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Abstract
Gradient coils are essential components of magnetic resonance imaging (MRI) systems. In
this paper, we present an optimized target-field method for designing a transverse biplanar
gradient coil with high linearity, low inductance and small resistance, which can well satisfy
the requirements of permanent-magnet MRI systems. In this new method, the current density
is expressed by trigonometric basis functions with unknown coefficients in polar coordinates.
Following the standard procedures, we construct an objective function with respect to the total
square errors of the magnetic field at all target-field points with the penalty items associated
with the stored magnetic energy and the dissipated power. By adjusting the two penalty factors
and minimizing the objective function, the appropriate coefficients of the current density are
determined. Applying the stream function method to the current density, the specific winding
patterns on the planes can be obtained. A novel biplanar gradient coil has been designed using
this method to operate in a permanent-magnet MRI system. In order to verify the validity of
the proposed approach, the gradient magnetic field generated by the resulted current density
has been calculated via the Biot–Savart law. The results have demonstrated the effectiveness
and advantage of this proposed method.

Keywords: MRI, biplanar gradient coil, optimized target-field method, current density,
trigonometric basis function, polar coordinates

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Gradient coils are important parts of magnetic resonance
imaging (MRI) systems. They are designed to provide linear
magnetic fields along three orthogonal directions over the
volume of interest (VOI) with high efficiency. In general,
image quality, switching speed and dissipated power of the
coil are the three major indices used to evaluate the quality of
a gradient coil. The image quality is directly dependent on
the linearity of the gradient magnetic field generated by the
employed gradient coil. Usually, linearity higher than 95%
is required. The switching speed is mainly decided by the
inductance of the coil and a high switching speed demands
a low inductance. The dissipated power of the coil is highly
related to the resistance and a low dissipated power requires

a small resistance. Meanwhile, a small resistance means that
the length of the wires on the coil is low and the layout of the
wires is simple. Thus, a gradient coil with smaller resistance
is easier to manufacture in engineering. For the above reasons,
the linearity of the gradient magnetic field, the inductance and
the resistance of the coil are the three major factors that should
be considered when designing a gradient coil for practical
purposes.

Many methods have previously been proposed to design
an optimal gradient coil. A widely used method, presented
by Turner [1], is called the target-field method. In Turner’s
original approach, an objective function is constructed to
express the gradient magnetic field in terms of the surface
current density. Then the desired gradient magnetic field
is set over VOI and substituted into the objective function.
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Finally by use of the expression of the objective function the
surface current density can be obtained and the corresponding
winding pattern of the coil can be determined with the aid
of a stream function. In Turner’s original approach, he only
took the linearity of the gradient magnetic field into account
during the design. As a result, the inductance of the designed
coil is always too large for practical applications. Following
Turner’s original approach, a number of modified methods
were proposed by including the inductance of the coil in
the objective function [2–9]. In these methods [2–9], the
objective function is written with the gradient magnetic field
and the stored magnetic energy (or the inductance), both of
which are expressed by the surface current density. Although
these minimal-energy methods are theoretically feasible, they
are sometimes difficult to implement into practical designs.
The main reason is that a large value of power dissipation
may be encountered using these methods. This places some
challenges on the MRI system. In addition, the winding
lines on the surface of the minimal-energy coil are always
complex to manufacture [4]. To overcome these problems,
Li et al [10] proposed a solution for uniplanar gradient coil
design in fully open MRI system by further considering the
resistance of the coil when building the objective function. In
this method [10], the objective function is constructed with
respect to the total square errors of the gradient magnetic
field at all the desired target-field points with the penalty
items associated with the stored magnetic energy and the
dissipated power. All three of these items are written with the
surface current density. The free space Green function and the
Fourier transform component of the current density are used
to represent the magnetic field and the stored magnetic energy.
In particular, a two-dimensional Fourier series expansion with
unknown coefficients in Cartesian coordinates is adopted as the
basis functions of the surface current density. In practice, the
approach of Li et al [10] belongs to the Tikhonov regularization
method [11], which has been widely adopted in the design of
gradient coils [12–14].

