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Abstract

Magnetic resonance imaging is a popular and powerful non-invasive imaging technique. Automated analysis has become mandatory
to efficiently cope with the large amount of data generated using this modality. However, several artifacts, such as intensity non-
uniformity, can degrade the quality of acquired data. Intensity non-uniformity consists in anatomically irrelevant intensity variation
throughout data. It can be induced by the choice of the radio-frequency coil, the acquisition pulse sequence and by the nature and
geometry of the sample itself. Numerous methods have been proposed to correct this artifact. In this paper, we propose an overview
of existing methods. We first sort them according to their location in the acquisition/processing pipeline. Sorting is then refined based
on the assumptions those methods rely on. Next, we present the validation protocols used to evaluate these different correction schemes
both from a qualitative and a quantitative point of view. Finally, availability and usability of the presented methods is discussed.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Magnetic resonance imaging (MRI) is a powerful non-
invasive imaging technique for studying soft tissues anat-
omy and properties. It is characterized by an overall good
quality of obtained datasets. Such data usually consist of
either a collection of two-dimensional (2-D) MR images
or a whole three-dimensional (3-D) isotropic volume.
Efficient qualitative or user-driven quantitative analysis
can be performed on MR data, but current needs are
non-supervised, automated, quantitative analysis tools.

MR datasets can be corrupted by several artifacts
(Bellon et al., 1986), which affect automated quantitative
analysis results. Some of those artifacts are directly related
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to the acquisition technique while others are linked to the
imaged object itself. Corrupted datasets show distortions
that may lead to a wrong quantification.

In this paper, we focus on the intensity non-uniformity
artifact whose effects are shown in Fig. 1. Its main conse-
quence is a slow and smooth intensity variation across
datasets (Hanson and Dyrby, 2002). Most automated
quantitative methods rely on the assumption that a given
tissue is represented by similar voxel intensities throughout
data. As a result quantitative parameters computed from
corrupted data will likely be erroneous. Correcting or
reducing the effects of this artifact is thus a crucial issue
for the use of quantitative MRI analysis in daily clinical
practice.

Intensity non-uniformity has no anatomical relevance
and is mainly caused by unwanted local flip angle varia-
tions, but triggers for this variation can be multiple. A
MR image is the result of the combination of an imaging



Fig. 1. Examples of MR images affected by intensity non-uniformity.
First row shows the original images, second row shows the bias fields
estimated using Milles et al. (2004). From left to right: homogeneous
phantom acquired with a surface coil, homogeneous phantom acquired
with a head coil and brain acquired with a head coil.
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device, a pulse sequence and an object, all of them being
possible sources for this artifact. Physical limitations of
the imaging device can lead to flip angle variations. A first
possibility is a non-uniform B0 static field. Even though
local variations of B0 are partly compensated by shim tun-
ing, they can lead to a local deformation of the imaging
plane. It translates in both non-anatomical intensity varia-
tions and object distortion in the images (Bridcut et al.,
2001). RF coil homogeneity, which depends on their geo-
metrical and physical properties (Liang and Lauterbur,
2000), can also have an influence as shown by typical sen-
sitivity problems that come up with the use of surface coils
(Axel et al., 1987; Condon et al., 1987). Homogeneity prob-
lems are, however, not limited to surface coils (Collins
et al., 1997; Collins and Smith, 2001). Gradient fields can
also influence images, either due to their possible non-line-
arity, which leads to geometrical distortions (Langlois
et al., 1999), or due to their switching that can trigger eddy
currents. Problems can also arise with the amplifiers and
digital-analogic converters (Wicks et al., 1993) or with
the coil tuning itself (Simmons et al., 1994).

Intensity non-uniformity can be observed with both spin
echo (Simmons et al., 1994; Barker et al., 1998) and gradi-
ent echo (Mihara et al., 1998; Reeder et al., 1998) pulse
sequences. Spin Echo pulse sequences have been studied
in-depth (Simmons et al., 1994). For this acquisition
sequence, it appears that some parameters of the acquisi-
tion sequence, for example whether or not slices are inter-
leaved, have a direct effect on the artifact magnitude.
Interleaved acquisitions show to be far less affected by
intensity non-uniformity. The repetition time (TR) and
the number of echoes also have an effect on image quality.
The TR influence can be understood by the triggering of
eddy currents inside the imaged object when gradients are
switching too rapidly. Number of echoes can affect image
quality as refocusing can be altered after a large number
of echoes.

Finally, interactions between the imaged object and
the acquisition device can not be neglected (Woods and
Henkelman, 1985). The shape of the imaged object has
a significant effect on intensity non-uniformity, as well
as on its electromagnetic properties (Sled and Pike,
1998). Such tissue-dependent properties have also been
shown using samples from natural substances or human
tissues (Alecci et al., 2001). They are the result of a com-
bination of RF penetration and RF standing wave effects.

The model commonly used to describe corrupted data is
a multiplicative model with additive noise:

vð~rÞ ¼ gð~rÞ � uð~rÞ þ nð~rÞ; ð1Þ
where vð~rÞ is the voxel intensity at location~r ¼ ðx; y; zÞ; gð~rÞ
the corresponding value of the bias, or gain, field, uð~rÞ the
true intensity spatial distribution and nð~rÞ an additive noise
(Axel et al., 1987; Condon et al., 1987; Dawant et al., 1993;
Meyer et al., 1995; Wells III et al., 1996). Spatial variations
for g are supposed to be smooth and slow, u is considered
as piecewise constant (Axel et al., 1987) and n has a Rician
probability density distribution (Gudbjartsson and Patz,
1995). This model is consistent with RF field computation
and mapping theory, which links pixel intensities with RF
coil transmission and reception sensitivity (Insko and
Bolinger, 1993; Barker et al., 1998). Intensity non-unifor-
mity correction consists in determining u knowing v. This
yields an underdetermined problem due to the fact that
only vð~rÞ is known while both gð~rÞ and uð~rÞ have to be
computed.

Intensity non-uniformity has been studied by the com-
munities involved in the acquisition and the processing of
MR data. Numerous methods have been proposed to suit
their specific needs. MR physicists� goal is to improve
acquired image quality by means of a better protocol.
Image processing community�s goal is to use a retrospective
correction algorithm as a step to improve subsequent quan-
titative analysis. The purpose of this survey is not only to
give an overview of existing methods available but also
to bridge the gap between these two communities. We sug-
gest a typology to sort them based on their location in the
acquisition/processing pipeline. The two main categories
are composed of prospective methods based on prior
knowledge about acquisition parameters and retrospective
image processing methods. Sorting is then refined based on
the assumptions those methods rely on. Then, we present
the validation protocols used to evaluate these different
correction schemes both from a qualitative and quantita-
tive point of view. Finally, a comparison of the methods,
regarding their performance and applicability, is presented
as well as information about the availability of intensity
non-uniformity correction methods.

2. Prospective correction methods

Eq. (1) yields an ill-posed problem since neither bias
field gð~rÞ nor true intensity uð~rÞ spatial distributions are
known. Prior knowledge about either one of them can be
obtained using a specially designed MR acquisition proto-
col. Intensity variations in MR data are due to the com-
bined effect of the imaged object, the MR pulse sequence
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and the imaging coils. Taking prior knowledge about some
of these factors into account can ease intensity non-unifor-
mity understanding and correction. The correction meth-
ods described in this section try to reduce the number of
unknown factors involved. Two different approaches are
proposed. The first approach consists of combining differ-
ent datasets, by means of a mathematical model, to correct
intensity variation observed on images. The second
approach consists of trying to compensate unwanted flip
angle variation during the acquisition process.

2.1. Multiple datasets combination

Prior knowledge can be obtained by combining data
obtained from different datasets. The first strategy consists
in using acquisition from a physical phantom whose phys-
ical properties and geometry are known. Remaining
unknown factors are then coil and sequence properties.
The second strategy consists in acquiring several datasets
from the same object with different acquisition protocols.
Influence of sequence or coil components is then separately
evaluated.

