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Differing noise variance across study populations has been shown to cause artifactual group differences in
functional connectivity measures. In this study, we investigate the use of short echo time functional MRI
data to correct for these noise sources in blood oxygenation level dependent (BOLD)-weighted time series.
A dual‐echo sequence was used to simultaneously acquire data at both a short (TE=3.3 ms) and a
BOLD-weighted (TE=35 ms) echo time. This approach is effectively “free,” using dead-time in the pulse se-
quence to collect an additional echo without affecting overall scan time or temporal resolution. The proposed
correction method uses voxelwise regression of the short TE data from the BOLD-weighted data to remove
noise variance. In addition to a typical resting state scan, non-compliant behavior associated with patient
groups was simulated via increased head motion or physiological fluctuations in 10 subjects. Short TE data
showed significant correlations with the traditional motion-related and physiological noise regressors used
in current connectivity analyses. Following traditional preprocessing, the extent of significant additional var-
iance explained by the short TE data regressors was significantly correlated with the average head motion
across the scan in the resting data (r2=0.93, pb0.0001). The reduction in data variance following the inclu-
sion of short TE regressors was also correlated with scan head motion (r2=0.48, p=0.027). Task-related
data were used to demonstrate the effects of the short TE correction on BOLD activation time series with
known temporal structure; the size and strength of the activation were significantly decreased, but it is not
clear whether this reflects BOLD contamination in the short TE data or correlated changes in blood volume.
Finally, functional connectivity maps of the default mode network were constructed using a seed correlation
approach. The effects of short TE correction and low-pass filtering on the resulting correlations maps were
compared. Results suggest that short TE correction more accurately differentiates artifactual correlations
from the correlations of interest in conditions of amplified noise.

© 2012 Elsevier Inc. Open access under CC BY license.
Introduction

The utility of fMRI in investigating the workings of the brain is deter-
mined by our ability to capture and isolate appropriate signal contrast.
Blood oxygenation level dependent (BOLD) contrast is the dominant
method for identifying activated areas of the brain (Bandettini et al.,
1992; Kwonget al., 1992;Ogawaet al., 1990). These signal changes reflect
a complex coupling between local blood volume, blood flow and concen-
trations of deoxygenated hemoglobin, all of which are altered by neural
activity (for a review, see Buxton, 2012). Typical fMRI experiments use
fast imaging methods, such as gradient‐echo echo-planar imaging (EPI)
to obtain data with high temporal resolution and large spatial coverage,
ht), MurphyK2@cardiff.ac.uk

license.
with an echo time (TE) optimized for BOLD contrast. In addition to
mapping task-related activity, these techniques have been applied to
mapping intrinsic or “resting state” BOLD fluctuations that occur in the
absence of a task (Biswal et al., 1995; Biswal, 2012). These fluctuations
have demonstrated key networks in the brain whose connection
strengths may be altered during aging and disease (Broyd et al., 2009).

Functional connectivity networks are typically mapped using seed
correlation techniques; in particular, the default-mode network
(Greicius et al., 2003) is readily extracted using a seed region in the
posterior cingulate cortex. Using this approach it has been shown
that the connectivity within this network may be altered in pathology
(see Broyd et al., 2009; Snyder and Raichle, 2012). However, recent
publications have called into question studies comparing connectivity
across groups, showing previous conclusions may be erroneous when
motion artifacts are more accurately dealt with in data processing
(Power et al., 2012; VanDijk et al., 2012). This is particularly problematic
when comparing children or patient populations with young healthy
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adults as these groups are likely to be more uncomfortable in the MR
environment and thus may move differently. Also, these studies suggest
that subtle motion artifacts, rather than large head movements alone,
can confound connectivity analyses.

Unfortunately, isolating the true signal changes of interest is an
ongoing challenge. Over the years, much focus has been placed on re-
moving various sources of noise from BOLD data. In addition to ther-
mal noise, scanner drift, distortions and signal drop-out related to
field inhomogeneities, the volunteer also contributes several noise
sources to the data. These noise sources not only result from gross
motion artifacts but can also be related to physiological rhythms
such as cardiac and respiration cycles. For example, the act of respi-
ration causes multiple types of noise: breathing may cause the
subject's head to move slightly during the scan, thereby altering
spin history in a spatially dependent manner (Friston et al., 1996),
the movement of the subject's chest can alter the magnetic field in
a time-dependent manner (Brosch et al., 2002), and fluctuations in
breathing can alter arterial blood gas tensions and thus cerebral
blood volume and blood flow (Birn et al., 2006; Wise et al., 2004).
Many noise sources can be addressed during the acquisition stage:
padding and restraints can be used to limit head motion, real-time
shimming can be incorporated to reduce the effects of chest motion
on the main magnetic field (van Gelderen et al., 2007), and
end-tidal forcing systems can be incorporated to maintain stable
breathing rates and arterial blood gas tensions (Wise et al., 2007). Al-
ternatively, several analysis steps have been developed to measure,
model, and retrospectively remove the effects of various noise
sources from the BOLD-weighted data set (e.g., motion correction/
modeling, RETROICOR and RVHRcor; Chang et al., 2009; Glover et
al., 2000; Jenkinson et al., 2002).

Another approach is to use data acquisition strategies that differ-
entiate BOLD signal changes of interest from nuisance sources of sig-
nal variance. Using multiple echo acquisitions, changes in the local
relaxation rate R2* (which is the mechanism underlying the BOLD
contrast) can be isolated. Beginning in the late 1990s, several groups
began to explore the use of this technique in differentiating changes
in initial signal intensity (I0 or S0) from changes in relaxation rates,
in particular R2* (Barth et al., 1999; Posse et al., 1999; Speck and
Hennig, 1998). A review of the resulting rush of developments in
multi-echo techniques is presented by Posse (2012). In the early
studies, the short TE data were identified as possible noise correction
tools, being able to distinguish inflow effects from BOLD activation
(Glover et al., 1996; Speck and Hennig, 1998). The effects of gross
head motion on functional fMRI data have also been addressed by
using short TE data to de-noise BOLD-weighted data confounded by
large motion artifacts (Buur et al., 2009).

Physiological noise, typically removed by using noise regressors
based on externally measured data (e.g., pulse, respiration, etc.
(Birn et al., 2006; Chang and Glover, 2009; Glover et al., 2000)) may
also be represented in short TE data due to the related pulsations or
fluctuations in blood volume and inflowing spins with altered satura-
tion. As with motion, it is plausible that the short TE data may contain
additional information regarding the local physiological variations,
beyond that explained in the empirically derived models.