In this paper, based on the work of Li et al [10], we
present an alternative approach to optimizing the design of
transverse biplanar gradient coil for a permanent-magnet MRI
system. Instead of using Fourier series expansion with
unknown coefficients in Cartesian coordinates as the basis
functions of the surface current density, in this approach we
employ Morrone’s trigonometric basis functions [15] with
unknown coefficients in polar coordinates. In order to justify
our proposed approach, we utilized the Biot–Savart law to
calculate the gradient magnetic field generated by the designed
coil.

2. Method

In this paper, the direction of the static main magnetic field
(B0) is along the Z-axis. The Z-gradient coil is the longitudinal
gradient coil. The Z-axis component of the magnetic field
generated by the Z-gradient coil varies linearly along the
Z-axis. The X- and Y-gradient coils are the transverse gradient
coils. The Z-axis component of the magnetic field generated
by X- or Y-gradient coil varies linearly along the X- or Y-axis.

Figure 1. A schematic illustration of the biplanar gradient coil
system.

In the rest of this paper, the configuration of the X-gradient
coil will be described in detail. The design of the Y-gradient
coil follows the same procedure. The schematic diagram of
the biplanar X-gradient coil for the permanent-magnet MRI
system is shown in figure 1. In this design, the shield coil is
not taken into account for the reason that a silicon steel plane
used to prevent eddy currents from forming is added in this
permanent-magnet MRI system. The top and bottom planes
of the gradient coil are located at Z = +a and Z = −a. S(ρ, ϕ)

denotes a source point on the plane of the gradient coil in polar
coordinates while P(x, y, z) represents a space field point in
the VOI in Cartesian coordinates.

2.1. Current density basis functions

The current density is distributed on the surface of the two
planes at Z = ±a. For transverse gradient coils, the current
densities on these two planes are identical.

The radius ρ of each source point meets the following
condition: ρ0 < ρ < ρm, where ρ0 is the minimum of the
radius and ρm is the maximum. The current density vector
�J at any source point must satisfy the continuity equation as
follows:

∇ · �J = 0. (1)

The current density at each source point can be expressed
by a series of trigonometric basis functions in polar coordinates
[15, 16]:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Jρ(ρ, ϕ) =
Q∑

q=1

Uq

1

ρ
sin[qc(ρ − ρ0)] sin ϕ

Jϕ(ρ, ϕ) =
Q∑

q=1

Uqqc cos[qc(ρ − ρ0)] cos ϕ.

(2)

In (2), c = π
ρm−ρ0

, Uq is the coefficient of the qth current density
basis function and is to be determined. Q is the total number
of basis functions. In theory, Q trends to infinity. However, in
practical calculation, Q is chosen as a finite number which is
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accurate enough to approximately establish the current density.
It is noted that the expression of the current density meets the
continuity equation (1).

2.2. Magnetic field specification

Bz(x, y, z) represents the Z-axis component of the magnetic
field at the space field point P(x, y, z). It can be obtained in
polar coordinates using the Biot–Savart law with respect to the
current density on one plane of the biplanar coil [16]:

Bz(x, y, z) = u0

4π

∫ ρm

ρ0

∫ 2π

0

ρ dρ dϕ

R3

× [(Jρ cos ϕ − Jϕ sin ϕ)(y − ρ sin ϕ)

− (Jρ sin ϕ + Jϕ cos ϕ)(x − ρ cos ϕ)], (3)

where u0 is the magnetic permeability of vacuum, Jρ and Jϕ

are two components of the current density in polar coordinates
at the source point on the coil plane, and R is the distance from
the source point to the space field point. Since the current
densities on the two planes are the same, we can conveniently
acquire Bz(x, y, z) generated by the two planes of the coil [16]:

Bz(x, y, z) = u0

4π

∫ ρm

ρ0

∫ 2π

0

ρ dρ dϕ

R3
+

× [(Jρ cos ϕ − Jϕ sin ϕ)(y − ρ sin ϕ)

− (Jρ sin ϕ + Jϕ cos ϕ)(x − ρ cos ϕ)]

+
u0

4π

∫ ρm

ρ0

∫ 2π

0

ρ dρ dϕ

R3−
[(Jρ cos ϕ − Jϕ sin ϕ)

× (y − ρ sin ϕ) − (Jρ sin ϕ + Jϕ cos ϕ)(x − ρ cos ϕ)],

(4)

where R± =
√

(x − ρ cos ϕ)2 + (y − ρ sin ϕ)2 + (z ∓ a)2, R+

stands for the distance between the space field point and the
source point on the top plane while R− represents the distance
between the space field point and the source point on the
bottom plane.