2.1.1. Same imaging parameters, different objects

Acquisition of datasets from a homogeneous phantom
provides insight on the object-dependent component (Sled
and Pike, 1998). The acquired datasets are only affected by
the sequence-dependent and coil-dependent components of
intensity non-uniformity. Once the sequence parameters
are set, the intensity non-uniformity of the acquired image
is then directly related to the coil sensitivity which varies
spatially with the MR signal in transmission and reception.
To further reduce the influence of coils, the body coil, being
more homogeneous than a surface coil, can be used as the
transmitting coil. This gives a good representation of the
receiving coil sensitivity variation when a uniform phan-
tom is scanned (Axel et al., 1987). This representation leads
to the gain field gð~rÞ defined in Eq. (1). This correction
method has been used either directly (Axel et al., 1987;
Condon et al., 1987) or via a mathematical representation
of the bias field (Condon et al., 1987; Wicks et al., 1993). It
can also be applied as a first step before further processing
(Collewet et al., 2002). The main limitation in using a sep-
arate phantom acquisition is that the correction method
does not take the influence of the object itself and its inter-
action with magnetic fields into account. This influence can
be significantly non-linear (Wells III et al., 1996).

2.1.2. Same object, different imaging parameters

The combination of different datasets acquired from the
same object allows removing the intensity non-uniformity
artifact component linked to the object. A priori knowl-
edge about the bias field can be obtained using different
acquisition sequences or coils.

2.1.2.1. Same coil. The underlying assumption when using
the same coil with different imaging parameters is that a
homogeneous tissue should be represented by a homoge-
neous intensity distribution. Any intensity variation in a
given tissue class can be attributed to the bias field, and
the corrupted data can be considered as a representation
of the bias field spatial variations. This bias field informa-
tion is used to correct datasets obtained with a different
acquisition sequence. For example, a T2-weighted sequence
can be corrected using the estimated bias field of a proton
density (PD)-weighted sequence since the latter has an
overall lower contrast (Liney et al., 1998).

For some pulse sequences, the relationship between flip
angle and voxel intensity can be analytically computed.
Using the obtained model, correction can be performed.
From two Spin-Echo images obtained with two flip angles
being, respectively, h and 2h, the spatial distribution of the
flip angle is computed and used to compensate intensity
non-uniformity (Mihara et al., 1998). Instead of using the
same sequence with two different flip angles, it is also pos-
sible to estimate the flip angle spatial variation using a spe-
cific sequence, such as echo-planar imaging (EPI), and to
use that information to correct data obtained using another
pulse sequence (Thulborn et al., 1998).

2.1.2.2. Different coils. Different transmission and reception
coils can be used in MRI, depending on the imaged object.
These coils differ in their geometry, leading to different
properties, and are usually sorted among surface or volume
coils. Surface coils provide datasets with a good signal-
to-noise ratio but a poor spatial uniformity. Acquisitions
using a surface coil are thus corrupted by a more intense
bias field compared to volume coils. Since body coils,
which are volume coils, are assumed to have a uniform sen-
sitivity, they can be chosen as references for correcting sur-
face coil or phased-array coil data. Correction can be
performed directly (Brey and Narayana, 1988) or through
a statistical model solved using an optimization technique
(Fan et al., 2003). Another solution is to use the pre-scan
localization data to obtain prior knowledge about the bias
field (Murakami et al., 1996). These pre-scan data can be
acquired using either the body coil or a phased-array coil
before every clinical protocol. A consequence of such mul-
tiple imaging techniques is an increased acquisition time.

2.2. Per-acquisition flip angle compensation

Methods described in this section rely on the assumption
that the intensity non-uniformity artifact is mainly due to
the RF coil. Those variations are compensated during the
acquisition process.

A solution is to first estimate the sensitivity profile of a
particular RF head coil along the z axis from both a net-
work analyzer and in situ using the method described by
Barker et al. (1998). Then a look-up table (LUT) is com-
puted to correct these variations based on the estimated
sensitivity profile. Finally, this LUT is used to actively
modulate the transmitted RF power according to the slice
position (Clare et al., 2001).
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Another solution is to design a specific RF excitation
pulse, based on two spatially independent terms. This has
been used for magnetization-prepared rapid gradient echo
(MP-RAGE) sequences (Deichmann et al., 2002). It com-
pensates unwanted flip angle variations in a head coil.
The new pulse sequence parameters are obtained from
measurements on volunteers using a fast low angle shot
(FLASH) sequence.

3. Retrospective correction methods

Retrospective processing methods propose to correct
MR images corrupted by the non-uniformity artifact with
only a few assumptions regarding the acquisition process.
Those methods are numerous and have been sorted accord-
ing to the flowchart presented in Fig. 2.

3.1. Using grayscale spatial distribution

Algorithms based on grayscale spatial distribution rely
on the assumption that the variation of the artifact is spa-
tially smooth and slowly varying across the image and that
the ideal image is piecewise constant. This leads to different
solutions, focusing either on the assumptions concerning
the artefact or the true image.

3.1.1. Surface fitting

Surface fitting is an important type of interpolation in
many applications. The aim of surface fitting is to fit a
set of data points, as closely as possible with a specified sur-
face as smooth as possible and flexible enough to provide a
good approximation to the image brightness function.
Since intensity non-uniformity is supposed to be smooth,
it can be approximated by a smooth surface. Correction
is done by dividing voxel-by-voxel the original image by
the computed surfaces. The main difference between those
Fig. 2. Retrospective corr
methods is the basis functions used. They are chosen to be
smooth, according to the assumptions mentioned above,
which leads to two main basis function families: Spline
and polynomial functions.

3.1.1.1. Spline basis functions. The different algorithms
using spline basis functions vary in the way the fitting is
performed. This fitting can require either a single pass or
multiple passes.

Single pass fitting is based on a set of control points.
This set can be obtained using a semi-automatic frame-
work by requesting the user to select typical points in
each tissue compartment. Another solution is to auto-
matically select control points using a classifier (Dawant
et al., 1993). For this automatic control points selection
one can also use centers of mass extracted from 3 · 3
neighborhoods, instead of using single voxels (Zijdenbos
et al., 1995).

Multiple pass fitting is based on minimizing an energy
function. Fitting can be combined with segmentation steps
in an iterative framework to correct images in which a tis-
sue class is dominant (Gilles et al., 1996). Another solution
is to choose a deformable surface framework for determin-
ing spline parameters by minimizing an energy function
(Lai and Fang, 1999).

3.1.1.2. Polynomial basis functions. Using polynomial basis
functions raises the same issues as using spline basis func-
tions. For single pass computation, a physical phantom
can be used to determine the surface�s parameters, that will
be used to correct other data (Tincher et al., 1993). This
method has been further developed by using a segmented
dataset instead of a phantom for parameters computation
(Meyer et al., 1995).

Multiple pass fitting has also been studied to compute
Legendre polynomials� coefficients by minimizing an
ection methods types.
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energy function (Brechbuhler et al., 1996; Styner et al.,
2000; Samsonov et al., 2002).

3.1.2. Spatial filtering

Methods based on a spatial filtering of the corrupted
MR dataset use the assumption that the bias field consists
of a low spatial frequency intensity variation. These correc-
tion algorithms first extract the intensity non-uniformity
from the original data and then perform a voxel-by-voxel
division between original data and the extracted intensity
non-uniformity. The main difference between various spa-
tial filtering methods is the filter type used in the extraction
step. The filters used can be either low-pass or homomor-
phic filters.

3.1.2.1. Low-pass filtering. Low-pass filtering methods can
be subdivided depending on the way intensity non-unifor-
mity is extracted. This extraction can be performed using
a single processing step or multiple processing steps. Single
step methods are based on a median filter (Lim and Pfeffer-
baum, 1989; Harris et al., 1994; Narayana and Borthakur,
1995). The filtered dataset is considered as a representation
of the intensity non-uniformity artifact.

