of an ultrasmall SPIO–arginine-glycine-aspartic acid (RGD)
peptide construct with the �IIb�3 receptor (Table 2).91

Effects of Treatment
Direct plaque imaging is of potential use not only for
diagnosis but also for monitoring response to treatment.
Angiographic studies of progression and regression of ath-
erosclerosis have been notoriously poor at demonstrating
changes in plaque burden, even when changes in clinical
event rates have been markedly altered.92,93 In a study of
diet/injury-induced atherosclerosis in rabbits, T2W MRI
identified regression of atherosclerosis 12 to 20 months after
the withdrawal of the atherogenic diet (regression group). In
contrast, lesion progression was documented in rabbits that
continued the atherogenic diet (progression group).94 Mor-
phometric data were presented as changes in wall thickness
and percent stenosis (separate values for wall area and lumen
area were not given in the study). In a similar study,95 serial
MRI showed a significant reduction in the lipid components
of the plaque in the regression group and an increase in the
progression group.

In a preliminary analysis, using PDW and T2W MRI, Corti
et al35 illustrated a decrease in cross-sectional wall area in
atherosclerotic segments of human aorta and carotid artery
(by 8% and 15%, respectively) 12 months after the initiation
of simvastatin. Importantly, there was no change in cross-
sectional area of the arterial lumen. This emphasizes the
importance of imaging the vessel wall directly and probably
explains the limitations of coronary angiography in assessing
response to treatment. In another recent case-control study, 8
patients with coronary artery disease who were subjected to
prolonged intensive lipid-lowering (niacin, lovastatin, and
colestipol over 10 years) showed a dramatic reduction
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(0.7 mm2 versus 10.9 mm2, P�0.001) in plaque lipid con-
tent.96 In that small study, differences between the groups in
overall plaque area and lumen area did not reach statistical
significance.

Image Analysis
As demonstrated above, a significant strength of MRI is the
ability, noninvasively, to follow the progress of lesions in
individual patients over a period of time. Comparisons of this
nature will provide insight into the natural history of plaque
and prospective information about plaque at risk of precipi-
tating an acute atherothrombotic event, and they will also
provide information regarding response to treatment. How-
ever, changes in plaque size and composition within individ-
uals may be small.35,96 Reliable ways to ensure anatomic
alignment of sections between successive scans and to mea-
sure small changes in measured parameters are required.

In our lipid-lowering study of human aortic and carotid
plaques,35 the reproducibility of the vessel wall area measure-
ment was assessed after repeated imaging. The error in vessel
wall area measurement was found to be 2.6% for aortic
plaque and 3.5% for carotid plaque. Similar low measurement
errors in plaque area and volume (4% to 6%) have been
reported by others, proving that plaque area and volume can
be accurately assessed.97,98

To improve quantification, semiautomatic image-
processing techniques have been developed that improve the
accuracy of vessel wall area measurements compared with
the accuracy provided by manual morphometric analysis.99,100

In one such model, a “discrete dynamic contour” is produced
by image-derived edge characteristics moderated by elements
to introduce contour tension and damping. Three-dimensional
interpolation of discrete dynamic contours attained for inner
and outer vessel walls has allowed construction of vessel wall
volume,101 with the potential to quantify atherosclerotic
plaque burden and distribution.

Vascular Intervention
High-resolution images of vessel wall, excellent delineation
of perivascular soft tissue structures, inherent versatility of
multiple plane viewing, virtual real-time images, and the
ability to acquire angiographic and hemodynamic data make
MRI an exceptionally promising platform for intravascular
intervention.102

Preliminary studies have indicated the feasibility of MR-
guided percutaneous angioplasty in rabbit aorta,103 of stent
deployment in pig femoral arteries,104 rabbit aortas,105 and pig
coronary arteries,106 and of the monitoring of catheter-based
gene therapy in pig femoral arteries.107 In humans, intraop-
erative MR has been shown to be safe and effective for
intracranial neurosurgery,108 although transvascular applica-
tions are, thus far, limited.109 MR-guided coronary interven-
tion is a relatively distant but attainable objective.