Improved ability to remove physiological and motion artifacts
from BOLD-weighted data may help address the challenges faced
when comparing distinct populations. This is extremely important
when interpreting “functional connectivity” differences between
subject groups that are likely to exhibit different noise characteris-
tics. Altered noise structure leads to changes in correlation between
region-specific BOLD time series (Lund et al., 2006). Such changes
are normally attributed to altered “connectivity,” suggesting that
the neuronal activity underpinning the BOLD signal has changed.
As both the Van Dijk and Power papers have shown, noise structure
differences between groups caused by something as simple as
the amount of movement during the scan can drastically alter the
interpretation of a study and lead to erroneous results. Similar prob-
lems may be caused by physiological differences between groups
such as systematic changes in respiration rate (e.g. one group may
be more nervous than another) (Birn et al., 2008b).

In this study, we investigate the use of simultaneously collected
short echo time data to correct for spurious noise sources in BOLD‐
weighted time series. The factors that contribute to fMRI signal variance
at short TE are determined, focusing onmotion and physiological noise,
which are two confounds commonly seen in patient studies. Task-
related data are used to demonstrate the effects of short TE correction
when the BOLD neural activity signature is known. Gross motion and
physiological artifacts are introduced into “resting state” data to simu-
late a non-compliant patient population. The short TE data are used to
correct for these confounds in the BOLD-weighted data, and the effects
on the intrinsic fluctuation correlation patterns in individual subject
and group data sets are explored.

Methods

Data acquisition

Ten subjects were scanned using a 3‐T GE HDx scanner (Milwaukee,
WI, USA) equipped with an 8-channel receive head coil. Data were
acquired using a dual-echo gradient echo spiral readout sequence
(TR=2000 ms; 64 spirals; FOV=22 cm; 18 slices; resolution=
3.4×3.4×5.0 mm3). The first echo time (TE1), also referred to as the
“short TE,” was set to be 3.3 ms in the majority of scans (sometimes
set to 10 ms, see below). The second echo time (TE2) was always de-
fined as 35 ms to provide typical BOLD-weighting.

Subjects were presentedwith cues and stimuli using a rear projector
and screen viewed through a mirror on the head coil. Six functional
dual-echo scans were acquired.

In the Rest scan, the subject was asked to remain at rest with their
eyes open while a steady fixation cross was displayed in the center of
the screen. In the Rest+Motion scan, the fixation cross briefly changed
color at approximately 10 s (jittered) intervals, which cued the subject
to nod their head in a randomdirection of their choosing. In the Breathing
scan, the subject was prompted to perform 3 Breath Hold (BH) and 3
Cued Deep Breathing (CDB) respiratory challenges via text-based
instructions projected onto the screen (as described in Bright et al.,
2011). In the Visual3.3 scan, a TE1 of 3.3 mswas used and a block design
flashing checkerboard stimulus was presented (8 Hz, 30 s blocks, full
contrast). In eight subjects, this scan was repeated with TE1=10 ms;
this scan is referred to as Visual10. In all subjects, the Visual3.3 scan
was also repeated with the additional cued head motion as described
above, and this scan is referred to as Visual3.3+Motion. All scans
contained 165 repetitions (5.5 min), except the Breathing scan (244
repetitions, 8 min 8 s).

A whole-brain low-resolution image was acquired using the same
dual-echo spiral sequence, in addition to a whole-brain high-resolution
T1-weighted structural image (resolution=1×1×1 mm3), for the pur-
poses of image registration.

Subjects were equipped with multiple physiological monitoring
devices: respiratory bellows, a pulse oximeter, and a nasal cannula
connected to CO2 and O2 gas analyzers (AEI Technologies, PA, USA)
were used to continuously record physiological data during all scans.

Data preprocessing

Data were preprocessed in two ways: traditional preprocessing
and traditional preprocessing with additional TE1 data regressors.

Traditional data preprocessing
Although there is not yet a standard method for preprocessing rest-

ing state, activation, and respiratory challenge fMRI data, themajority of
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correction factorswidely accepted in thefield (Birn, 2012)were applied
to the BOLD-weighted TE2 data in this study.

First, we performedmotion correction on the TE2 data (MCFLIRT, FSL,
Oxford, UK; Jenkinson et al., 2002), and the resulting transformations
were applied to the corresponding TE1 data. This has been shown to be
an appropriate method for correcting dual-echo data sets to maintain
co-registration (Jonsson et al., 1999). The first three volumes were re-
moved from each scan, non-brainmatter was removed (BET, FSL, Oxford,
UK), and quadratic detrending was performed (AFNI, NIH, Bethesda, MD,
USA). Next, 25 noise regressors were removed from the TE2 data:

- Six motion transformation time series (x-, y-, z-translations, pitch,
roll, yaw) that were obtained during the motion correction analy-
sis,

- The derivatives of each of the six motion transformation time se-
ries,

- Eight RETROICOR regressors (four respiratory and four cardiac)
that were calculated from the respiratory bellows and pulse oxim-
eter data (Glover et al., 2000),

- End-tidal oxygen (PETO2) and end-tidal carbon dioxide (PETCO2)
values that were automatically extracted from the O2 and CO2

traces obtained from the gas analyzers and interpolated to the ac-
quisition timepoints. These traces were convolved with a standard
hemodynamic response function (Murphy et al., 2011),

- The respiration volume per time (RVT) regressor was calculated
from the respiratory bellows data and convolved with a respirato-
ry response function (RRF) (Birn et al., 2008a),

- The cardiac rate was calculated from the pulse oximeter data and
convolved with the cardiac response function (Chang et al., 2009;
Shmueli et al., 2007),

- A CSF regressor, created by averaging the voxel time series within
an eroded mask of the lateral ventricles.

Thus noise regressors representing gross head motion, physiology-
related motion (e.g., pulsation), and changes in blood volume/flow
related to arterial gas tensions were regressed out of the TE2 data. The
global signal was not regressed from the data due to possible confounds
this procedure can introduce (Murphy et al., 2009).

TE1 regression
Working under the hypothesis that the short TE data contains ad-

ditional information regarding noise sources, we incorporated the
TE1 data as voxelwise noise regressors in addition to all 25 regressors
used during the traditional preprocessing pipeline described above
(AFNI, NIH, Bethesda, MD, USA).

