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Abstract Since its inception in 1992, Functional Magnetic
Resonance Imaging (fMRI) has become an indispensible tool
for studying cognition in both the healthy and dysfunctional
brain. FMRI monitors changes in the oxygenation of brain
tissue resulting from altered metabolism consequent to a
task-based evoked neural response or from spontaneous fluc-
tuations in neural activity in the absence of conscious menta-
tion (the Bresting state^). Task-based studies have revealed
neural correlates of a large number of important cognitive
processes, while fMRI studies performed in the resting state
have demonstrated brain-wide networks that result from brain
regions with synchronized, apparently spontaneous activity.
In this article, we review the methods used to acquire and
analyze fMRI signals.
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Introduction

Functional Magnetic Resonance Imaging (fMRI) is a neuro-
imaging tool that employs MRI to image dynamic changes in
brain tissue that are caused by changes in neural metabolism.
Alterations of neural activity may be caused by asking the
subject to perform a task designed to target a specific cognitive

process, or can occur spontaneously while the subject is rest-
ing in the absence of conscious mentation (i.e., in the Bresting
state^). Both types of studies- task-based and resting state,
have become indispensible tools for studying cognition in
healthy as well as diseased brains, and tens of thousands of
studies have been published (>150,000 listed in http://www.
ncbi.nlm.nih.gov/pubmed under BfMRI; brain^) in the 2+
decades since nearly simultaneous introduction of the
technique by three independent groups (Bandettini et al.
1992; Kwong et al. 1992; Ogawa et al. 1992).

The MR contrast mechanism used for virtually all fMRI
relies on blood oxygenation level dependent (BOLD) changes
in brain tissue, exhibited when a brain region experiences
altered levels of oxygen consumption consequent to up- or
down-regulated metabolic activity caused, e.g., by performing
a cognitive task (Ogawa et al. 1992). When there is a local
increase in neural (and glial) activity, concomitant increases in
aerobic and anaerobic oxygen consumption trigger increased
delivery of fully oxygenated hemoglobin through vasodilatory
(Raichle et al. 1976; Roland and Larsen 1976; Sokoloff et al.
1977; Fox et al. 1988; Malonek and Grinvald 1996) processes
that increase Cerebral Blood Flow (CBF) to the region. For
reasons that are still not fully understood (Fox and Raichle
1986; Frahm et al. 1994; Buxton et al. 1998), oxygen supply
transiently exceeds demand, which results in a net increase in
local oxygenation for several seconds (Fig. 1). Thus, the en-
dogenous deoxyhemoglobin (Hb) is dynamically replaced
with oxyhemoglobin (HbO2), and is accompanied by a tran-
sient increase in intravascular blood volume, resulting in a
change in oxygenation state. Because Hb is paramagnetic
while HbO2 is diamagnetic, the change in state from paramag-
netic to diamagnetic results in a decrease in R2 and R2*
relaxivity rates (Thulborn et al. 1982; Ogawa et al. 1990).
Thus, an MRI sequence with T2 (1/R2) or T2* (1/R2*)
weighting can demonstrate BOLD contrast, and therefore
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signal neural activity changes through this hemodynamically
driven process.

The microgradients in magnetic field that surround vessels
and capillaries filled with Hb result in two forms of BOLD
contrast (Bandettini et al. 1994; Weisskoff et al. 1994). The
first is due to intravoxel dephasing, which is most prominent
near larger vessels, and which causes T2* weighted signal
loss. This contrast increases linearly with magnetic field
strength and is readily observed with gradient recalled echo
(GRE) imaging. The second type of contrast is due to diffu-
sion of spins through the microgradients, causing a reduction
in T2-weighted signal detected by spin echo (SE) MRI. The
diffusion mechanism is most prominent when the distance the
spins diffuse during the signal acquisition is comparable to the
spatial extent of the microgradients, which thereby tunes this
mechanism to bemost sensitive to detecting BOLD contrast in
capillaries (Weisskoff et al. 1994). Diffusion contrast is pro-
portional to the square of the magnetic field strength.
Therefore, as the field is increased, the weighting of T2 con-
trast increases relative to T2* weighted contrast, with the re-
sult that in fields of 4T and higher BOLD contrast is more
localized to tissue than to the larger veins when SE acquisi-
tions are employed (Yacoub et al. 2001). By contrast, with
GRE acquisitions at 7T the T2* of veins is so short the venous
contribution becomes small and diffusion weighting from tis-
sue microstructure dominates (Geissler et al. 2013). Because
of this, SE acquisitions are to be preferred at 7T, although SE
methods have higher RF power deposition (Specific

Absorption Rate, SAR), which may reduce the number of
slices that can be collected.