Multiple processing step methods are based on two
steps, at least one of them being a filtering step. Other steps
can consist of extracting regions of small intensity varia-
tions using either an average or a median filter (Koivula
et al., 1997). Extracted regions are then smoothed using a
gaussian filter. Data obtained after using an average filter
can be combined with information from the original data
to obtain an estimate of intensity non-uniformity (Zhou
et al., 2001). Another solution is to remove the edges by
low-pass filtering applied on a gradient image. The
obtained smoothed gradient image is then integrated to
reconstruct the bias field (Vokurka et al., 1999).

3.1.2.2. Homomorphic filtering. Homomorphic filtering is a
non-linear filtering technique used for image enhancement
or correction (Gonzales and Woods, 1992). It simulta-
neously increases contrast and normalizes brightness. It
can be performed with a low-pass filter, allowing to extract
an estimate of the bias field (Johnston et al., 1996). Such a
filter can be based on median or average kernels. The latter
kernel proved to be more efficient for intensity non-unifor-
mity correction (Brinkmann et al., 1998).

3.1.3. Statistical methods

Statistical methods described in this section mainly aim
at segmenting datasets. However, they are designed to take
intensity non-uniformity into account. Segmentation is
achieved by means of maximum likelihood (ML)- and
maximum a posteriori (MAP)-based methods or by
Fuzzy-C-Means-based methods.

3.1.3.1. ML- and MAP-based methods. These methods label
pixels according to probability values, which are deter-
mined based on the intensity distribution of the image. This
estimation problem is based on a criterion which can be
maximum a posteriori (MAP) (Wells III et al., 1996;
Guillemaud and Brady, 1997; Rajapakse and Kruggel,
1998) or maximum likelihood (ML) (Van Leemput et al.,
1999; Pham and Prince, 1999c; Prima et al., 2001; Zhang
et al., 2001). Before the criterion can be assessed, the den-
sity function of the pixel intensity has to be modeled. Finite
mixture (FM) (Van Leemput et al., 1999) and finite Gauss-
ian mixture (FGM) models (Wells III et al., 1996) can be
used. FM models are intrinsically limited since spatial
information is not taken into account, pixels values being
considered independent. To address this problem, a hidden
Markov random field (HMRF) model can be used (Zhang
et al., 2001). In this model, the spatial information in an
image is encoded through contextual constraints of neigh-
boring pixels. Those are expected to have the same class
labels or similar intensities. Once the statistical criterion
and the image model have been chosen, the model param-
eters must be estimated. Parameters estimation can be
achieved using, for example, an expectation-maximization
(EM) algorithm. The expectation step is equivalent to com-
pute the posterior tissue class probabilities when the bias
field is known while the maximization step is equivalent
to a MAP estimator of the bias field when the tissue prob-
abilities are known. EM was first used for brain images seg-
mentation (Wells III et al., 1996) using an FGM model and
a MAP-based approach. To take into account the pixels in
the expected tissue classes, an outlier class with a non-
Gaussian probability distribution can be introduced
(Guillemaud and Brady, 1997). A MAP-based approach
is also used in this method.

EM algorithms have also been extended to a more gen-
eral framework with the expectation/conditional maximi-
zation (ECM) algorithm (Van Leemput et al., 1999;
Prima et al., 2001) and the adaptative generalized EM
(AGEM) algorithm (Pham and Prince, 1999c). Methods
described by Van Leemput et al. (1999) and Prima et al.
(2001) are similar. Each tissue class is modeled by a Nor-
mal distribution and the bias field is modeled as a linear
combination of smooth fourth-order polynomial basis
functions. The algorithm initialization is performed using
a digital brain atlas with a priori probability maps for each
tissue class. These methods use a ML-based approach.
Optimization of the ML criterion can be based on a classic
EM algorithm (Prima et al., 2001).

For T1-weighted images, a locally adaptive algorithm
based on minimization of the classification error rates
between different cerebral tissues has been proposed in Gis-
pert et al. (2004). At each EM iteration, the classification
thresholds that yield the minimum error rate are calculated.
EM algorithm stops when the computed thresholds do not
change between subsequent iterations.

Parameters of the model can also be estimated by a
genetic algorithm. Genetic algorithms are a class of robust
stochastic search and optimization procedures based on the
Darwinian theory of evolution. Their basic principles were
first introduced by Holland (1962) and their tuning relies
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on a proper selection of only a few parameter values. They
are well suited for estimating the parameters of mixtures of
different distributions (Schroeter et al., 1998). This method
is based on ML approach.

Finally, model parameters can be estimated with the
iterative conditional modes (ICM) method. ICM is a deter-
ministic algorithm which sequentially maximizes local con-
ditional probabilities (Besag, 1986). ICM was first used in
Rajapakse and Kruggel (1998). In this method, a HMRF
model is used in combination with a MAP-based approach.
Spatial dependence between neighboring pixels can be
modeled using a Gaussion mixture model combined with
Markov random fields (GMM–MRF) with a penalized
ML approach (Kim et al., 2003). Parameters estimation
is done using ECM algorithm. However, the E-step of
the ECM algorithm is approximated by a fractional weight
version of the ICM algorithm.

3.1.3.2. Fuzzy-C-Means based methods. Fuzzy-C-Means
(FCM) has been successfully used for segmenting of MR
datasets (Bezdek, 1981). It clusters data by computing a
measure membership, called the fuzzy membership, at each
voxel for a specified number of classes. FCM is formulated
as the minimization of an objective function. However,
FCM is not appropriate for data corrupted by intensity
inhomogeneity.

An extension of FCM has been proposed to take inten-
sity non-uniformity into account (Lee and Vannier, 1996),
by adapting the clustering to local variations. The original
dataset is separated into two classes: soft tissue and outli-
ers. For the soft tissue class, intensity non-uniformity is
taken into account by using local means instead of a global
mean. These means are then smoothed with a 3-D gaussian
low-pass filter. A local signal amplitude map is obtained
for each slice. This map is used to estimate gain field in this
same slice. A corrected dataset is obtained by dividing the
original dataset by the gain field previously estimated.

Pham and Prince (1999b,c) proposed an adaptative
FCM (AFCM) scheme. Intensity non-uniformity is consid-
ered by multiplying the centroids by a gain field. Then, two
regularization terms are added to the modified objective
function to ensure that the gain field is smooth and slowly
varying.

Recently, a modified FCM (MFCM) algorithm has been
presented (Ahmed et al., 2002). The original FCM objec-
tive function is modified by adding a constraint term to
compensate the intensity inhomogeneity and to allow the
labeling of a voxel to be influenced by the labels in its
immediate neighborhood. The constrained optimization is
solved using the Lagrange multipliers technique.

3.2. Transformed domain-based methods

Instead of working in the spatial domain, correction can
be performed in other domains that can be either dual,
such as Fourier or wavelet domains, or complementary,
such as the probability density functions (PDF) domain.
Such domains allow different uses of the assumptions made
on intensity non-uniformity. Once data are corrected, they
are transformed back to the spatial domain.

3.2.1. PDF domain

Once PDF computation has been performed, the origi-
nal intensity spatial distribution becomes an intensity prob-
ability distribution or histogram. In this domain, the
intensity non-uniformity can be considered as a parasitic
convolution term, which smooths the real intensity distri-
bution and thus increases entropy. The PDF associated
to the artifact can be modeled as a centered gaussian distri-
bution. It then becomes possible to iteratively deconvolve
the original histogram with the gaussian PDF modeling
the artifact. The data are considered as corrected once
there are no more significant variations between two con-
secutive iterations. A lookup table is computed between
the corrupted and corrected PDFs, which will be applied
on the original data to correct them (Sled et al., 1998).