Data analysis

Characterization of short echo variance
In order to compare the noise information contained in the short TE

data and the externally measured/calculated noise regressors, correla-
tion coefficients between each of the 25 noise regressors described
above and the TE1 data of each scan were calculated.

The average scan motion was calculated as the mean frame-wise
displacement (FWD) using the method described by Power et al.
(2012). The results of the motion correction (FLIRT, FSL) were used
to measure the relative change in the three translation (x, y, and z)
and rotation parameters (pitch, roll, and yaw) between each scan vol-
ume n and the preceding volume n−1. The rotational displacements
were converted from degrees to millimeters by calculating the corre-
sponding displacement on the surface of a sphere with a 50-mm radi-
us (approximately the mean distance from the cerebral cortex to the
center of the head; notated as a, b, and c). For each scan volume n, the
FWD was defined as

FWD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xn−xn−1ð Þ2 þ yn−yn−1ð Þ2 þ zn−zn−1ð Þ2 þ an−an−1ð Þ2 þ bn−bn−1ð Þ2 þ cn−cn−1ð Þ2

q

and this parameter was averaged across the scan to provide an esti-
mate of total motion.

Voxels in which the short TE regressors explained significant addi-
tional variance were identified using an F-test; the number of these
voxels were calculated and compared with the mean FWD of the scan.

Data variancewas also quantified using theDVARSmetric which has
been related to headmotion (described in Power et al., 2012), following
traditional preprocessing and following additional short TE correction.
DVARS is calculated as the root-mean-square of the derivatives of the
timecourses of all brain voxels for each volume, thus providing a mea-
sure of the change in intensity from one volume to the next. The corre-
lation between the DVARS and FWD traces was calculated for all data
sets and processing methods. Finally. the percentage change in average
scan DVARS associated with the addition of short TE regressors was
compared to the average scan FWD to determine whether the variance
removed by short TE correction relates to head motion.

Short TE data correction in task-related BOLD data
As we are not able to acquire data at TE=0 ms, it is possible that

there is also some BOLD-weighting in the signal variance of the TE1
data set. To test the influence of this BOLD contamination on the
use of TE1 data as a noise correction tool, the TE2 activation maps of
the Visual3.3 and Visual10 and Visual3.3+Motion data sets after tradi-
tional preprocessing and after the extended TE1 regression prepro-
cessing were obtained and compared using AFNI. An ROI of the
occipital lobe defined in MNI space (MNI152, nonlinearly derived,
McConnell Brain Imaging Centre, Montreal Neurological Institute,
McGill University, Montreal, Canada; Mazziotta et al., 2001) was
transformed into the functional data space and the number of signif-
icantly activated voxels in this ROI (pb0.05, Bonferroni corrected)
and the mean t-statistic of these voxels were compared between
the different TE1 values and preprocessing pipelines.

Short TE data correction in “resting state” seed correlation analysis
As discussed previously, seed correlation maps are one possible and

important application for improved noise correctionmethods. Seed cor-
relation maps of the default mode network (DMN) of individual sub-
jects and the group average correlation map were calculated for the
Rest, Rest+Motion, and Breathing data sets to determine the benefits
of the TE1 denoising in the presence (or absence) of large motion arti-
facts or physiological variance. The functional data were smoothed
with a Gaussian kernel (FWHM=5 mm). A seed region in the posterior
cingulate cortex (PCC) was defined by drawing a 12-mm‐diameter
sphere centered around the previously published Talairach coordinate
[5L, 49P, 40S] (Fox et al., 2005; Murphy et al., 2009; Shulman et al.,
1997). The time series of voxels within the seed region were averaged
together, and the correlation between this seed time series and every
voxel in the brain was calculated.

The functional data sets and correlation maps were aligned to the
appropriate structural image, which in turn was aligned to MNI space
(FLIRT, FSL, Oxford, UK; Jenkinson et al., 2002), transformed into
z-scores using Fisher's r-z transform, and the individual subject as
well as group average correlation maps were thresholded for signifi-
cance (corrected cluster significance pb0.005).

The Van Dijk et al. (2012) study of resting state correlations in 1000
subjects showed that, althoughmotion was not responsible for the ma-
jority of their observed correlations, motion was responsible for de-
creasing long-distance correlation and increasing local correlations.
Thus, we also assessed the effect of TE1 regression on local and
long-distance correlation in the Rest, Rest+Motion, and Breathing
data sets. A long-distance ROI was defined as the significant cluster in
the medial-frontal cortex of the group correlation map of the Rest
data set following traditional preprocessing. The PCC ROI was extended
to a sphere with a diameter of 36 mm to create a “local” ROI. The mean
z(r) statistic was calculated in each data set of each subject in the local
and long-distance ROIs before and after TE1 regression.
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Finally, to better understand our proposed short TE analysis meth-
od in the context of existing methodology, we compared the changes
in z(r) associated with short TE correction with the changes related to
low-pass filtering of the data. Following the traditional preprocessing
steps, an additional low‐pass filter (b0.1 Hz) was applied with the
aim of removing high-frequency artifactual noise, and PCC seed corre-
lation analysis was performed. Significant differences in the z(r) maps
following low-pass filtering or following short TE correction were de-
termined (paired t-test, corrected cluster threshold pb0.05) and
compared in the Rest, Rest+Motion, and Breathing data sets.
Results

Noise sources contributing to short echo variance

Significant correlations were observed between voxelwise
timecourses of the TE1 data and the traditional noise regressors, al-
though the strength and extent of correlations varied greatly across
subjects and scans. A full list of the number of significantly correlat-
ed voxels for each subject's Rest, Rest+Motion, and Breathing scans
and all noise regressors is provided in the supplementary material
(Table S1). Relative to the Rest scan results, the Breathing data set
showed significantly more voxels correlated with the RVT regres-
sors, while the Rest+Motion data set showed fewer voxels correlat-
ed with certain RETROICOR regressors (pb0.05, paired t-test,
corrected for multiple comparisons). This shows thatmore physiolog-
ical noise is present in the short TE data of the Breathing scan, related to
the respiratory challenges, but less physiological noise is observed in
the Rest+Motion data, where gross head movement artifacts may
overwhelm more subtle pulsatory motion. There is no significant in-
crease in the representation of the individual motion regressors in the
short TE data of the Rest+Motion scan relative to the Rest scan across
subjects, which likely reflects the inter-subject variation in headmove-
ments during the motion stimulus. The total scan motion in the Rest,
Rest+Motion, and Breathing data for all subjects is presented in
Table 1.