Gradient recalled acquisitions suffer signal loss from static
magnetic field distortions that are caused by magnetic suscepti-
bility differences at air-tissue interfaces, for example in frontal
orbital or lateral parietal brain regions. These gradients in mag-
netic field (~9 ppm difference in susceptibility between air and
brain tissue) are large enough to cause signal dropout artifacts
from intravoxel dephasing in GRE acquisitions. Spin echo
methods refocus the static field heterogeneities, and therefore
do not have signal dropout. The relationships between contrast,
artifacts and field strength are summarized in Table 1.

At this time, 7 T and higher field magnets are not in wide-
spread use, so that the majority of fMRI studies are performed
at 3 T (in which T2 and T2*-weighted contrasts are compara-
ble or 1.5 T, which is mostly sensitive to BOLD contrast in the
draining veins (Kruger and Glover 2001; Kruger et al. 2001).
Therefore, it would be wise to avoid 1.5 T for neuropsycho-
logical studies whenever possible, to obtain the most accurate
depiction of cognitive processes.

As we have indicated, there are two primary types of fMRI
studies- those in which a cognitive task is used to modulate
specific neuronal activity, and resting state studies. In either
case, a dynamic series of T2*-weighted scans is acquired,
resulting in (Kruger et al. 2001) a time series of signals for
every brain voxel. These time series are submitted to various
levels of correction and denoising (preprocessing steps) before
model- or data-driven analyses are applied to obtain maps of
activity. Because BOLD signals are tiny- typically a few per-
cent or less- such analyses use statistical methods to discern
false from true activation at a given confidence level.

This article reviews the methods employed to acquire and
process BOLD fMRI data, with which to draw inferences regard-
ing neural processes. We will not examine other methods often
used in conjunctionwith fMRI such asDiffusion Tensor Imaging
(DTI) (Le Bihan et al. 1986), which can depict or summarize
structure of white matter, or Arterial Spin Labeling (ASL)
(Williams et al. 1992), used to map the CBF either in stasis or
during task manipulation. Similarly, despite the increasing inter-
est in combining fMRI with other imaging modalities in order to
obtain complementary information in the spatiotemporal (e.g.,
Electorencephalography (EEG) (Teplan 2002), or metabolic

Fig. 1 BOLD contrast results from hemodynamically driven changes in
blood oxygen level due to the difference in magnetic state of oxygenated
hemoglobin (diamagnetic) molecules versus deoxygenated hemoglobin
(paramagnetic) in capillaries and surrounding tissue. During activation
(b) increased blood flow and blood volume cause reduction in
endogenous Hb, increasing the T2*-weighted MRI signal relative to the
baseline state (a)

Table 1 Relationships between field strength for GRE & SE
acquisition type, BOLD contrast mechanism, dropout severity (IvD=
intravoxel dephasing, Diff=diffusion)

B0 Acquisition BOLD contrast Dropout artifact

≤ 3 T GRE (veins : IvD)>(tissue : Dif) ↑

SE (tissue : Diff) –

7 T GRE (tissue : Diff) ↑ ↑↑

SE (tissue : Diff) ↑ –
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(e.g., Near Infrared Spectroscopy (NIRS) (Ferrari et al. 1985) and
Positron Emission Tomography (PET) (Raichle 1989) domains,
these topics are beyond the scope of this review.

The fMRI Experiment

Task-Based fMRI

In task-based fMRI, time series data are compared against a
hypothesized model of neural function based upon the cogni-
tive task being performed. Through the use of statistical infer-
ence the hypothesis can be accepted or rejected for every
voxel. In this way, a map of those brain regions that respond
to the task is constructed, and can be further tested against
phenotypical or genotypical models or parametric manipula-
tions of the task, e.g., difficulty.

The typical fMRI experiment employs sensory stimuli to
cue the participant to perform a behavioral task while BOLD
contrast images are acquired for a fixed duration of minutes
(see Fig. 2). Such stimuli can be visual, auditory or of other
forms depending on the desired behavioral manipulation. In
all cases, the task design employs a modulation of the behav-
ior being studied within each scan (state A – experimental and
state B – control in Fig. 2) so that the range of BOLD contrast
elicited by the manipulation between experiment and control
conditions is captured within one scan. This is important be-
cause MRI signal intensities are subject to drifts from instru-
ment instability or changes in participant habitus or physiolo-
gy that are unrelated to the effect of interest, which makes it
difficult to develop accurate estimates of BOLD contrast
changes from separate scans.