The same histogram assumptions are used in Mangin
(2000), Likar et al. (2001), Solanas and Thiran (2001)
and Milles et al. (2004), but they are translated in an
entropy minimization framework. The intensity non-
uniformity is modeled using polynomial functions and a
minimization is performed using Powell�s method (Mangin,
2000; Likar et al., 2001). An extension of Likar et al. (2001)
has been proposed in Solanas and Thiran (2001). This
method exploited the fact that neighboring pixels are
highly correlated. The full spatial information can also be
integrated in the entropy minimization framework (Milles
et al., 2004). In the method proposed by Vovk et al.
(2004a,b), the intensity image features are computed using
spatial image features using second derivatives. The main
property of the second derivative is the ability to reduce
cluster overlap.

3.2.2. Fourier domain

The methods presented here are an alternative to those
described in Section 3.1.2. Both approaches deal with the
original dataset filtering but differ in the domain where fil-
ters are built and applied. Filtering in Fourier domain has
been seldom used for correcting intensity non-uniformity.
The only filters applied are low-pass gaussian filters (Wald
et al., 1995; Cohen et al., 2000).

3.2.3. Wavelet domain
The use of discrete wavelet transform (DWT) to correct

for intensity non-uniformity has been proposed recently
(Han et al., 2001; Lin et al., 2003). DWT decomposes the
image into a cascade of orthogonal approximation and
detail subspaces for different spatial resolutions. Each
approximation subspace contains low-frequency informa-
tion whereas the corresponding detail subspace contains
high-frequency information. The original image can be
reconstructed by combining those subimages. Since inten-
sity non-uniformity consists of low frequencies, it can be
estimated and corrected in the approximation subspaces.
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Relevant subspaces can be computed either based on sub-
spaces coefficients (Han et al., 2001) or based on the recon-
structed image (Lin et al., 2003).

4. Evaluation tools for intensity non-uniformity correction

methods

As stated in Sections 2 and 3, numerous methods, based
on different theoretical backgrounds and approaches, have
been developed to correct for the intensity inhomogeneity.
However, a crucial point is to determine which method is
the best for a given acquisition protocol. This implies the
use of an evaluation framework, which can be either qual-
itative or quantitative, to compare the different correction
approaches. Such a comparison has been proposed for
blind correction methods (Arnold et al., 2001) or MR brain
images correction (Velthuizen et al., 1998).

An objective evaluation framework is the combination
of a ground truth and a quality control of the result.
Ground truth consists of a prior knowledge about datasets
used. We present in Section 4.1 the main solutions to
obtain this prior knowledge. The quality control of the cor-
rected data can be either qualitative, see Section 4.2.1, or
quantitative, as described in Section 4.2.2. Finally, the dif-
ferent validation methodologies used for correction algo-
rithms are summed up in Table 1.

4.1. Typical dataset used for validation

As stated before, an objective validation method may
require a ground truth, based on strong prior knowledge
about the real structure of the object of interest. However,
alternative methods, such as the STAPLE method (War-
field et al., 2004), can be used. For datasets acquired in clin-
ical situation, this ground truth is usually incomplete,
leading to a subjective quality assessment. Consequently,
other solutions have been proposed for validation purpose,
leading to the use of numerical data, either synthetic or
simulated, or the acquisition of images of physical phan-
toms with known characteristics.
Table 1
Overview of validation methods

Qualitative evaluation

Profile Ahmed et al. (1999), Cohen et al. (2000), Johnston et al. (1
Sled et al. (1998), Vokurka et al. (1999), Wald et al. (1995)

Image Ahmed et al. (1999), Axel et al. (1987), Brey and Narayana
Gilles et al. (1996), Lai and Fang (1999), Liney et al. (1998),
Wald et al. (1995), Wells III et al. (1996), Zhang et al. (2001

Histogram Clare et al. (2001), Collewet et al. (2002), Schroeter et al. (1

Quantitative evaluation

Grayscale level Brinkmann et al. (1998), Condon et al. (1987), Han et al. (
Wicks et al. (1993)

Segmented data Dawant et al. (1993), Guillemaud and Brady (1997), Harris
Likar et al. (2001), Meyer et al. (1995), Narayana and Bort
Shattuck et al. (2001), Styner et al. (2000), Van Leemput et
Zhou et al. (2001), Zijdenbos et al. (1995)
4.1.1. Numerical datasets

Numerical datasets are commonly used for validation
because of the ideal prior knowledge they provide. They
allow both qualitative and quantitative evaluation. Typical
numerical datasets are either synthetic or simulated.

4.1.1.1. Synthetic datasets. These datasets carry no realistic
anatomical or physical information. They are usually used
as a first step for objectively evaluating an image processing
method (Wells III et al., 1996), their characteristics being
already known.

4.1.1.2. Numerically simulated datasets. Since a synthetic
dataset does not have realistic behavior, realisticly simu-
lated datasets have become necessary. With the increase
in computational power, such realistic datasets can be sim-
ulated. As an example, the interface BrainWeb developed
by McGill University (Montréal, Canada) provides simu-
lated brain MR datasets for various acquisition sequences
and intensity non-uniformity levels (Collins et al., 1998).

4.1.2. Real datasets
The crucial point here is that ground truth is lacking

when imaging organs in vivo, leading to a technical diffi-
culty for quality assessment. Two possibilities have been
considered to obtain prior knowledge about the object
being imaged. The first solution is to image physical phan-
toms (Mihara et al., 1998), the second is to image real
organs in vivo and to rely on experts knowledge for quality
assessment (Rajapakse and Kruggel, 1998). Imaging
objects such as physical phantoms increase knowledge
about their structural and physical properties, even if those
properties do not reflect the exact clinical reality. However,
such physical phantom are not realistic enough.

In vivo data characteristics correspond to those of real
clinical acquisitions. However, we lack prior knowledge
about the structural and the physical properties of the
imaged objects. This problem can be partially solved by
relying on manual or semi-automated segmentations per-
formed by medical experts (Wells III et al., 1996). This
996), Lai and Fang (1999), Lee and Vannier (1996), Mihara et al. (1998),

(1988), Clare et al. (2001), Collewet et al. (2002), Deichmann et al. (2002),
Murakami et al. (1996), Sled et al. (1998), Thulborn et al. (1998),
)
998), Thulborn et al. (1998), Vokurka et al. (1999)

2001), Koivula et al. (1997), Prima et al. (2001), Tincher et al. (1993),

et al. (1994), Johnston et al. (1996), Lee and Vannier (1996),
hakur (1995), Pham and Prince (1999a), Rajapakse and Kruggel (1998),
al. (1999), Vokurka et al. (1999), Wells III et al. (1996),
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can lead to databases like the Internet Brain Segmentation

Repository (IBSR).1 Nevertheless, using such user-driven
segmentations as ground truth raises the problem of repro-
ducibility of segmentation. Indeed, intra- and inter-opera-
tor variations can actually hamper the evaluation process.

4.2. Evaluation criteria

Evaluation is an important step towards the validation
of correction methods. It can consist of qualitative or
quantitative assessment of the corrected data in regard of
the reference data.

4.2.1. Qualitative approaches
Qualitative evaluation is based on visual comparison of

representations of reference and corrected datasets. Those
representations are usually taken in the spatial domain,
leading to images or profiles, or in the PDF domain, pro-
viding graylevel histograms.

4.2.1.1. Spatial domain. Visual evaluation in the spatial
domain is commonly taken as a first step in the validation
process as it is the most intuitive representation. When com-
paring images, the main criterion used is overall homogene-
ity inside each tissue compartment. This can be extended to
profiles, where the operator looks for the piecewise constant
aspect of those tissue compartments (Zhou et al., 2001).

4.2.1.2. PDF domain. An evaluation in the PDF domain
can be less intuitive than in the spatial domain. It is rarely
used when dealing with objects other than simple phan-
toms as the interpretation of histograms is almost impossi-
ble for complex objects. The typical criterion used is the
graylevel spreading around main peaks. Sharper peaks
mean that the different tissue classes are better separated
(Vokurka et al., 1999).