If we substitute the current density with expression (2),
Bz then becomes

Bz(x, y, z) =
Q∑

q=1

UqMq(x, y, z), (5)

where

Mq(x, y, z) = u0

4π

[∫ ρm

ρ0

∫ 2π

0

dρ dϕ

R3
+

C(ρ, ϕ)

+
∫ ρm

ρ0

∫ 2π

0

dρdϕ

R3−
C(ρ, ϕ)

]
, (6)

in which

C(ρ, ϕ) = (sin β − qcρ cos β)(y − ρ sin ϕ) sin ϕ cos ϕ

− (sin β sin2 ϕ + qcρ cos β cos2 ϕ)(x − ρ cos ϕ) (7)

and β = qc(ρ − ρ0). Mq(x, y, z) can be calculated directly,
given the location of the space field point in the VOI. For N
given points in VOI, we can rewrite expression (5) in matrix
form by [16]

Bz = MT U, (8)

where

Bz =

⎡
⎢⎢⎢⎢⎣

Bz1

Bz2

Bz3

· · ·
BzN

⎤
⎥⎥⎥⎥⎦ , MT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 · · · M1Q

M21 M22 M23 · · · M2Q

M31 M32 M33 · · · M3Q

...
...

...
. . .

...

MN1 MN2 MN1 · · · MNQ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

U =

⎡
⎢⎢⎢⎢⎣

U1

U2

U3

· · ·
UQ

⎤
⎥⎥⎥⎥⎦ , (9)

where Bz represents a column vector of magnetic field values
along the Z-axis of all the N space field points. MT is a
matrix which is equal to N∗Q Miq . All elements in MT can be
determined according to expression (6). The column vector
U denotes the unknown coefficients of current density whose
total number is Q.

2.3. Current density solution

In order to optimize the inductance and resistance of the
gradient coil, the stored magnetic energy and dissipated power
are taken into account in the proposed objective function.

2.3.1. Stored magnetic energy. The stored magnetic energy
can be evaluated by the following equation:

E = 1

2

∫
V

�A · �J dv, (10)

where �A is the magnetic potential vector, �J is the current
density vector and V is the distributed volume of the current
density. For the biplanar gradient coil system, the above
integration is calculated approximately on the planes at
Z = ±a. Because of the symmetry between the top and
bottom planes, the total stored magnetic energy of the coil is
twice that on the top plane. So equation (10) can be written as

E = 2E+ =
∫∫

S

(Jx(x, y)Ax(x, y, a)

+ Jy(x, y)Ay(x, y, a)) dx dy, (11)

in which⎧⎪⎪⎨
⎪⎪⎩

Ax(x, y, a) = u0

4π

∫∫
S

(
Jx(x

′, y ′)
Ra+

+
Jx(x

′, y ′)
Ra−

)
dx ′ dy ′

Ay(x, y, a) = u0

4π

∫∫
S

(
Jy(x

′, y ′)
Ra+

+
Jy(x

′, y ′)
Ra−

)
dx ′ dy ′

(12)

and {
Ra+ =

√
(x − x ′)2 + (y − y ′)2

Ra− =
√

(x − x ′)2 + (y − y ′)2 + 4a2
, (13)

⎧⎪⎪⎨
⎪⎪⎩

Jx(x, y) = Jρa
cos ϕa − Jϕa

sin ϕa

Jy(x, y) = Jρa
sin ϕa + Jϕa

cos ϕa

Jx(x
′, y ′) = Jρb

cos ϕb − Jϕb
sin ϕb

Jy(x
′, y ′) = Jρb

sin ϕb + Jϕb
cos ϕb.