To illustrate typical spatial distributions of these correlations,
maps of selected subjects are provided in Figs. 1 and 2. The subjects
with the median and maximum total scan motion in the Rest and
Rest+Motion data sets were identified (Table 1). Fig. 1 shows voxels
where the short TE data were significantly correlated with the motion
regressor that exhibits the greatest number of correlated voxels in
that subject's data (pb0.05, Bonferroni corrected). This demonstrates
that the short TE data reflect motion artifacts even in true “resting
state” data without additional cued head movements. Fig. 2 shows bi-
nary maps of voxels significantly correlated (or anticorrelated) with
Table 1
Estimates of head motion in the Rest, Rest+Motion, and Breathing data sets. Motion
was calculated as the scan average of the framewise displacement (mm).

Subject Rest Rest+Motion Breathing

1 0.051 0.277 0.054
2 0.064 0.071 0.048
3 0.119 0.266 0.057
4 0.052 0.138 0.073
5 0.056 0.206 0.064
6 0.068 0.354 0.067
7 0.090 0.690 0.048
8 0.053 0.224 0.063
9 0.061 0.195 0.057
10 0.039 1.431 0.051
Average 0.065 0.385* 0.058

There was significantly more movement in the Rest+Motion data relative to the Rest
data (*p=0.035, paired t‐test). Subjects showing the median and maximum head
motion in the Rest (subjects 5 and 3) and Rest+Motion (subjects 8 and 10) data are
included in Fig. 1.
any of the four cardiac or four respiratory RETROICOR regressors
and the correlation maps associated with the RVT regressors; subjects
were selected as those with the median and maximum number of
correlated voxels, summed across the four cardiac, four respiratory
regressors, or the single RVT regressor, respectively. These maps indi-
cate widespread correlations between the short TE data and multiple
physiological noise sources.

Additional BOLD data variance explained by short TE regressors

A voxelwise F-test identified voxels in which the inclusion of the
short TE regressor explained significant additional variance in the
BOLD-weighted data set beyond that which could be explained using
Fig. 1. Significant correlation of short TE data (TE=3.3 ms) and selected motion regres-
sors (thresholded at pb0.05, Bonferroni corrected). Correlation maps are presented for
subjects exhibiting the median (top rows) and maximum (bottom rows) total scan mo-
tion in the Rest and Rest+Motion data sets (maps illustrate significant correlations
with the motion regressor exhibiting the greatest number of correlated voxels in that
subject's data (as determined using the results provided in the supplementary material).
Not shown are the correlationmaps of subjects exhibiting theminimumnumber of corre-
lated voxels, as therewere subjectswith zero significant correlationswith at least onemo-
tion regressor in both data sets.



Fig. 2. Significant correlation of short TE data (TE=3.3 ms) and physiological regres-
sors (pb0.05, Bonferroni corrected). Binary maps of voxels where the short TE time se-
ries were significantly correlated (or anticorrelated) with any of the four cardiac or
four respiratory RETROICOR regressors are shown, as well as thresholded correlation
maps of the short TE data and the RVT regressor. The subjects presented exhibited
the median (top rows) andmaximum (bottom rows) numbers of significantly correlat-
ed voxels, as discussed in the supplementary material.

530 M.G. Bright, K. Murphy / NeuroImage 64 (2013) 526–537
the traditional noise regressors alone (pb0.05, Bonferroni corrected). In
the Rest, Rest+Motion and Breathing data sets, the short TE regressors
explained more variance than traditional preprocessing in 26.48%,
68.05% and 27.06% of brain voxels respectively (see Table 2). Across
the group, the number and themean F-statistic of these voxelswere sig-
nificantly greater in the Rest+Motion data set than in the Rest data set.
This demonstrates that with larger motion, more variance is explained
in significantly more voxels by the inclusion of short TE regressors. In
contrast, there was no significant difference in the number of voxels
or mean F-statistic in the Breathing and Rest data sets across the
group. This indicates that the short TE data do not capture additional
physiological variance beyond that explained by traditional preprocess-
ing. However, the short TE regressors explained additional variance in
approximately 26% of brain voxels in both of these data sets, presum-
ably related to motion confound removal.

In support of this hypothesis, the percentage of voxels in which the
short TE regressor explained significant additional variance was strongly
correlatedwith themean FWD in the Rest data set (r2=0.93, pb0.0001).
The Rest+Motion data followed the same trend as the Rest data, follow-
ing the removal of two outlier data sets (FWDmore than three standard
deviations from the mean): the combined data also exhibited strong cor-
relation (r2=0.82, p=0.0003). These results are illustrated in Fig. 3. This
again demonstrates thatwith greater amounts ofmotion, the short TE re-
gressors explain greater amounts of variance.

The correlation between the FWD and DVARS traces in the Rest data
set exhibited great inter-subject variability (correlation coefficients
ranging from −0.06 to 0.72 following traditional preprocessing). This
correlation was significantly reduced following the inclusion of short
TE correction (group average z(r) =0.32 to 0.30, p=0.02, paired
t-test), which indicates that data variance and head motion become
less correlated during this correction step. The average scan FWD and
the percentage change in average scan DVARS following the addition of
short TE correction were significantly correlated in the Rest data set
(r2=0.48, p=0.027) and in the combined Rest and Rest+Motion data,
excluding the same two outliers as above (r2=0.64, p=0.006). These re-
sults are displayed in Fig. 3, and providemore evidence that the data var-
iance removed by short TE correction is associated with the amount of
head motion in the data across difference scales of motion artifact.

Removing short echo variance from task-related BOLD data

Our ability to use the TE1 data to remove additional noise variance
from the simultaneously acquired TE2 data is directly challenged by
the presence of BOLD contamination in the TE1 data set. Table 3 de-
scribes the number of activated voxels in the occipital cortex and the
significance of the activation with and without the addition of short
TE data regressors in the Visual3.3 and Visual10 and Visual3.3+Motion
data sets in eight subjects (two subjects did not complete this scan
and were not available for a second session). When TE1=3.3 ms, in
the absence of cued head movements (Visual3.3 data), the short TE re-
gressors reduce the size of activation by 16.5% and the mean t-statistic
of activation by 15.2% (averaged across subjects). When TE1=10 ms,
this effect is exacerbated and activation is reduced by approximately
32-34%. In contrast, with increased head motion artifacts in the
Visual3.3+Motion data set, the strength and mean t-statistic of activa-
tion are increased by 23.2% and 41.9%, respectively. This indicates that,
although the short TE regression can increase significance of activations
when there are large amounts of motion, BOLD contamination or corre-
lated blood volume effects in the short TE data can also reduce the sta-
tistics. This effect is mitigated (but not fully resolved) when the TE is
reduced from 10 ms to the shorter 3.3 ms.