4.2.2. Quantitative approaches
Quantitative validation is based on the evaluation of

parameters considered to be significant. Quantitative mea-
surements require a quantitative representation of the cor-
rected dataset. Measurements can be separated in two
types. The first one is an assessment of the variations of
grayscale levels for a given tissue, or adjacent tissue com-
partments (Meyer et al., 1995). The second one is an assess-
ment of the segmentation accuracy (Styner et al., 2000).

4.2.2.1. Grayscale level variations. A common assumption
about MR data is that the spatial intensity distribution is
piecewise constant and that each tissue corresponds to a
unique grayscale level. Based on those hypothesis, a valid
correction method should lessen the standard deviation in
intensity for each tissue. The ratio between the standard
deviation r and the mean l of a given tissue defines the
coefficient of variation (CV), also called percentage of
1
http://www.cma.mgh.harvard.edu/ibsr/.
in-slice non-uniformity (Wicks et al., 1993; Dawant et al.,
1993; Sled, 1997):

CV ¼ r
l
. ð2Þ

This parameter can be modified to measure the overlap be-
tween two tissue distributions t1 and t2 leading to the coef-
ficient of joint variations (CJV) defined in Likar et al.
(2000):

CJVðt1; t2Þ ¼
rðt1Þ þ rðt2Þ
lðt1Þ � lðt2Þ

. ð3Þ
4.2.2.2. Information measurement. Another assumption is
that intensity non-uniformity raises entropy of the data�s
histogram. Given a set of N graylevel measurements ga
and its associated probabilities P(ga), the entropy H is
defined by:

H ¼ �
XN
a¼1

P ðgaÞ log P ðgaÞ. ð4Þ

H is maximum when graylevel distribution is uniform. The
scale invariant information measure can be derived from
the standard entropy, defined by Eq. (4) (Thacker et al.,
2002). In its continuous form, this measure is given by:

L ¼
Xn

a¼1

ffiffiffiffiffiffiffiffiffiffiffi
P ðgaÞ
ga

s
. ð5Þ

Whatever the used measure, the correction process should
lower entropy.

4.2.2.3. Segmentation accuracy. Another solution to evalu-
ate a correction algorithm is to assess for the accuracy of
segmentation results before and after correction. Many sta-
tistical measurements are available, such as detection rates
and similarity index (Styner et al., 2000; Zijdenbos et al.,
1995). Detection rates provide information about correctly
classified (true positive) and misclassified voxels (false posi-
tive and false negative). Correct detection rate (CDR) and
incorrect detection rate (IDR) are defined by:

CDR ¼ NTP

N 1

;

IDR ¼ NFP þ NFN

N 1

;

ð6Þ

where N1 is the number of voxels in the reference segmen-
tation, NTP, NFP, NFN are, respectively, the number of true
positive, false positive and false negative voxels in the ob-
tained segmentation.

A more sophisticated statistical measurement is given by
the similarity index S defined as (Zijdenbos et al., 1995):

S ¼ 2
nðAa

T
AbÞ

nðAaÞ þ nðAbÞ
; ð7Þ

where Ab, Aa are, respectively, the set of voxels in a given
tissue class A before and after correction and n(A) is the
number of voxels in the class A.



Table 2
URL of correction algorithms available on the Internet

References Operating system URL

Sled et al. (1998) Linux http://www.bic.mni.mcgill.ca/software/N3/
Ashburner and Friston (1998) Windows/Linux http://www.fil.ion.ucl.ac.uk/spm/software/
Cohen et al. (2000) MacOS/Linux http://airto.bmap.ucla.edu/BMCweb/SharedCode/EQ/
Zhang et al. (2001) Linux http://www.fmrib.ox.ac.uk/analysis/research/fast/
Styner et al. (2000) Win/MacOS/Linux http://www.itk.org/HTML/MRIBiasCorrection.htm
Van Leemput et al. (1999) Windows/Linux http://www.medicalimagecomputing.com/EMS/
Shattuck et al. (2001) Win/Linux/UNIX http://neuroimage.usc.edu/brainsuite/
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5. Comparison of correction methods

In the previous sections, we have presented the different
intensity non-uniformity correction methods as well as the
tools to validate them. The aim of this section is to intro-
duce the contexts in which those methods have been used.
Availability of the main correction methods is also pre-
sented (see Table 2).

5.1. Context of the proposed methods

From the literature, we summarized information about
the general context on which correction methods have been
proposed. We focus on the MR sequence used, the recep-
tion coil, the main static field intensity and the imaged
object. Obtained results are given in Table 3. From this
table, we can note that intensity non-uniformity concerns
the three MR sequence families, i.e., SE, GE and EPI.
Table 3 furthermore shows that correction is necessary
both for images obtained with a surface coil and for images
obtained with a head coil. Finally, many imaged objects,
such as a homogeneous phantom, a brain, a breast, a wrist
or a prostate are affected by the artefact. Hence, intensity
non-uniformity can be attributed to a combination of the
following three parameters, as described in Section 1:
object, coil and MR sequence. It is interesting to note that
most of the proposed correction algorithms are dedicated
to brain images, showing their specificity and consequently,
their limitations. However, intensity non-uniformity cor-
rection is also needed for acquisitions involving surface
coils, e.g., spine or thoracic MRI.

5.2. Availability of the main algorithms

The main correction algorithms used today are available
on the web site of their author, see Table 2. Hence, they can
be downloaded and tested for the desired application. Most
of the correction methods, which are Windows and Linux
compatible, are generally included in image processing
software packages. They can be specific to MRI, such as
SPM2 and FSL-FMRIB,3 or more general such as ITK.4
2
http://www.fil.ion.ucl.ac.uk/spm/.

3
http://www.fmrib.ox.ac.uk/fsl/.

4
http://www.itk.org/.
5.3. Quantitative comparison of the proposed methods

Even if it is not the aim of this survey, it is important to
know which correction algorithm can be considered as the
most efficient for a given context. Such a work has been
recently published for post-processing based methods
(Velthuizen et al., 1998; Arnold et al., 2001).

The first study evaluates the efficiency of correction
methods and their impact on tumor response measure-
ments (Velthuizen et al., 1998). Results are summarized
here. Four correction algorithms are compared: a phantom
correction method (Wicks et al., 1993), an image smooth-
ing technique (Narayana and Borthakur, 1995), homomor-
phic filtering (Johnston et al., 1996), and a surface fitting
approach (Dawant et al., 1993).

The correction methods were tested on SE and FSE
images acquired from six brain tumor cases using a 1.5T
MR scanner. The efficiency of correction methods and
their impact on tumor response measurements are
measured. One important result is that the intensity non-
uniformity is different for each correction method and each
MR image. For smoothing and homomorphic techniques,
the non-uniformity images are blurred versions of the
original image, reflecting the tissue dependent brightness
patterns. It means that the underlined hypothesis of spatial
frequencies separation of the non-uniformity and the
signal is not achieved. The aim of this study was to
evaluate the impact of correction methods in brain tumor
response measurements. However, even if correction is
performed, no improvement in tumor segmentation was
observed using any of the evaluated correction methods.
This result is attributed to the fact that tumors are usually
well localized.

