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Abstract

Proton nuclear spin-lattice relaxation in biological systems is generally distinguished from that in inorganic systems such as rocks by the

presence of locally disordered macromolecular environments. Rapid exchange of readily observed labile small molecules among differently

oriented macromolecular sites generally nearly averages the spectral anisotropies in the small molecule resonances. The biological tissue is

generally distinguished from the inorganic matrix by the presence of a significant population of protons in the solid components that are

well connected by dipolar spin couplings. Magnetic coupling between the solid and the liquid components generally dominates the

magnetic field dependence of the spin-lattice relaxation rates observed in the small molecule components which is generally described by a

power law in the Larmor frequency. Recent theory involving a modification of the spin-phonon class of relaxation mechanism provides a

quantitative understanding of these data in terms of the dynamics of the chain molecules generally present in the solid spin systems, folded

proteins for example.
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1. Magnetic features of boilogical systems

If we divide materials into biological and nonbiological

porous systems, nuclear magnetic resonance and spin

relaxation in biological systems have both important

similarities as well as important differences from other

microporous materials. Like inorganic systems such as

zeolites, clays, rocks and porous glasses, the biological

systems may present a variety of locally ordered environ-

ments that provide dynamic constraints on the trajectories of

mobile molecules. The biological systems are generally

composed of a relatively extensive but soft matrix of

molecules that are solid in the sense that they do not rotate

freely, but are soft in that there may be considerable range of

internal motion possible, and the biological systems are

usually deformable on a macroscopic scale. The inorganic

matrix on the other hand is often macroscopically porous, but

the matrix is sufficiently cross-linked that the structural

support provided to the mobile and readily observed

entrapped molecules is rigid and not deformable. An

important feature for relaxation is that the natural inorganic
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systems are often contaminated by considerable paramag-

netic ion impurities as both surface bound ions and matrix

substitutions in the rigid support. Paramagnetic centers are,

of course, present in biological systems as well, but are often

well sequestered by macromolecules as in the metallopro-

teins. Freely diffusing inorganic ions such as iron(II),

iron(III) or manganese(II) are rare and do not often contribute

to the predominate relaxation pathways except in special

circumstances such as blood. Both classes of system may

provide considerable short range and sometimes long range

organization to observed molecules that may affect the spin

relaxation by changing the effective dimensionality of the

space sampled by the dynamics of the observed spins. The

effects of such local order may change the magnetic field

dependence of the spin-lattice relaxation rate dramatically.

An often crucial distinction between inorganic and

biological systems is that the inorganic system is often

proton-poor; that is, the solid matrix is composed of

structures that do not include a well-connected proton spin

network. In this case the proton spin relaxation of the

observed liquid component, and the magnetic field depen-

dence in particular, may reflect the character of the

constrained diffusive processes that drive relaxation. In the

majority of biological systems the confining structures are

proton-rich; the protons then form a major population of
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strongly coupled spins that may interact with readily

observed spins mobile with which they are in intimate

contact. The presence of the large, but generally unobserved

solid proton population in a biological sample such as a

tissue may have dominant effects on the proton spin

relaxation of the observed species including the solvent

and a variety of small molecules that may be of metabolic

or therapeutic interest. We focus in this discussion on the

biological systems and several features of the spin-lattice

relaxation processes.
Fig. 1. (A) The 35Cl NMR spectrum of cross-linked serum albumin