“Resting State” seed correlation analysis

Fig. 4 compares the seed correlation maps of the DMN in the Rest
and Rest+Motion data sets for one subject (unsmoothed correlation

image of Fig.�2


Table 2
Percentage of brain voxels in which the addition of short TE data regressors explains significant additional variance beyond that explained by traditional preprocessing (F-test,
pb0.05, Bonferroni corrected) and the mean F-statistic of these voxels in the Rest, Rest+Motion, and Breathing data sets of all 10 subjects.

Rest Rest+motion Breathing

Sub Sig voxels All voxels Percent Mean F-stat Sig voxels All voxels Percent Mean F-stat Sig voxels All voxels Percent Mean F-stat

1 7851 38,426 20.43 62.43 27,407 38,177 71.79 217.86 9880 38,318 25.78 67.93
2 9965 40,091 24.86 67.79 16,233 39945 40.64 105.97 9761 40,153 24.31 69.27
3 17059 41,631 40.98 97.77 34,027 41178 82.63 490.30 15,285 41,456 36.87 89.69
4 6970 32,637 21.36 57.67 21,933 33007 66.45 195.02 7943 33,528 23.69 59.32
5 11626 44,512 26.12 59.06 32196 44820 71.83 200.18 11,741 44,156 26.59 68.58
6 13265 42,651 31.10 70.46 30,012 42935 69.90 228.12 10,973 42,492 25.82 74.79
7 15810 46,319 34.13 71.47 36,445 45822 79.54 296.16 13,780 46,533 29.61 66.81
8 8901 38,711 22.99 62.54 30,427 38768 78.48 228.42 11,739 39,179 29.96 67.72
9 10647 45,016 23.65 58.12 27,659 45387 60.94 172.64 11,133 44,658 24.93 64.24
10 8977 46,756 19.20 61.28 26,946 46240 58.27 129.23 10,712 46,519 23.03 70.09
Mean 26.48 66.86 68.05* 226.39* 27.06 69.84

*The Rest+Motion data showed significantly larger percentages and higher statistics than the Rest data across the group (paired t‐test, pb0.05) while the Breathing data were not
significantly different. These results indicate the short TE data correction method is addressing motion artifacts, while physiological noise is already well modeled and removed
using the traditional preprocessing regressors (e.g., RETROICOR, RVT, cardiac rate, CO2, and O2).
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coefficients, thresholded at pb5×10−6). This subject represents our
“best case” example, and the correlation maps qualitatively demon-
strate the potential benefits of the short TE data correction technique
(the quantitative group results are presented later). In the Rest data,
the traditional preprocessing results in the expected DMN pattern,
and including the short TE data regression maintains the qualitative
structure of this network map. In contrast, seed correlation in the
Rest+Motion data set does not result in the expected DMN following
traditional preprocessing. Instead, the maps are dominated by the
gross head motion artifacts caused by the cued nodding task. Seed
Fig. 3. Top row: the percentage of brain voxels where short TE data regressors explain signifi
scan (r2=0.93, pb0.0001) in the Rest data set. This correlation continues when the head m
that the Rest+Motion data of two subjects were identified as outliers, with average scan h
excluded from the correlation analysis. These datapoints are identified as open squares. Bo
short TE data correction is strongly correlated with the average head motion across the sca
excluding the same two outliers as above (r2=0.64, p=0.006).
correlation mapping in the corresponding TE1 data demonstrates
the same artifacts, and the TE1 regression removes some of this vari-
ance from the BOLD-weighted TE2 data set, recovering much of the
underlying network.

The group average seed correlation maps for the Rest, Rest+Motion,
and Breathing data across the 10 subjects in our study are presented, in
MNI-space, in Fig. 5 (z(r) statistics; cluster threshold pb0.005).

Fig. 5 also presents the changes in local and long-distance correla-
tions after applying the TE1 data regressors in addition to traditional
preprocessing methods. The mean z(r) of “local” correlations within
cant additional variance is strongly correlated with the average head motion across the
otion is amplified (combined Rest and Rest+Motion data, r2=0.82, p=0.0003). Note
ead motion more than three standard deviations from the combined group mean, and
ttom row: the percentage reduction in data variance (average scan DVARS) following
n in the Rest (r2=0.48, p=0.027) and in the combined Rest and Rest+Motion data,

image of Fig.�3


Table 3
The Visual3.3, Visual10, and Visual3.3+Motion data were analyzed to obtain visual activation maps (pb0.05, Bonferroni corrected) following traditional preprocessing and following
the addition of short TE data regression.

Subject TE1=3.3 ms TE1=10 ms TE1=3.3 ms (motion)

Traditional
preprocessing

TE1
regression

% Change Traditional
preprocessing

TE1
regression

% Change Traditional
preprocessing

TE1
regression

% Change

No. of activated voxels
1 1103 882 −20.0% 988 566 −42.7% 623 1103 77.0%
2 1187 1002 −15.6% 1366 900 −34.1% 1738 1716 −1.3%
4 1181 1051 −11.0% 987 731 −25.9% 929 1103 18.7%
5 1031 851 −17.5% 1970 1293 −34.4% 1116 1561 39.9%
6 1568 1354 −13.6% 2108 1563 −25.9% 664 1332 100.6%
8 1535 1167 −24.0% 2646 1813 −31.5% 1120 1413 26.2%
9 1697 1360 −19.9% 2288 1629 −28.8% 1053 1506 43.0%
10 2439 2193 −10.1% 2228 1438 −35.5% 523 684 30.8%
Average 1468 1233 −16.5% 1823 1242 −32.3%⁎ 971 1302 41.9%⁎