(14)

3
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S is the distributed area of the current density on the plane. By
employing the expression of the current density (2), the stored
magnetic energy in terms of the unknown coefficients can be
represented in polar coordinates by

E = 1

2

Q∑
qa=1

Q∑
qb=1

Uqa
Wqaqb

Uqb
= 1

2
UT WU, (15)

where

Wqaqb
=

∫ ρm

ρ0

∫ 2π

0
(sin(βa) − qacρa cos(βa)) sin(ϕa) cos(ϕa)

×
[

μ0

2π

∫ ρm

ρ0

∫ 2π

0

(sin(βb) − qbcρb cos(βb)) sin(ϕb) cos(ϕb)

R1

× dρb dϕb

+
μ0

2π

∫ ρm

ρ0

∫ 2π

0

(sin(βb) − qbcρb cos(βb)) sin(ϕb) cos(ϕb)

R2

× dρb dϕb

]
dρa dϕa

+
∫ ρm

ρ0

∫ 2π

0
(sin(βa) sin2(ϕa) + qacρa cos(βa) cos2(ϕa))

×
[

μ0

2π

∫ ρm

ρ0

∫ 2π

0

sin(βb) sin2(ϕb) + qbcρb cos(βb) cos2(ϕb)

R1

× dρb dϕb

+
μ0

2π

∫ ρm

ρ0

∫ 2π

0

sin(βb) sin2(ϕb) + qbcρb cos(βb) cos2(ϕb)

R2

× dρb dϕb] dρa dϕa, (16)

in which{
R1 =

√
(ρa cos ϕa − ρb cos ϕb)2 + (ρa sin ϕa − ρb sin ϕb)2

R2 =
√

(ρa cos ϕa − ρb cos ϕb)2 + (ρa sin ϕa − ρb sin ϕb)2 + 4a2,

(17){
βa = qac(ρa − ρ0)

βb = qbc(ρb − ρ0).
(18)

U denotes the column vector of the unknown coefficients of
the current density expression (2) and W represents a squared
matrix with the element Wqaqb

determined by equation (16).

2.3.2. Dissipated power. Because of the symmetry between
the top and bottom planes, the total dissipated power of the
coil is twice that of the top plane. Therefore, the dissipated
power on the two planes of the gradient coil can be evaluated
by [17]

P = 2P+ = 2δ

t

∫∫
S

((Jx(x, y))2 + (Jy(x, y))2) dx dy, (19)

where {
Jx(x, y) = Jρ cos ϕ − Jϕ sin ϕ

Jy(x, y) = Jρ sin ϕ + Jϕ cos ϕ,
(20)

where δ and t are the resistivity and thickness of the material
used in the gradient coil, and S is the distributed area of the
current density on the plane.

Similar to the deduction from (11) to (15), the dissipated
power in terms of the expression of the current density (2) with

the unknown coefficients can be written in polar coordinates
as follows:

P = 1

2

Q∑
qa=1

Q∑
qb=1

Uqa
Gqaqb

Uqb
= 1

2
UT GU (21)

and

Gqaqb
= 4δ

t

∫ ρm

ρ0

∫ 2π

0

{
1

ρ
sin[qac(ρ − ρ0)] sin(ϕ)

× 1

ρ
sin[qbc(ρ − ρ0)] sin(ϕ)

+ qac cos[qac(ρ − ρ0)] cos(ϕ)

× qbc cos[qbc(ρ − ρ0)] cos(ϕ)

}
ρ dρ dϕ. (22)

U symbolizes the column vector of the unknown coefficients
in current density expression (2) and W represents the matrix
with the element Gqaqb

determined by equation (22).

2.3.3. Matrix solution. Solving the coefficients of the current
density is a classical problem by constructing an objective
function F with respect to the total square errors of the
Z-axis component of the magnetic field at all target-field
points. Two penalty items associated with the stored
magnetic energy and the dissipated power, and weighted
by corresponding undetermined penalty factors (λ1, λ2), are
introduced into the objective function [10, 11]:

F =
N∑

j=1

(Bz,j − Bzdes,j )
2 + λ1E + λ2P, (23)

where Bz,j represents the Z-axis component of the magnetic
field at the (j th) target-field point obtained by expression (5).
Bzdes,j stands for the Z-axis component of the magnetic field
at the (j th) target-field point which is set to meet the specific
gradient strength requirement in the VOI.