Emerging MRI Applications and
Molecular Mechanisms

MRI in Transgenic Mouse Models
of Atherosclerosis
Mouse models have largely superseded larger animal models
of human atherosclerosis (Figure 4).110–113 Mice have the

advantages of small size, ample progeny, and a short reprod-
uctive cycle. Genetically modified mice spontaneously and
reproducibly develop atherosclerosis that resembles that
found in humans.114,115 In addition, characterization of the
mouse genome has enabled the application of gene knockout
and transgenic technologies to study the progression116–119

and regression120–123 of atherosclerosis. Despite these advan-
tages, a significant drawback of the study of such small
animals has been the inability to track the progression or
regression of atherosclerosis in vivo.124

We have previously demonstrated that MR can accurately
quantify atherosclerosis in apoE-deficient mice.27 By imaging
at 9.4 T, with an in-plane resolution of 100�100 �m, the
progression of atherosclerosis can be identified in individual
mice,125 and the progression of atherosclerosis can be shown
to be accompanied by positive arterial remodeling.126

In these studies, atherosclerosis was quantified in the
abdominal aorta. Carotid artery imaging after wire injury has
also been performed in mice.127 Respiratory and cardiac
gating and continuous anesthetic administration will allow
extended imaging to improve image quality128,129 and will
enable imaging of the thoracic aorta and aortic root. The
aortic root is an attractive location for imaging because
lesions develop earlier there than in the abdominal aorta.
Furthermore, pathological studies of atherosclerosis in mice
have been largely standardized to examine the aortic
root.116,130

MRI and Molecular Imaging
The ability to image the presence or activity of specific
molecules in vivo (Table 2) would be of considerable
interest.131 MRI can achieve spatial resolution to �10 �m.
This capability exceeds that of positron emission tomogra-
phy, single positron emission CT, and nuclear techniques.

Weissleder et al132 have refined and extended the applica-
tion of superparamagnetic contrast through transgenic expres-
sion of transferrin receptor in nude mice. The resultant
increase of the uptake of injected superparamagnetic iron
nanoparticles significantly decreased the MR signal in a
tumor model, relative to transferrin receptor–negative con-
trols, such that the expression of the transgene could be
mapped noninvasively by the use of MRI.

Louie et al133 have developed an MR contrast agent
capable of reporting the activity of a �-galactosidase. The
paramagnetic agent (abbreviated EgadMe) requires interac-
tion with a water molecule to generate an increased MR
signal in T1W images. In the resting state, however, its
interaction with water is prevented by the attachment of
galactopyranose, a “blocking group” that is susceptible to
enzymatic cleavage by �-galactosidase. The subsequent as-
sociation of water with EgadMe results in an increase of T1
signal by �60%. By use of this approach, it was possible to
localize the lineage of a cell injected with �-galactosidase
mRNA in early embryonic development. The ability to image
areas in which �-galactosidase is active may be of consider-
able use in the study of transgenic animals and in mapping
sites of expression in vivo in gene therapy. Moreover, this
technique may represent a paradigm of intelligent contrast
agents that are activated in response to specific biological
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events. EgadMe and its successors may be conjugated with
blocking units that are substrates for other enzymes. In the
context of atherosclerosis, matrix metalloproteinases (MMPs)
digest collagen, elastin, and other matrix components. Some
MMPs are believed to be important in the generation of
unstable plaque20; thus, identification of vulnerable plaque
may be feasible by targeting specific proteolytic activities.
MMPs have the additional advantage of extracellular activity,
thus circumventing the problem of intracellular access by
contrast agents.

The endothelial cell surface proteins, vascular cell adhe-
sion molecule-1 and intercellular adhesion molecule-1, are
upregulated in atherosclerotic plaque134,135 and in areas of
artery prone to lesion formation.136 Exposure to circulating
blood renders such molecules potential targets for monoclo-
nal antibody–conjugated intravascular MR contrast agents.
Antibodies conjugated to paramagnetic liposomes have been
used to image, ex vivo, intercellular adhesion molecule
expression in a murine model of multiple sclerosis137 and
�v�3 integrin expression as a marker of angiogenesis.138,139

Where cells are accessible to blood, perhaps as a consequence
of abnormal vascular permeability in plaques, imaging spe-
cific receptor expression with the use of contrast-ligand
constructs should also be feasible.140

Conclusions
In the future, clinical investigation of atherosclerosis will not
be restricted by the endoluminal approach that has limited
x-ray contrast arteriography. High-resolution noninvasive
MRI will provide exhaustive 3D anatomic information about
the lumen and the vessel wall. Furthermore, MRI has the
ability to characterize plaque composition and microanatomy
and, therefore, to identify lesions vulnerable to rupture or
erosion. This may aid in early intervention in the primary and
secondary treatment of vascular disease. The high resolution
of MRI and the development of sophisticated contrast agents
offer the promise of molecular in vivo molecular imaging of
the plaque.
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