containing mercury(II) at sulfhydryl sites that provide a strongly bound

though rare site for exchange of chloride ion. The detected NMR spectrum in

the bulk chloride ion resonance is a super Lorentzian line where the effects of

the anisotropy of the bound environment are lost. (B) The 2H NMR spectrum

of a phenyl propionic acid in cross-linked crystals of the carboxypeptidase

A; the exchange of the phenyl propionic acid with the uniformly oriented

binding sites preserves the line shape of the solid environment even though

the ligand reorients uniformly in the unbound phase [12].
2. Anisotropy

A distinguishing feature of NMR in immobilized sys-

tems is that all anisotropies in the system may appear; that is,

the chemical shift anisotropy, nuclear electric quadrupole

couplings and dipolar couplings are not averaged by rapid

rotational motions. One might expect that the spectroscopy

of biological systems would then be dominated by the

richness of such anisotropic interactions; however, this is

usually not the case if low-molecular-weight components are

observed. Although biological systems may be locally

ordered, it is rare that the systems are uniformly oriented at

the molecular level. Fig. 1 represents a cartoon of biological

solids that are compositionally identical, but where the local

order is different. Both systems are solid and no rotational

averaging is observed in the solid components, direct

observation of which would reveal the usual solid-state

powder pattern spectra showing the usual dipolar, quad-

rupolar or chemical shift anisotropies. More generally one

observes the small molecules because of dramatically

increased sensitivity and possibly resolution. In this case,

the spectrum, even of a quadrupolar nucleus such as 35Cl or
2H, does not reveal directly the anisotropy of the semisolid

system even when the observed spin may reside on a

molecule that may bind and exchange with unique binding

sites on the solid matrix of molecules. Generally, a

broadened Lorentzian line is detected with a narrow central

portion and a broader than normal spectral wings as shown in

Fig. 1A. This spectrum is essentially rotationally averaged

by chemical exchange of the observed small molecule

between locally ordered binding sites of different orientation

in the magnetic field. In a cross-linked protein, for example,

the exchanging spin may sample several hundred sites in the

time of a spectral acquisition time, which nearly averages the

anisotropy of the sites sampled. Each bound site corresponds

to a particular line or pair of lines in the powder pattern, but

the next site corresponds to a position in the powder pattern;

when several hundred such sites are sampled by each

observed molecule, the spectrum collapses as in other rapid

chemical exchange cases. However, the solid effects may

persist in some ways because the anisotropic interactions are

not completely averaged by the exchange processes. Thus,

spins such as 35Cl or 23Na ion may often pass multiple

quantum filters that a species that never samples a bound

anisotropic site does not [1–10].
A distinctly different spectrum results when the local

environment is uniformly oriented in the magnetic field as

in a crystal, which is shown schematically in Fig. 1B. In this

case, exchange of the observed and labile species with these

sites averages the spectrum of the isotropic phase with that

of the ordered solid phase to an average position. When

different locally ordered domains are summed as in a

polycrystalline sample, then the result is a powder pattern
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Fig. 2. A computed representative free induction decay of magnetization in

a dynamically heterogeneous system such as a tissue containing both solid

and liquid components with drastically different values for the transverse

relaxation rate.
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where the width is scaled by the ratio of the concentration of

the bound anisotropic population to that unbound and

isotropic phase. In the case shown, the deuterium in an

inhibitor exchanges with the active site of carboxypeptidase

A in a cross-linked crystal and the spectrum is a scaled

powder pattern from which the usual deuterium line shape

analysis may be extracted [11,12]. Biological tissues usually

do not provide the high degree of local order found in a

crystal and spectra like that shown in Fig. 1A are observed.

However, important and useful exceptions occur in highly

ordered systems where intramolecular dipolar couplings are

preserved in the water resonances [7].
ig. 3. The response of water and protein proton populations as a function

f time following a selective excitation of the water spins. At long times,

e two populations decay at identical rates as predicted [64].
3. Relaxation coupling

Although usually not observed in MRI measurements,

both the solid and liquid components of biological systems

may be detected as shown in Fig. 2. In the time domain, the

solid components appear only in the earliest part of the free

induction decay often with transverse relaxation time

constants in the range of tens of microseconds. It is useful

to note that the frequency domain presentation of the same

data presents a major dynamic range problem in that the line

width of the solid component is usually more than a

thousand times wider that that of the liquid or small

molecule components; thus, its amplitude at the maximum

is approximately a thousand times smaller that that of the

liquid even if the two spins are present at the same

concentration. Thus, the solid is generally not observed in

the Fourier transformed spectrum when the liquid compo-

nents are displayed and the problem may be seriously

aggravated if the spectrometer has a dead time the order of

or longer than the short T2 of the solid signal. The

simultaneous detection of liquid and solid components has

important practical applications; an example is application

to the solid fat index in the food industry [13,14].