The objective function can then be rewriten in a simple
matrix form as follows:

F = (MT U − Bzdes)
T (MT U − Bzdes)

+ λ1
1
2UT WU + λ2

1
2UT GU, (24)

where the j th element of column vector Bzdes is Bzdes,j .
It must be noted that the undetermined penalty factors

(λ1, λ2) are chosen based on the following criteria: (1) the
matrix problem above is well-behaved; (2) the error between
the resulting Z-axis component of the magnetic field and the
specified Z-axis component of the target magnetic field is
within acceptable limits; (3) the stored magnetic energy is low
and the dissipated power is appropriate to meet the requirement
of the system; (4) the resulting current density distribution is
readily implemented into the winding lines on the plane.

In order to minimize F, we must value it at zero with
respect to the unknown coefficients of the current density.
We can then obtain the optimized current density distribution
determined by the estimated U vector. U can be expressed as

U = (2MMT + λ1W + λ2G)−1(2MBzdes). (25)

4
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Figure 2. A schematic diagram of a typical permanent-magnet MRI
system.

2.4. Stream function

The stream function method [18] is employed to generate
the expected winding pattern of the optimized gradient coil.
As the current density is required to satisfy the continuity
equation (1), the stream function ψ in polar coordinates must
satisfy the following terms [16]:⎧⎪⎪⎨

⎪⎪⎩
∂ψ

∂ρ
= −Jϕ

∂ψ

∂ϕ
= ρJρ.

(26)

Then we have ψ(ρ, ϕ) = −∑Q
q=1 Uq sin[qc(ρ − ρ0)] cos ϕ.

Finally, a series of scattered contours of the stream
function are used to produce the current winding pattern on the
plane of the coil. If the total number of the expected winding
lines on the half-circular plane is set as Nc, then we obtain

ψ = ψmin + (i − 0.5)I i = 1, 2, . . . , Nc (27)

in which I = (ψmax−ψmin)

Nc
. ψmin denotes the minimal value of

the stream function and ψmax represents the maximal value on
the corresponding half-circular plane. I equals the current on
each winding line.

3. Implementation

In this work, a biplanar gradient coil in a typical C-arm
permanent-magnet MRI system is illustrated in figure 2. The
static main magnetic field B0 is along the z-direction in
Cartesian coordinates and the VOI is a sphere located in the
center of the space between the two planes with a diameter
of 150 mm. The distance between the two planes of the X-
gradient coil is 240 mm and the width of the central space
is 220 mm. The thickness of each X-gradient coil plane is
2 mm. The maximum radius of the gradient coil is 250 mm
and the minimum radius is 10 mm. In particular, a magnetic
steel plane used to generate the static main magnetic field and a
silicon steel plane used to prevent eddy currents from forming

Figure 3. The winding pattern on one plane of the gradient coil.

in the permanent-magnet MRI system are both added to this
system.

Because of the symmetry of the biplanar gradient coil
system, the magnetic field distribution of all the VOI can be
transformed from the first quadrant (x > 0, y > 0, z > 0) of the
region in Cartesian coordinates. As a result, only the specified
target-field points in the first quadrant of the VOI are needed.
In this design, we established N = 48 target-field points in the
first quadrant of VOI. Starting from the original point of the
Cartesian coordinate system and along the X-axis, we obtained
12 reference planes perpendicular to the X-axis with a spacing
of 6.25 mm between the planes. In each reference plane, on
the circle created by intercepting the surface of the VOI sphere
with the reference plane, there are four reference points. These
points sit at 0◦, 30◦, 60◦ and 90◦ with respect to the Y-axis. The
Z-axis components of the magnetic field of all the specified
target-field points are obtained by equation (28) to generate a
gradient strength of 25 mT m−1:

Bzdes,i = Gxxi i = 1, 2, . . . , N (28)

In (28), Bzdes,i represents the specified Z-axis component of
the magnetic field at the target-field point whose X coordinate
is xi and Gx = 25 mT m−1. The resistivity of this coil’s
material is 1.75 × 10−8 
 m while the material thickness is
2 mm. For practical applications, the inductance is usually set
to be smaller than 1 mH and the resistance is in the order of tens
of milli-ohms [10]. Finally we set Q = 4 in the calculation.