Mean t-statistic
1 15.2 13.5 −11.0% 16.4 11.8 −28.1% 14.9 18.1 21.5%
2 16.2 14.4 −11.1% 21.9 14.9 −31.9% 24.8 22.1 −10.7%
4 25.4 21.7 −14.7% 18.2 14.4 −20.6% 19.6 21.6 10.5%
5 15.5 13.7 −11.2% 31.9 18.2 −43.0% 20.9 33.6 60.5%
6 20.6 16.6 −19.5% 28.3 18.6 −34.2% 21.9 30.4 39.1%
8 18.8 15.0 −20.1% 35.2 19.9 −43.4% 18.9 19.5 3.2%
9 16.0 13.7 −14.0% 25.3 16.3 −35.6% 13.9 21.4 53.4%
10 24.9 19.9 −19.9% 19.4 13.2 −32.2% 11.3 12.2 7.8%
Average: 19.1 16.1 −15.2% 24.6 15.9 −33.6% * 18.3 22.4 23.2% *

A mask of the occipital lobe, defined in MNI space, was aligned to the functional data, and the number of significantly activated voxels (and the mean t‐statistic of these voxels)
inside this region were calculated. The use of short TE data correction in the preprocessing stream caused reduction in the extent and significance of activation in both the
Visual3.3 and Visual10 data sets, and this effect was significantly larger (approximately doubled) in the Visual10 data. Conversely, in the Visual3.3+Motion data, the short TE data
correction increased the size and significance of activation, and this was also significantly different than the results of the Visual3.3 data.
⁎ pb0.05, paired t‐test, corrected for multiple comparisons.
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the extended seed region is significantly decreased (pb0.05, corrected
formultiple comparisons) in all data sets, while the “long-distance” cor-
relations were significantly reduced in the Breathing data set only.

The significant changes in correlations after applying TE1 data re-
gressors and after applying low-pass filtering (b0.1 Hz) are compared
in Fig. 6. As expected, by removing a great deal of data variance, the
low-pass filtering greatly amplifies correlation values in the Rest
data, whereas the short TE correction method is more subtle and
mostly results in decreased correlation values (in agreement with
the Fig. 5). Conversely, in the Rest+Motion data, the short TE correc-
tion method results in greater increases in z(r) in the DMN regions,
while the low-pass filtering method is mostly limited to z(r) increases
in the PCC (seed region). In the Breathing data, the two methods have
very different effects on z(r); of note, correlation values near the ven-
tricles are enhanced after low-pass filtering and reduced following
short TE correction.

Discussion

In this study, we have mapped the correlation between short TE
functional data and traditional noise regressors reflecting head motion
and physiological fluctuations, both of which may be amplified in pa-
tient groups.

Motion

Recently, a study of resting state correlations in 1000 subjects (Van
Dijk et al., 2012) showed that, although motion was not responsible
for the majority of observed correlations, motion was responsible for
decreasing long-distance correlation and increasing local correlations.
This phenomenon is demonstrated in the data presented in the current
study, where the Rest+Motion seed correlation maps following tradi-
tional preprocessing show excessive correlation values across the pos-
terior cortices near the PCC seed region (e.g., Fig. 4).

In addition, the study by Van Dijk et al. compared groups of subjects
with differing amounts of motion and observed significant artificial
differences in “connectivity.” A similar study showed that motion arti-
facts cause spurious correlations in resting data, even after motion cor-
rection methods and the regression of the motion transformations
(Power et al., 2012). These two papers have extreme consequences in
the field of fMRI connectivity: an earlier paper showing a difference in
connectivity reflecting brain maturation and development is now con-
sidered to reflect motion artifacts rather than true neuronal differences
(Power et al., 2012). The application of short TE data for correcting gross
headmotion artifacts has been recently presented by Buur et al. (2009).
In that study, data were acquired at TE1=14 ms (at 1.5 T) or TE1=
9 ms (at 3 T) and the scan focused on continuous head nodding or
self initiated motion during blocks of visual stimulation.

In the current study, we bring these studies together: we examine
typical resting state data and also utilize a sporadic random direction
motion stimulus to simulate extreme non-compliant patient behav-
ior. We then assess the relationship between the benefits of short
TE data regression and total scan motion and the effect of TE1 data
correction on the resulting seed correlation maps. As even subtle dif-
ferences in head motion have been shown to influence group connec-
tivity results, it is important to assess short TE correction methods
across a broad spectrum of head motion artifacts by examining the
Rest data set in addition to the Rest+Motion data set. The strong cor-
relation between the explanatory power of the short TE regressors
and the mean FWD (Fig. 3) indicates that the short TE data correction
method is closely related to motion artifacts in scans with both subtle
and extreme head movements. Short TE data regression could thus be
applied to reduce the confounding effects of motion in BOLD fMRI resting
state data, in individual subjects and in group analyses, in situations with
both small and large head motion artifacts. This type of technique would
also avoid the possible negative consequences of deleting or “scrubbing”
motion-contaminated timepoints recently proposed (Power et al., 2012).
Although modifying the original scrubbing procedure can prevent mo-
tion artifacts from extending to adjacent volumes, which would there-
fore also need to be excluded (Carp, in press), scrubbing invariably
removes data from analysis, reducing statistical power. More subtle
motion artifacts, often in lower frequencies, would be invisible to a



Fig. 4. Unsmoothed seed correlation maps of one subject (thresholded at pb5×10−6). The Rest data exhibit the expected default mode network following traditional preprocessing,
and the additional regression of TE1 data maintains the qualitative network pattern. In the Rest+Motion data of this subject, traditional preprocessing of the BOLD-weighted TE2
data does not resolve the default mode network; instead, the correlation map is dominated by gross head motion artifacts. These artifacts are also present in the TE1 Rest+Motion
data set, and the TE1 regression method better resolves the expected network map in the TE2 data.
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threshold-based scrubbing technique; in contrast, we have shown that
the subtle head motions in the Rest data are at least partially corrected
for using short TE correction.

Physiology

Our study produces less conclusive results regarding the use of
short TE data for physiological noise correction. We show extensive
correlation between physiological noise regressors and the TE1 data
(e.g., Fig. 2), however the short TE regressors explain similar amounts
of significant additional variance in the Breathing data as in the Rest
data. This suggests that the traditional noise regressors currently
employed by the fMRI field (i.e., end-tidal gas levels, RVT, cardiac
rate) are sufficient for denoising data with large physiological noise
artifacts, and the short TE regressors do not explain any further
physiology-related variance. This is probably due to the fact that
they are global noise signals producing temporally similar but varying
amplitude noise fluctuations in each voxel. There may be some bene-
ficial noise correction that does not reach significance across the
F-test group analysis; the long-distance correlations in the Breathing
data are significantly reduced following short TE data regression
(Fig. 5), suggesting that additional widespread physiological noise is
being removed.