In most dynamically heterogeneous biological systems

such as tissues, a consequence of the solid components is

that the nuclear spin relaxation rate constants of the small

molecule spins are affected by magnetic coupling to the
solid spins. This spin coupling is often a dominant factor in

the proton spin-lattice relaxation. A simple demonstration of

the coupling is that following a selective pulse, the

magnetization of one population pumps that in the second

until the magnetizations equilibrate, then they relax together

with a composite rate constant that is given by the roots of

the coupled differential relaxation equations as shown in

Fig. 3 [15,16]. Thus, it is not appropriate to measure

longitudinal magnetization relaxation in a tissue and call the

apparent decay constant a T1 value appropriate to the small

molecule measured, water for example, and apply simple

relaxation equations to interpret such values.

An interesting application of the coupled relaxation is

indirect detection of the solid component spectrum, which

is generally tens of kHz wide. Because the spin populations

are coupled, perturbation of one population affects the

other. A simple implementation is to irradiate the solid

component with a preparation pulse that is at a frequency

different from the dominant solvent resonance and then

detect the amplitude of the solvent proton resonances as a

function of the preparation pulse irradiation frequency. An

example is shown in Fig. 4 where the effects on three

solvent components are detected simultaneously, water,

acetone and dimethyl sulfide in a cross-linked serum

albumin gel that models tissue approximately. The detailed

shape of the resulting solid component spectrum is a

function of the strength of the irradiating preparation pulse

and the line shape is susceptible to broadening by saturation

effects as in continuous wave spectroscopy [17]; however, it

is clear in Fig. 4 that the protons of all three solvent

components suffer a cross-relaxation with the immobile

protein protons. The efficiency of the coupling is different

as shown by the different amplitudes in the cross-relaxation

spectrum, which is most strongly related to the number of
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Fig. 4. The proton NMR spectrum of the protein detected by off-resonance

irradiation of the protein protons in a cross-linked protein gel containing

three solvents: acetone, dimethyl sulfide, and water. The effects of

relaxation coupling are apparent in all three solvent resonances [19].
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binding sites for the small molecules on the protein [18,19].

The effects of such coupling are general and depend on the

dipole–dipole interactions, which have been discussed in

detail [20–23]. We point out only that these relaxation

coupling effects will be present in the spectra of most

proton-containing molecules observed in vivo spectroscopic

or imaging experiments.

The magnetic coupling may affect dramatically the

magnetic field dependence of the spin-lattice relaxation

rates as shown in Fig. 5 where residual water protons are

observed in D2O suspensions of phosphatidyl choline large

unilamellar vesicles. By itself, the relaxation rates of the

water protons are independent of the magnetic field strength
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Fig. 5. The magnetic relaxation dispersion profile for residual water protons in D2O

296 K (K. Victor, R.G. Bryant, unpublished data). The inset is based on data rep
because all of the motions that modulate magnetic couplings

are at frequencies much higher than the frequencies utilized

in the experiments of Fig. 5. The magnetic field dependence

results from a weak coupling between the water protons and

the lipid protons [24–33] which transfers the lipid proton

dispersion profile to the water protons. Thus, the water

proton system may be utilized to characterize the molecular

dynamics of the lipid system, which may be described by

several complex dynamical models appropriate to chain

molecules [34–38].
4. Comprehensive relaxation model

The magnetic field dependence of the water proton spin-

lattice relaxation in tissues as well as simpler rotationally

immobilized protein systems is described by a power law in

the Larmor frequency [39–46] with the exponent typically

between 0.5 and 0.8. For a protein solution, the MRD is a

Lorentzian dispersion where the inflection point reports the

rotational correlation time for the protein reorientating by

rotational Brownian motion [47–50]. If the protein rota-

tional motions are stopped by chemical cross-linking at

essentially constant composition [39,51], the MRD profile

changes from the Lorentzian to a power law as shown in

Fig. 6 [39,51]. In both cases, the water proton spin-lattice

relaxation rate constant is determined by coupling to the

protein protons. The efficiency of the coupling is dominated

by exchange of whole water molecules with specific sites on

or in the protein where cross-relaxation with the protein

protons is efficient. In the solid, the coupling in the bound

state is particularly efficient because the bound water

molecule is essentially a solid and the cross-relaxation rate
rad/s)