A more complete study has been developed in Arnold
et al. (2001), for a specific neuroscientific application. Six
correction methods are tested: N3 (Sled et al., 1998),
HUM (Brinkmann et al., 1998), EQ (Cohen et al., 2000),
BFC (Shattuck et al., 2001), SPM (Ashburner and Friston,
1998), and CMA provided by the Center for Morphometric
Analysis at the Massachusetts General Hospital. Test data
consisted of simulated and real MR data volumes obtained
at 1.5 and 3 T using 3D FLASH and 3D GRASS
sequences. The correction methods evaluation consisted
of a visual analysis of intensity histograms before and after
correction. Furthermore, performances were evaluated on



Table 3
Summary of the methods, information not available was termed N/A

References Acquisition

Coil Pulse sequences Field Objects

Ahmed et al. (1999, 2002) N/A N/A 1.5 T Brain
Axel et al. (1987) SC SE N/A Wrist
Brey and Narayana (1988) SC N/A 2 T Food/rabbit
Brinkmann et al. (1998) SC SPGR N/A Brain
Clare et al. (2001) HC EPI/SE 3 T Brain
Cohen et al. (2000) HC GE/SE/SPGR 3 T Brain
Collewet et al. (2002) SC SE 0.2 T Fish
Condon et al. (1987) SC SE 0.15 T Brain
Dawant et al. (1993) HC SE 1.5 T Brain
Deichmann et al. (2002) HC MP-RAGE 2 T Brain
Gilles et al. (1996) SC N/A N/A Breast
Guillemaud and Brady (1997) HC/SC SE 1.5 T Brain/breast
Han et al. (2001) SC GE/SE 1.5 T Brain/carotid
Harris et al. (1994) HC SE 1.5 T Brain
Johnston et al. (1996) HC SE 1.5 T Brain
Koivula et al. (1997) BC/SC SE 1 T Brain/liver/spine
Lai and Fang (1999) SC N/A N/A Brain/breast/thorax
Lee and Vannier (1996) HC/PA/SC MP-RAGE 1.5 T Brain
Likar et al. (2000, 2001) HC/SC GE/SE 1 T Brain/breast
Liney et al. (1998) SC FSPGR/FSE 1.5 T Prostate
Meyer et al. (1995) BC/HC/SC SE 0.35 T/1.5 T Brain/breast/thorax
Mihara et al. (1998) SC GE 7 T Phantom
Murakami et al. (1996) PA/SC GE/SE 1.5 T Brain/spine
Narayana and Borthakur (1995) HC SE 1.5 T Brain
Pham and Prince (1999b,c) HC SE N/A Brain
Pham and Prince (1999a) HC SE N/A Brain
Prima et al. (2001) HC GE 1.5 T Brain
Rajapakse and Kruggel (1998) HC SPGR/FLASH 1.5 T Brain
Schroeter et al. (1998) HC MP-RAGE 1.5 T Brain
Sled et al. (1998) HC N/A 1.5 T Brain
Thulborn et al. (1998) SC GE/EPI 1.5 T Brain
Tincher et al. (1993) BC SE 0.5 T Thorax
Shattuck et al. (2001) N/A N/A 1.5 T Brain
Styner et al. (2000) HC/SC N/A 1.5 T Brain/breast
Van Leemput et al. (1999) HC MP-RAGE 1.5 T Brain
Vokurka et al. (1999) HC/SC FSE/SE/EPI 1.5 T Brain/shoulder/spine
Wald et al. (1995) PA FSE/SPGR 1.5 T Brain
Wells III et al. (1996) HC/SC GE/SE 1.5 T Brain
Wicks et al. (1993) HC/SC SE 0.5 T Brain
Zhang et al. (2001) HC N/A N/A Brain
Zhou et al. (2001) HC SE 0.5 T Brain
Zijdenbos et al. (1995) HC N/A N/A Brain
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the Montreal Brain Phantom with added known non-
uniformity levels. Finally, real MR data volumes were
used. For the real data, a voxel-based principal component
analysis followed by a canonical variables analysis (PCA/
VCA) was performed to determine the within-algorithm
similarity and between-algorithm differences. The tighter
the cluster of non-uniformity corrected volumes, the better
the performance of the correction algorithm. The perfor-
mance of a correction algorithm was also assessed by com-
puting its stability, consisting of recursively applying each
of algorithms to its corrected output volume for five itera-
tions. At each iteration, the extracted bias field approaches
to uniformity.

For phantom studies, N3 and BFC give the best results,
indicating that the applied non-uniformity has been nearly
completely removed. Histogram comparison of real data,
before and after correction, indicates that the spm-
corrected volume demonstrates a reduction in the height
of gray-matter peak and a global shift of the white-matter
peak to lower intensity values. An interesting result is the
frequency content of the extracted non-uniformity image.
N3, BFC, and SPM non-uniformity images have a low-
frequency content while higher spatial frequencies, signifi-
cantly influenced by the underlying brain anatomy,
appears. The iteratively extracted N3 and BFC non-unifor-
mity images rapidly approach a constant value, indicating
their stability. EQ and CMA slowly converge while no
appreciable change is observed for HUM. The erratic
behavior of the SPM method is striking. Even if none of
the tested algorithms performs well in all circumstances,
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locally adaptative methods outperformed non-adaptative
methods.

The outcome of studies comparing different algorithms
for intensity non-uniformity correction is that none of the
correction methods performs ideally in all cases, particu-
larly considering that some methods are not robust when
images show only little or no intensity non-uniformity
effects. Locally adaptive methods seem to provide a more
accurate correction than non-adaptive techniques, and thus
suggest to be more efficient.

6. Conclusion

In this paper, we have considered intensity non-unifor-
mity correction as a global problem involving multiple
communities with different objectives. We have proposed
an overview of all existing methods available and we have
suggested an original typology to sort them based on the
way correction is performed and on the assumptions
made. This survey improves the understanding of the arti-
fact correction and offers to any person from each com-
munity an upstream vision of the correction problem.
From the surveyed literature, we separated correction
methods into prospective and retrospective approaches
with fine clustering in each category. Furthermore, we
have presented validation protocols used to evaluate these
different correction schemes both from a qualitative and a
quantitative point of view. Finally, we have presented an
overview of the contexts in which methods have been
developed.

In conclusion, the fact that numerous methods have
already been developed shows that the intensity non-
uniformity artifact is not yet understood completely. The
issue of correcting for intensity non-uniformity is still
raised, but significant improvements for those methods
could be met by studying this artifact�s origins more
thoroughly. This study could lead to a better model of this
artifact, to a better correction algorithm and to a better
validation protocol. Another issue could be a cooperative
approach between the two communities to propose both
a more robust correction method associated to an efficient
evaluation scheme adapted to the context.
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and by the European Commission (Marie Curie Training
Site Fellowship).

References

Ahmed, M., Yamany, S., Mohamed, N., Farag, A., Moriarty, T., 1999.
Bias field estimation and adaptive segmentation of MRI data using a
modified fuzzy C-means algorithm. In: International Symposium and
Exhibition on Computer Assisted Radiology and Surgery (CARS �99).
p. 1004.

Ahmed, M., Yamany, S., Mohamed, N., Farag, A., Moriarty, T., 2002. A
modified fuzzy C-means algorithm for bias field estimation and
segmentation ofMRI data. IEEE Trans.Med. Imaging 21 (3), 193–199.

Alecci, M., Collins, C., Smith, M., Jezzard, P., 2001. Radio frequency
magnetic field mapping of a 3 Tesla birdcage coil: experimental and
theoretical dependence on sample properties. Magnet. Reson. Med. 46
(2), 379–385.

Arnold, J., Liow, J.-S., Schaper, K., Stern, J., Sled, J., Shattuck, D.,
Worth, A., Cohen, M., Leahy, R., Mazziotta, J., Rottenberg, D., 2001.
Qualitative and quantitative evaluation of six algorithms for correcting
intensity nonuniformity effects. NeuroImage 13 (5), 931–943.

Ashburner, J., Friston, K., 1998. MRI sensitivity correction and tissue
classification. NeuroImage 7 (4), S107.

Axel, L., Constantini, J., Listerud, J., 1987. Intensity correction in surface-
coil MR imaging. Am. J. Roentgenol. 148, 418–420.

Barker, G., Simmons, A., Arridge, S., Tofts, P., 1998. A simple method for
investigating the effects of non-uniformity of radiofrequency trans-
mission and radiofrequency reception in MRI. Brit. J. Radiol. 71
(841), 59–67.

Bellon, E., Haacke, E., Coleman, P., Sacco, D., Steiger, D., Gangarosa,
R., 1986. MR artifacts: a review. Am. J. Roentgenol. 147, 1271–1281.