However, there may be alternative uses for short TE data for quan-
tifying, rather than correcting for, physiological fluctuations. This is
discussed in more detail below.

Short TE correction versus low-pass filtering

Low-pass filtering is a common technique for reducing the confounds
of higher-frequency noise sources such as unaliased respiration and car-
diac pulsations, or fast headmotion artifacts. Many of these noise sources
are also present in the TE1 data presented in this study (Figs. 1 and 2).
However, our results suggest that low-pass filtering and short TE correc-
tion can impact seed correlation maps in very distinct ways.

In the Rest data set, it is unsurprising that low-pass filtering results in
significantly greater correlation values throughout the DMN. In simulated
time series of the same length and temporal resolution as the fMRI data in
this study, and with a temporal signal-to-noise ratio of 80 (based on
Murphy et al., 2007), a b0.1 Hz low-pass filter reduced data variance by
approximately 34%. In addition, approximately 96 of 160 degrees of free-
domare also lost by thisfiltering of our data, reducing the significance of a
given correlation value. This effect on reported statistics is not normally
accounted for in the literature where the original number of the degrees
of freedom is assumed. In contrast, the short TE correction significantly
reduces correlation values, mostly in the original PCC seed region.

To interpret the accuracy of these changes in the Rest data we can
consider the Rest+Motion data, as we have already shown that the
short TE correction method functions across a continuum of motion ar-
tifact sizes (Fig. 3). Here we observe that the short TE correction signif-
icantly enhances the correlation values in the central and lateral nodes
of the DMN, while significantly reducing correlations in superior axial
planes: these results show that short TE correction is elevating DMN
correlations and reducing artifactual correlations associated with large
headmotion. The low-pass filter does not produce as widespread or ro-
bust changes, either positive or negative (e.g., only the central PCC node
of the DMN shows enhanced correlation). Extrapolating this to the Rest
data, the reductions in local correlation values following short TE cor-
rection may indicate the removal of artificial correlations associated
with more subtle movement artifacts.

Finally, we expect that there may be residual long-distance corre-
lations in the Breathing data set attributed to uncorrected physiolog-
ical noise. Fig. 6 highlights a slice through the ventricles, an area
typically influenced by physiological noise. The enhanced correlation
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Fig. 5. Group average seed correlation maps of the default mode network of 10 subjects (cluster threshold pb0.005) in the Rest, Rest+Motion, and Breathing data sets following
traditional preprocessing and with the addition of short TE data regressors. The mean z(r) statistics within local and long-distance ROIs were calculated in each data set of each
subject, and the group averages are presented graphically. The local correlation values were significantly reduced in all data sets (paired t-test, pb0.05 corrected for multiple com-
parisons) and the long-distance correlation values were significantly reduced in the Breathing data only.

534 M.G. Bright, K. Murphy / NeuroImage 64 (2013) 526–537
values in these regions following low-pass filtering suggests that re-
sidual low-frequency physiological processes (e.g., heart rate and re-
spiratory rate variability (Birn et al., 2008a; Shmueli et al., 2007)) are
amplified, resulting in false-positive DMN correlations. This problem
is absent in the short TE correction method, where correlation values
are significantly reduced in these areas.
S0 and R2* coupling

Neural activity gives rise to the BOLD signal through a complex
coordination of blood volume, blood flow, and metabolism changes.
The classic BOLD signal increase associated with “activation” typical-
ly results from increases in blood flow and local oxygen delivery that

image of Fig.�5
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exceed increases in oxygen metabolism. This equates to a local de-
crease in deoxygenated hemoglobin concentration ([dHb]) and a small-
er R2*. This coupling between activation and R2* is the motivation for
using multi-echo data to isolate R2* changes from concurrent S0
changes, as this quantification brings the data one degree closer to
reflecting true neuronal changes.

However, the blood flow and local [dHb] changes are initiated
by changes in vascular tone: the dilation or constriction of supply
vessels on the arterial side results in increases or decreases of
blood flow, respectively. These changes in vascular tone change
the local blood volume and affect S0.

Thus, through neurovascular coupling, neuronal stimulation causes
changes in both S0 and R2*. Although the dynamics of these two effects
are different (Sirotin et al., 2009), they remain correlated at the time-
scale of typical fMRI experiments (TR~2 s).

The consequences of this cross-talk are demonstrated in our data:
even at a TE of 3.3 ms when BOLD signal dephasing has not had time
to evolve, we observe signal fluctuations correlated with the visual
stimulus, causing the short TE correction method to remove some of
the BOLD activation of interest (Table 3). A previous study that ex-
plored short TE data concluded that this cross-talk reflects blood vol-
ume changes and is restricted to voxels that initially contain large
blood volumes (i.e., containing large draining veins) (Buur et al.,
2009). Note that study examined data acquired at a longer effective
TE value (TE~9 ms) than the current study.

By comparing the Visual3.3 and Visual10 data sets we are able to
show that TE=10 ms data are likely to be more confounded by this
cross-talk correlation, reducing BOLD activations even further. This sug-
gests that at TE=10 ms we are increasing BOLD contamination in our
short TE data. It is not possible to conclude whether the TE1/TE2
crosstalk reflects blood volume (S0) changes or BOLD contamination
(or a combination of both) in the TE=3.3 ms data, but our data indicate
that the choice of the “short” TE results in important changes in the sig-
nal contrast, even in the range of 3.3–10 ms. Also, while data sets with
small motion confounds (Visual3.3) show a negative impact on the
BOLD activation following short TE correction, the same data with am-
plified head motion (Visual3.3+Motion) show a positive impact: the
number of significantly activated voxels in these data is actually in-
creased by the short TE regression method. Considering the negative
impact of the correction methods on the local correlation values of all
data sets (Fig. 5), further exploration is needed to determine whether
Fig. 6. Significant changes in correlation values following short TE correction or following low
significantly reduced DMN correlation values in the Rest data, in agreement with Fig. 5, whe
correction resulted in greater enhancement of DMN correlation values than low-pass filterin
Breathing data, low-pass filtering increased artifactual correlations near ventricles, likely r
effects.
the short TE correction is improving or hindering the fair comparison
of BOLD activation maps between data sets with differing motion arti-
facts, or whether it could potentially correct for blood volume contribu-
tions to the BOLD signal. For example, improvements in data acquisition
to reduce the effective short TE even further would better isolate the
short TE data from potential cross-talk with the BOLD signal changes
of interest.