4. Results

By selecting Nc = 12, the optimized winding pattern on one
plane of the coil was obtained and is given in figure 3.

In order to verify the validity of the proposed approach, we
utilized the Biot–Savart law to calculate the gradient magnetic
field generated by the resulting current density on the designed
coil [16]. Firstly, we set 25 test lines parallel to the X-axis in
the first quadrant (x > 0, y > 0, z > 0) of VOI in the following
steps: (1) we adopted zi = (i − 1) × 15 mm (i = 1, 2, 3, 4,
5) as the corresponding Z coordinate to obtain five test planes

5
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Figure 4. The fitted line of the mean Z-axis component of the
magnetic field.

perpendicular to the Z-axis in the first quadrant of VOI; (2)

we obtained yij = [(j − 1) ×
√

(752 − z2
i )]/5 mm (j = 1,

2, 3, 4, 5) on each test plane obtained in step (1) with zi as
the corresponding Z coordinate of each test plane. We took zi

and yij as the corresponding Z and Y coordinates to altogether
obtain 25 test lines parallel to the X-axis. Subsequently, for
each of the 25 test lines, we placed the test points 1 mm
apart starting from the Y-axis. In this way, we obtained all
the test points in the first quadrant (x > 0, y > 0, z > 0)
of VOI. Then we acquired the mean Z-axis component of the
magnetic field on the test points with the same X coordinate and
constructed a fitted line based on the mean Z-axis component
of the magnetic field and the corresponding X coordinate. The
fitted line is shown in figure 4. The mean gradient strength is
obtained by the slope of the fitted line.

The nonlinearity of all test points, except the points whose
corresponding X coordinates are equal to 0, is represented as
follows:

ε =
∣∣∣∣BZ(cal,test−point) − BZ(set,test−point)

BZ(set,test−point)

∣∣∣∣ × 100%, (29)

in which BZ(set,test−point) = xtest−point × 25 mT is the specified
Z-axis component of the target magnetic field at the test point
and xtest−point is the corresponding X coordinate of the test
point. BZ(cal,test−point) is the Z-axis component of the magnetic
field at the same test point calculated using the Biot–Savart
law.

The results show that the highest nonlinearity of the
designed gradient coil at all test points, except those where
x = 0, is 5.408%; meanwhile, the mean nonlinearity of
all test points, except those where x = 0, is 0.883%, and
the corresponding standard deviation is 0.786%. The mean
gradient strength is 24.523 mT m−1 under a current of
8.956 A with 12 winding lines on the half-circular plane,
and the efficiency of the coil is 2.738 mT m−1 A−1. The
stored magnetic energy and dissipated power of the coil
are 0.039 J and 2.454 W, the corresponding inductance is
0.482 mH, and the resistance is 15.298 m
 on one plane

of the coil. It is clearly demonstrated that the inductance is
low and the resistance is small. In addition, it is shown that
both the inductance and resistance well satisfy the specific
requirements of the permanent-magnet MRI system. It should
also be noted that the coil efficiency is high and the pattern
of the winding lines of the coil is smooth and acceptable in
engineering manufacturing.

Compared with other Tikhonov regularization methods
[12–14], the proposed approach can easily guarantee that the
designed gradient coil with high linearity, low inductance
and small resistance can meet the specific requirements of
a permanent-magnet MRI system by adjusting the two penalty
factors in the objective function.

5. Conclusion

In this paper, an optimized target-field approach for a
transverse biplanar gradient coil is proposed. This method is
formulated to optimize the design of gradient coils by taking
into account not only the gradient magnetic field at target-
field points in VOI, but also the stored magnetic energy and
the dissipated power in practical applications. The results
indicate that the proposed approach could achieve an optimized
transverse gradient coil with high linearity, low inductance
and small resistance, which can well meet the requirements
of permanent-magnet MRI systems. This new design method
can also be applied in the design and optimization of similar
planar gradient and shim coils.
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