Besag, J., 1986. On the statistical analysis of dirty pictures. J. Roy. Stat.
Soc. B Met. 48 (3), 259–302.

Bezdek, J., 1981. Pattern Recognition with Fuzzy Objective Function
Algorithms. Plenum Press.

Brechbuhler, C., Gerig, G., Szekely, G., 1996. Compensation of
spatial inhomogeneity in MRI based on a parametric field
estimate. In: Visualisation in Biomedical Computation (VBC �96).
pp. 141–146.

Brey, W., Narayana, P., 1988. Correction for intensity falloff in surface
coil magnetic resonance imaging. Med. Phys. 15 (2), 241–245.

Bridcut, R., Redpath, T., Gray, C., Staff, R., 2001. The use of SPAMM to
assess spatial distortion due to static field inhomogeneity in dental
MRI. Phys. Med. Biol. 46 (5), 1357–1367.

Brinkmann, B., Manduca, A., Robb, R., 1998. Optimized homomorphic
unsharp masking for MR grayscale inhomogeneity correction. IEEE
Trans. Med. Imaging 17 (2), 161–171.

Clare, S., Alecci, M., Jezzard, P., 2001. Compensating for B1 inhomoge-
neity using active transmit power modulation. Magn. Reson. Imaging
19 (10), 1349–1352.

Cohen, M., DuBois, R., Zeineh, M., 2000. Rapid and effective correction
of RF inhomogeneity for high field magnetic resonance imaging. Hum.
Brain Mapp. 10 (4), 204–211.

Collewet, G., Davenel, A., Toussaint, C., Akoka, S., 2002. Correction of
intensity nonuniformity in Spin-Echo T1-weighted images. Magn.
Reson. Imaging 20 (4), 365–373.

Collins, C., Smith, M., 2001. Calculations of B1 distribution, SNR, and
SAR for a surface coil adjacent to an anatomically-accurate human
body model. Magnet. Reson. Med. 45 (4), 692–699.

Collins, C., Li, S., Yang, Q., Smith, M., 1997. A method for accurate
calculation of B1 fields in three dimensions. Effects of shield geometry
on field strength and homogeneity in the birdcage coil. J. Magn.
Reson. 125 (2), 233–241.

Collins, D., Zijdenbos, A., Kollokian, V., Sled, J., Kabani, N., Holmes,
C., Evans, A., 1998. Design and construction of a realistic digital brain
phantom. IEEE Trans. Med. Imaging 17 (3), 463–468.

Condon, B., Patterson, J., Wyper, D., Jenkins, A., Hadley, D., 1987.
Image non-uniformity in magnetic resonance imaging: its magnitude
and methods for its correction. Brit. J. Radiol. 60 (709), 83–87.

Dawant, B., Zijdenbos, A., Margolin, R., 1993. Correction of intensity
variations in MR images for computer-aided tissue classification. IEEE
Trans. Med. Imaging 12 (4), 770–781.

Deichmann, R., Good, C., Turner, R., 2002. RF inhomogeneity compen-
sation in structural brain imaging. Magnet. Reson. Med. 47 (2), 398–
402.



B. Belaroussi et al. / Medical Image Analysis 10 (2006) 234–246 245
Fan, A., Wells, W., Fisher, J., Cetin, M., Haker, S., Mulkern, R.,
Tempany, C., Willsky, A., 2003. A unified variational approach to
denoising and bias correction in MR. In: International Conference
on Information Processing in Medical Imaging (IPMI �03). pp. 148–
159.

Gilles, S., Brady, M., Declerck, J., Thirion, J.-P., Ayache, N., 1996. Bias
field correction of breast MR images. In: Visualisation in Biomedical
Computation (VBC �96). pp. 153–158.

Gispert, J., Reig, S., Pascau, J., Vaquero, J., Garca-Barreno, P., Desco,
M., 2004. Method for bias field correction of brain T1-weighted
magnetic resonance images minimizing segmentation error. Hum.
Brain Mapp. 22 (2), 133–144.

Gonzales, R., Woods, R., 1992. Digital Image Processing. Prentice-Hall.
Gudbjartsson, H., Patz, S., 1995. The Rician distribution of noisy MRI

data. Magnet. Reson. Med. 34 (6), 910–914.
Guillemaud, R., Brady, M., 1997. Estimating the bias field of MR images.

IEEE Trans. Med. Imaging 16 (3), 238–251.
Han, C., Hatsukami, T., Yuan, C., 2001. A multi-scale method for

automatic correction of intensity non-uniformity in MR images. J.
Magn. Reson. Imaging 13 (3), 428–436.

Hanson, L., Dyrby, T., 2002. RF inhomogeneity correction: validity of the
smooth-bias approximation. In: Int. Soc. Mag. Reson. Med. (ISMRM
�02). p. 2316.

Harris, G., Barta, P., Peng, L., Lee, S., Brettschneider, P., Shah, A.,
Henderer, J., Schlaepfer, T., Pearlson, G., 1994. MR volume
segmentation of gray matter and white matter using manual thres-
holding: dependence on image brightness. Am. J. Neuroradiol. 15 (2),
225–230.

Holland, J., 1962. Outline for a theory of adaptative systems. J. ACM 9
(3), 297–314.

Insko, E.K., Bolinger, L., 1993. Mapping of the radiofrequency field. J.
Magn. Reson. Ser. A 103 (1), 82–85.

Johnston, B., Atkins, M., Mackiewich, B., Anderson, M., 1996. Segmen-
tation of multiple sclerosis lesions in intensity corrected multispectral
MRI. IEEE Trans. Med. Imaging 15 (2), 154–169.

Kim, S.-G., Ng, S.-K., McLachlan, G., Wang, D., 2003. Segmentation of
brain MR images with bias field correction. In: Workshop on Digital
Image Computing. pp. 3–8.

Koivula, A., Alakuuala, J., Tervonen, O., 1997. Image feature based
automatic correction of low-frequency spatial intensity variations in
MR images. Magn. Reson. Imaging 15 (10), 1167–1175.

Lai, S.-H., Fang, M., 1999. A new variational shape-from-orientation
approach to correcting intensity inhomogeneities in magnetic reso-
nance images. Med. Image Anal. 3 (4), 409–424.

Langlois, S., Desvignes, M., Constans, J., Revenu, M., 1999. MRI
geometric distorsion: a simple approach to correcting the effects of
non-linear gradient fields. J. Magn. Reson. Imaging 9 (6), 821–831.

Lee, S., Vannier, M., 1996. Post-acquisition correction of MR inhomo-
geneities. Magnet. Reson. Med. 36 (2), 275–286.

Liang, Z.-P., Lauterbur, P., 2000. Principles of Magnetic Resonance
Imaging: A Signal Processing Perspective. IEEE Press.

Likar, B., Viergever, M., Pernus, F., 2000. Retrospective correction of MR
intensity inhomogeneity by information minimization. In: Interna-
tional Conference on Medical Image Computing and Computer-
Assisted Intervention (MICCAI �00). pp. 375–384.

Likar, B., Viergever, M., Pernus, F., 2001. Retrospective correction of MR
Intensity in MR inhomogeneity by information minimization. IEEE
Trans. Med. Imaging 20 (12), 1398–1410.

Lim, K., Pfefferbaum, A., 1989. Segmentation of MR brain images into
cerebrospinal fluid spaces, white and gray matter. J. Comput. Assist.
Tomo. 13 (4), 588–593.

Lin, F.-H., Chen, Y.-J., Belliveau, J., Wald, L., 2003. A wavelet-based
approximation of surface coil sensitivity profiles for correction of
image intensity inhomogeneity and parallel imaging reconstruction.
Hum. Brain Mapp. 19 (2), 96–111.

Liney, G., Turnbull, L., Knowles, A., 1998. A simple method for the
correction of endorectal surface coil inhomogeneity in prostate
imaging. J. Magn. Reson. Imaging 8 (4), 994–997.
Mangin, J.-F., 2000. Entropy minimization for automatic correction of
intensity nonuniformity. In: IEEE Workshop on Mathematical Meth-
ods in Biomedical Image Analysis (MMBIA �00). pp. 162–169.