Task designs are commonly of the BBlock Trial^ type,
BEvent-related (ER) Trial^ type (Dale and Buckner 1997;
Dale 1999; Miezin et al. 2000; Ollinger et al. 2001; Liu
2012) or BMixed Trials^ (Chawla et al. 1999; Visscher et al.
2003; Petersen and Dubis 2012), as shown in Fig. 3. In each
case the effect size is inferred from the difference in BOLD
contrast between the two states. However, note that because
the measured signal is a hemodynamic response to changes in
local brain metabolism and therefore only an indirect measure
of neural responses, the hemodynamic process itself must be
considered in the design of the signal model used to test for
activation. A typical Hemodynamic Response Function
(HRF), i.e., the BOLD signal obtained from a single brief
activation event, is shown in Fig. 4 (Friston et al. 1998). The
HRF has the characteristic of a low-pass temporal filter, and
under the linear assumption for BOLD contrast (Boynton et al.
1996; Dale and Buckner 1997), it must be convolved with the
task design vector to provide the regressor that is used
to test for significant activation in any voxel’s time
series (see statistical analysis of task data below). As
seen by the example in Fig. 4, the HRF’s filtering ac-
tion can significantly attenuate short duration activity of
event-related designs. It has been shown that Block de-
signs are optimum for detecting an activation, while ER
designs are most efficient for characterizing the time
course of activation, and Mixed designs lie in between
(Liu et al. 2001). Thus, when it is desired to simply
decide whether a hypothesized activation occurs in a
brain region, the Block design is most effective, but
an ER design should be employed when more detailed
characteristics of the neural response to the cognitive
manipulation are desired (Dale 1999; Birn et al. 2002;
Petersen and Dubis 2012). Of course, there are many

Fig. 2 Task-based fMRI
experiment acquires a time series
of images while participant
performs cognitive manipulation
that causes a change between
brain states A and B. The
functional map depicts those
regions that were more
metabolically activated in state A
than B, using a statistical test to
demonstrate significant signal
differences in each voxel
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variations on these basic designs, and some additional
considerations for experimental design are described in
(Huettel et al. 2008).

From the preceding description, statistical inferences re-
garding task-based brain function are drawn by testing for
BOLD signal variations that significantly correlate with a hy-
pothesizedmodel. Therefore, any signal fluctuations unrelated
to the effect of interest will degrade the power of the test
because of the added unrelated variance. Examples include
thermal noise (Edelstein et al. 1986), and physiological noise
resulting from cardiovascular pulsatility or quasi-periodic res-
piration effects (Hu et al. 1995; Glover et al. 2000), as well as
from longer-term vaso-dilatory effects (Birn et al. 2006;

Shmueli et al. 2007; Chang et al. 2009). Corrections for these
effects are discussed later as preprocessing steps. Of course,
there can be cases (e.g., aversive pictures) where the task
manipulation causes the participant to alter cardiac function
or respiration, which can become a direct confound by causing
BOLD signal changes stemming solely from the vascular re-
sponse of changes in physiology (Birn et al. 2009; Chang et al.
2013). See later discussion of Preprocessing.

Other considerations important when setting up psychiatric
fMRI experiments include possible confounds of medications
and hormones. Many medications alter the brain’s vascular
function, which in turn causes changes in BOLD response that
can result in group differences when comparing medicated

Fig. 3 Types of basic task
designs, showing a Block design,
b Event-Related (ER) design and
c Mixed design. The Bon^ and
Boff^ levels indicate that the
stimulus is either presented for the
cognitive manipulation being
tested or for a control condition,
respectively. Block designs
provide maximum detection
sensitivity, while ER designs
optimize the ability to
characterize the time course of
BOLD responses. Mixed designs
can accomplish signal detection
as well as response quantification

Fig. 4 Hemodynamic response function a is convolved with an event-related design b to derive a regressor c with which to model an ER experiment.
The regressor can be used either with convolution analysis or in a general linear model
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experimental populations against healthy controls. For exam-
ple, even the relatively benign agent caffeine causes elevation
in resting CBF and results in reduced BOLD responses due to
reduced vascular reserve (Liu et al. 2004). Thus, it may be
difficult to perform fMRI studies aiming to investigate cogni-
tive effects of pharmacological treatments because of possible
BOLD signal changes unrelated to the neural processes being
explored.