It may also be possible to interpret this “cross-talk” as a beneficial at-
tribute: with further advances in acquisition and analysis methods,
quantitative measures of cerebral blood volume using the short TE
data may be obtained. This information could be incorporated into the
latest models of quantitative BOLD signal changes (Bulte et al., 2012;
Gauthier and Hoge, 2012) that assume a constant relationship between
blood volume and blood flow, thereby making a more accurate transla-
tion between the BOLD signal and the underlying neural activation.

Short TE correction methods

There are several methods for using short TE data to correct
BOLD-weighted data, and this study focuses on the simple method
of using the short TE data as voxelwise noise regressors. This assumes
that the short TE data has no BOLD contamination (in effect, we as-
sume that TE1=0 ms). In contrast, fitting multi-echo data for S0
and R2* does not make this assumption, as the model fit allows for
all non-zero TE values to result in some level of BOLD contamination
in the data. Thus, a fitting approach should yield a more accurate re-
flection of the BOLD signal. However, when only two TE data sets
are acquired (as in the current study), the fitting method no longer
has this advantage (as described in Gowland and Bowtell, 2007). Con-
sidering the existing multi-echo literature (Bianciardi et al., 2011;
Gowland and Bowtell, 2007; Posse et al., 1999), acquiring additional
echoes should greatly improve the ability to accurately fit for R2*.
However, this would typically require longer TR values, reducing
the temporal resolution of the fMRI scan, while the method presented
here requires no additional scan time and could be utilized in
short-TR studies.

There are several additional means by which short TE data could
be incorporated into noise correction schemes. Independent compo-
nent analysis (ICA) has been used to isolate noise artifacts from the
remaining data of interest (Beckmann and Smith, 2004), although
this typically requires the researcher to manually identify which
-pass (b0.1 Hz) filtering (corrected cluster threshold pb0.05). The short TE correction
reas low-pass filtering increased correlation values. In the Rest+Motion data, short TE
g, simultaneously reducing other correlations associated with large head motion. In the
elated to uncorrected physiological noise, whereas short TE correction reduced these
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components represent noise, which could perhaps be ambiguous and
can be time consuming in large studies. Methods for automating ICA
denoising have recently been proposed: multi-echo data is processed
using ICA producing components that can be identified as “noise” or
“signal” based on their TE-dependence (Kundu et al., 2012) or spatial
similarity to patterns of known physiological processes (Perlbarg et
al., 2007). With additional scan acceleration methods and new se-
quences, it is becoming increasingly possible to acquire several
echo timepoints without dramatically lengthening scan time or
lowering temporal resolution (Feng et al., 2011; Poser et al.,
2006). However, without these factors, we show it is possible to
achieve improved noise correction using only one additional
short TE in the normally unused dead-space prior to the BOLD-
weighted TE acquisition.

Limitations of the current study

The number of subjects in this study is lower than the large numbers
used in group connectivity comparison studies (i.e., 1000 subjects were
included in Van Dijk et al., 2012). The impact of using short TE data to
correct motion and physiological artifacts remains to be validated on
larger cohorts with more typical noise properties. Also, while the vari-
ance explained by the short TE regressors is coupled with the total
amount of head motion in the scan, even in cases of small head motion
artifacts (Fig. 3), it is not clear how this correction method would im-
pact the robust (default mode) versus the subtle (e.g., sub-cortical) in-
trinsic connectivity networks in these groups. In the small cohort of
the current study, we were not able to characterize differences in
more subtle connectivity networks.

We have compared TEs of 3.3 and 10 ms and shown different
levels of BOLD contamination in these data. In spiral sequences, the
effective TE, when the center of k-space is acquired, takes place at
the beginning of the read-out, while EPI sequences generally acquire
the center of k-space at the midpoint of the readout. Thus, much of
our higher spatial-frequency TE1 data is acquired at times greater
than 3.3 ms (or 10 ms), which may alter how we perceive BOLD con-
tamination or correlated blood volume effects.

Recommendations

Motion and physiological noise remain a confound in the analysis of
all fMRI data, particularly in functional connectivity studies. Our results
have two main implications for the field. Firstly, we have shown that
physiological noise, although contributing to the data variance at
short TE, is mostly corrected for using existing and accepted physiolog-
ical noise regressors (Table 2, no significant difference between Breath-
ing and Rest F-test results). Our results highlight the importance of
collecting physiological data during all scans, including end-tidal gas
measurements and the bellows and pulse oximeter data that are readily
available onmostMRI scanners; these data remove the gross physiolog-
ical signal changes in the Breathingdatawithout relying on global signal
regression, which can create artifactual anticorrelations in the data
(Murphy et al., 2009). This would enable the RETROICOR, blood gas,
and cardiac/respiratory rate regressors to be modeled and removed
from all functional data collected.

Secondly, we have reproduced the troubling findings of the recent
literature, showing that motion artifacts (both large and small) are
not sufficiently removed from BOLD fMRI data using the traditional
motion transformation regressors and their derivatives. The short TE
data set collected in this study had no penalty on our data acquisition:
the data are collected in the unused time we typically spend waiting
for BOLD contrast to evolve, thus are effectively “free” to acquire. The
strong correlation between the variance explained by short TE data
and the subtle head movements present in our resting state data sug-
gests that this type of acquisition could greatly benefit a wide range of
fMRI studies. To fully realize the potential of the data correctionmethod
we present, echo times would be need to be shortened even further, or
multiple echoes could be collected with the assistance of acceleration
techniques in order to fully isolate the noise variance from the signal
variance of interest. With better hardware and pulse sequences, these
changes are possible; but we have also shown that existing acquisition
strategies can provide at least some benefit in correcting for the subtle
motion artifacts remaining in fMRI data.

Conclusions

We have shown that short TE fMRI data (TE=3.3 ms) contain sig-
nal variance related to physiological fluctuations and motion artifacts.
Using a dual-echo spiral acquisition, the short TE data set can be used
to reduce related noise variance in the simultaneously acquired
BOLD-weighted data set, with no additional “cost” in terms of scan
time or temporal resolution. The extent of this variance is strongly cor-
related with the mean headmotion across the scan across a continuum
of small and large head movement artifacts. Simply regressing the
voxelwise short TE data could restore some of the default mode net-
work structure in data sets corrupted by gross head motion, reducing
local artifactual correlations. This method should benefit future studies
intending to compare resting connectivity between groups that exhibit
differing levels of motion or noise.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.neuroimage.2012.09.043.
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