Meyer, C., Bland, P., Pipe, J., 1995. Retrospective correction of
intensity inhomogeneities in MRI. IEEE Trans. Med. Imaging 14
(1), 36–41.

Mihara, H., Iriguchi, N., Ueno, S., 1998. A method of RF inhomogeneity
correction in MR imaging. Magn. Reson. Mater. Phys. 7 (2), 115–
120.

Milles, J., Zhu, Y., Chen, N., Panych, L., Gimenez, G., Guttmann, C.,
2004. MRI intensity nonuniformity correction using simultaneously
spatial and gray-level histogram information. In: SPIE Medical
Imaging. pp. 734–742.

Murakami, J., Hayes, C., Weinberger, E., 1996. Intensity correction of
phased-array surface coil images. Magnet. Reson. Med. 35 (4), 585–
590.

Narayana, P., Borthakur, A., 1995. Effect of radio frequency inhomoge-
neity correction on the reproducibility of intra-cranial volumes using
MR image data. Magnet. Reson. Med. 33 (3), 396–400.

Pham, D., Prince, J., 1999. A generalized EM algorithm for robust
segmentation of magnetic resonance images. In: Conference on
Information Sciences and Systems (CISS �99). pp. 558–563.

Pham, D., Prince, J., 1999b. Adaptative fuzzy segmentation of magnetic
resonance images. IEEE Trans. Med. Imaging 18 (9), 737–752.

Pham, D., Prince, J., 1999c. An adaptative fuzzy C-means algorithm for
image segmentation in the presence of intensity inhomogeneities.
Pattern Recogn. Lett. 20 (1), 57–68.

Prima, S., Ayache, N., Barrick, T., Roberts, N., 2001. Maximum
likelihood estimation of the bias field in MR brain images: investigat-
ing different modelings of the imaging process. In: International.
Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI �01). pp. 811–819.

Rajapakse, J., Kruggel, F., 1998. Segmentation of MR images with
intensity inhomogeneities. Image Vision Comput. 16 (3), 165–180.

Reeder, S., Faranesh, A., Boxerman, J., McVeigh, E., 1998. In vivo
measurement of T2* and field inhomogeneity maps in the human heart
at 1.5 T. Magnet. Reson. Med. 39 (6), 988–998.

Samsonov, A., Whitaker, R., Kholmovski, E., Johnson, C., 2002.
Parametric method for correction of intensity inhomogeneity in MRI
data. In: Intl. Soc. Mag. Reson. Med. (ISMRM �02). p. 154.

Schroeter, P., Vesin, J.-M., Langenberger, T., Meuli, R., 1998. Robust
parameter estimation of intensity distributions for brain magnetic
resonance imaging. IEEE Trans. Med. Imaging 17 (2), 173–186.

Shattuck, D., Sandor-Leahy, S., Schaper, K., Rottenberg, D., Leahy, R.,
2001. Magnetic resonance image tissue classification using a partial
volume model. NeuroImage 13 (5), 856–876.

Simmons, A., Tofts, P., Barker, G., Arridge, S., 1994. Sources of intensity
nonuniformity in spin echo images at 1.5 T. Magnet. Reson. Med. 32
(1), 121–128.

Sled, J.G., 1997. A non-parametric method for automatic correction of
intensity non-uniformity in MRI data. Master�s thesis, Department of
Biomedical Engineering, McGill University, Montreal, Canada.

Sled, J., Pike, G., 1998. Standing-wave and RF penetration artifacts
caused by elliptic geometry: an electrodynamic analysis of MRI. IEEE
Trans. Med. Imaging 17 (4), 653–662.

Sled, J., Zijdenbos, A., Evans, A., 1998. A nonparametric method for
automatic correction of intensity nonuniformity in MRI data. IEEE
Trans. Med. Imaging 17 (1), 87–97.

Solanas, E., Thiran, J.-P., 2001. Exploiting voxel correlation for
automated MRI bias field correction by conditional entropy minimi-
zation. In: International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI �01). pp. 1220–1221.

Styner, M., Brechbuhler, C., Szekely, G., Gerig, G., 2000. Parametric
estimate of intensity inhomogeneities applied to MRI. IEEE Trans.
Med. Imaging 19 (3), 153–165.

Thacker, N., Lacey, A., Bromiley, P., 2002. Validating MRI field
homogeneity correction using image information measures. In: British
Machine Vision Conference (BMVC �02). pp. 626–635.



246 B. Belaroussi et al. / Medical Image Analysis 10 (2006) 234–246
Thulborn, K., Boada, F., Shen, G., Christensen, J., Resse, T., 1998.
Correction of B1 inhomogeneities using echo-planar imaging of water.
Magnet. Reson. Med. 39 (3), 369–375.

Tincher, M., Meyer, R., Gupta, R., Williams, W., 1993. Polynomial
modeling and reduction of RF body coil spatial inhomogeneity in
MRI. IEEE Trans. Med. Imaging 12 (2), 361–365.

Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P., 1999.
Automated model-based bias field correction of MR images of the
brain. IEEE Trans. Med. Imaging 18 (10), 885–896.

Velthuizen, R., Heine, J., Cantor, A., Lin, H., Fletcher, L., Clarke, L.,
1998. Review and evaluation of MRI nonuniformity corrections for
brain tumor response measurements. Med. Phys. 25 (9), 1655–1666.

Vokurka, E., Thacker, N., Jackson, A., 1999. A fast model independent
method for automatic correction of intensity nonuniformity in MRI
data. J. Magn. Reson. Imaging 10 (4), 550–562.

Vovk, U., Pernus, F., Likar, B., 2004a. MRI intensity inhomogeneity
correction by combining intensity and spatial information. Phys. Med.
Biol. 49 (17), 4119–4133.

Vovk, U., Pernus, F., Likar, B., 2004. Multi-feature intensity inhomoge-
neity correction in MR images. In: International Conference on
Medical Image Computing and Computer-Assisted Intervention
(MICCAI �04). pp. 283–290.

Wald, L., Carvajal, L., Moyher, S., Nelson, S., Grant, P., Barkovich, A.,
Vigneron, D., 1995. Phased array detectors and an automated
intensity-correction algorithm for high-resolution MR imaging of the
human brain. Magnet. Reson. Med. 34 (3), 433–439.

Warfield, S., Zou, K., Wells, W., 2004. Simultaneous truth and
performance level estimation (STAPLE): an algorithm for the
validation of image segmentation. IEEE Trans. Med. Imaging 23 (7),
903–921.

Wells III, W., Grimson, W., Kikinis, R., Jolesz, F., 1996. Adaptative
segmentation ofMRI data. IEEE Trans.Med. Imaging 15 (4), 429–442.

Wicks, D., Barker, G., Tofts, P., 1993. Correction of intensity nonuni-
formity in MR images of any orientation. Magn. Reson. Imaging 11
(2), 183–196.

Woods, L., Henkelman, R., 1985. MR Image artifacts from periodic
motion. Med. Phys. 12 (2), 143–151.

Zhang, Y., Brady, M., Smith, S., 2001. Segmentation of brain MR images
through a hidden Markov random field model and the expectation-
maximization algorithm. IEEE Trans. Med. Imaging 20 (1), 45–57.

Zhou, L., Zhu, Y., Bergot, C., Laval-Jeantet, A.-M., Bousson, V., Laredo,
J.-D., Laval-Jeantet, M., 2001. A method of radio-frequency inhomo-
geneity correction for brain tissue segmentation in MRI. Comput.
Med. Imag. Grap. 25 (5), 379–389.

Zijdenbos, A., Dawant, B., Margolin, R., 1995. Intensity correction and
its effect on measurement variability in MRI. In: International
Symposium and Exhibition on Computer Assisted Radiology and
Surgery (CARS �95). pp. 216–221.