107 108 109 1010

1010 1011 1012

ωS(rad/s)

suspensions of large unimellar phosphatidyl choline vesicles at 40 mM and

orted by Rommel et al. [66].
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ig. 7. Schematic representation of relaxation pathways for proton spin

laxation in heterogeneous protein systems that are models for tissues.
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constant is essentially the T2 of the solid proton system or

approximately 10 As. In addition, proton exchange from a

variety of labile proton positions on the protein may

contribute to the total coupling. Although the tissue

represents a complex superposition of contributions, the

observed power law is the same and the total spin relaxation

of the water protons responds to changes in the concentra-

tion of water as predicted by a quantitative treatment of the

cross-relaxation coupling [39,51].

Although it has been known for some time that the water

proton spins report the magnetic field dependence of the

solid component protons, which are described by a power

law, the physical origin of the power law has been only

recently understood. Kimmich et al. measured the MRD of

polypeptides and made the important observation that the

power law was present in samples of polyglycine, which has

no side chain protons; thus, they suggested that the power

law derived from motions of the polypeptide backbone [52].

This idea has recently been put on quantitative foundation

by detailed consideration of relaxation induced by spin-

phonon coupling [53–56].

The spin-phonon coupling in a three-dimensional crystal

is very inefficient relaxation pathway as pointed out by

Abragam [57]. However, there is a profound difference

between a phonon in a three-dimensional crystal where the

correlation of the local disturbance may be lost rapidly and a

chain molecule in which the local disturbance may move in

an effective space of dramatically reduced dimensionality

provided by the chain molecule. In the folded protein, the

strong connectivity is in the covalent connectivity provided

by the chemical bonds of the polypeptide chain. Although

the amino acid side chains are in van der Waals contact in

many cases, these connections are weak so that the

structural disturbance propagates primarily along the poly-

peptide chain. The effect of the reduced dimensionality is to

increase the efficiency of the spin-phonon coupling by many

orders of magnitude [53]. The detailed theory, presented

elsewhere [54], provides a quantitative description of the

spin-lattice relaxation rate of the protein components of a
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Fig. 6. The water proton magnetic relaxation dispersion profile in 1.8 mM

aqueous bovine serum albumin solution and the cross-linked serum albumin

gel obtained at the same at the same composition at 298 K [39].
F

re
protein–water system when the protein is not free to rotate

and the effects of the relaxation coupling are included in the

complete model. This model accounts for the magnetic field

and composition dependence of water and protein proton

spin-lattice relaxation rate constants and provides a foun-

dation for understanding the more complex tissue. The

essence of the model is summarized in Fig. 7.

The protein proton spin-lattice relaxation is dominated

by the structural fluctuations that propagate along the

polypeptide chain and which modulate proton–proton

dipole–dipole couplings. Motion anywhere relaxes the

whole protein proton population because the protons in

the rotationally immobilized protein are well coupled to

each other, that is, spin diffusion within the protein system

is rapid and the population may be said to achieve a

common spin temperature in a short time, on the order of

T2 or 10 As. The water protons are coupled to the protein

protons by several magnetic exchange mechanisms, the

dominant one being the exchange of whole water molecules

with rare binding sites on the protein. The measured field

dependence may be discussed in terms of three regions.

(1) The region above approximately 10 MHz is dominated

by high-frequency motions in the system such as water

molecule rotation or methyl group rotation [58–64]. (2) The

intermediate field region is dominated by the chain

dynamics in the folded protein and displays the character-

istic power law in the Larmor frequency. (3) The low field

region may present a plateau that in turn may have two

causes. (a) Limitations in the magnetization transfer rate

between the protein and the water may provide a limitation

on the low field rate constant for the water protons. (b) The

local magnetic field sensed by protein protons is limited by

the effective local dipolar field, which is approximately

11 kHz. Thus, although the applied dc magnetic field that is

applied to the sample may be lower than 11 kHz, the

effective field dependence of the spin-lattice relaxation rate

is truncated by the dipolar field [65]. In summary, in the

intermediate field regime, the water proton spin-lattice

relaxation is tied to the structural fluctuations in the protein
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which propagate primarily along the primary structure of the

polypeptide chain.
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