Resting State fMRI

In the resting state (RS) case, the implicit hypothesis is that
there are distinct brain regions whose fluctuations are tempo-
rally synchronized, and thereby are connected as nodes of
networks, such as the Default Mode Network (Greicius et al.
2003; Buckner et al. 2008). Multiple networks are regularly
observed (Damoiseaux et al. 2006; Smith et al. 2009). The
acquisition of RS data is similar to that of task-basked studies,
described below. The subject is typically prompted to remain
still and avoid targeted mentation, while maintaining eyes
open or closed for the scan duration. The latter instruction is
important because it has been shown that FC differs between
eyes open and closed (e.g., (Patriat et al. 2013)). Typically
heart rate and respiration data are collected for physiological
denoising (see section physiological noise correction).

Acquisition of fMRI Data

FMRI scan sequences typically employ single-shot acquisi-
tions using EPI (Mansfield 1977) or Spiral-in/out (Glover
and Law 2001) k-space trajectories. Slices are typically ac-
quired in an interleaved order (e.g., 1,3,5, …2,4,6,…), which
diminishes Bslice-bleed^ effects (Bernstein et al. 2004), but
which must be accounted for during Bslice-timing^ correc-
tions. The main issues to be controlled during data acquisition
are tradeoffs between spatial and temporal resolution, signal
dropout in frontal and parietal regions and subject motion. In
general, as the spatial resolution is increased, the duration of
the readout increases, which makes it more sensitive to signal
loss from magnetic susceptibility effects near heterogeneous
brain regions. Acceleration using parallel imaging (multiple
receiver coil channels) (Sodickson and Manning 1997;
Pruessmann et al. 1999; Griswold et al. 2002) and simulta-
neous multiple slices (SMS) (Feinberg et al. 2010; Setsompop
et al. 2012) can change these tradeoffs by reducing the amount
of data that need to be acquired and thereby increasing scan
efficiency. SMS methods, for example, reduce the repetition
time (TR) needed to acquire whole brain coverage by factors
of 8 or more (e.g., (Chen et al. 2015)). The faster acquisition in
turn allows more time frames to be collected, increasing the
statistical power or enabling more complex temporal infer-
ences, e.g., identifying dynamically changing brain repertoires

in the temporal domain (Smith et al. 2012), but is often ac-
companied by reduced SNR. The higher scan efficiency
afforded by acceleration can alternatively allow scan time to
be reduced, thereby decreasing chances for head motion and
increasing access for, and compliance by, populations such as
children, older adults and patients.

Functional acquisition protocols include other sequences as
well as the functional scan(s) themselves, and thus their scan
times must also be considered when setting up a protocol to
minimize the protocol duration. T2-weighted sequences (FSE
or TSE) can be used to rapidly acquire high resolution slices
with the same scan prescription as the functional scan. These
are typically replaced or accompanied by T1 Inversion
Recovery prepared whole brain acquisitions (3D MPRAGE
or 3DFSPGR (Mugler and Brookeman 1990)) to enable nor-
malization of subject data to a brain template in order to make
group inferences (see Preprocessing below). In addition, many
investigators collect diffusion tensor information in order to
derive structural connectivity maps (Bwhite matter tracks^)
(Le Bihan et al. 1986), and to correlate structure with function
(Werring et al. 1998; Zhu et al. 2014). Infrequently, because of
the added scan time and complexity, some studies also employ
Arterial Spin Labeling (ASL) methods (Williams et al. 1992;
Detre and Wang 2002; Borogovac and Asllani 2012), or hy-
percapnic challenges using CO2 breathing (Davis et al. 1998;
Kim et al. 1999) or breath holding (Kastrup et al. 1999;
Thomason et al. 2007; Chang et al. 2008) to derive more
quantitative measurements or correct for confounds such as
inter-subject differences in vascular reactivity.

As described previously, T2* weighting is usually
employed for BOLD signal contrast, which requires long echo
times (Bandettini et al. 1992), but which unfortunately also
results in geometric distortion (Hutton et al. 2002) due to off-
resonance near frontal-orbital and parietal regions, where the
susceptibility difference between air and tissue generates sub-
stantial static magnetic field gradients. The distortion can be
corrected using maps of magnetic field (see distortion
correction) ; therefore, field maps are often also acquired.

Analysis

Preprocessing

As fMRI detects neural activity indirectly via hemodynamic
response to changes in metabolic consumption of oxygen, the
collected time series are inevitably confounded by non-
neurally related sources of variations, such as subjects’ head
motion, physiological cycles, and magnetic field inhomoge-
neity. If not corrected, these unwanted fluctuations may ob-
scure the intrinsic patterns of neural activity, reduce the detec-
tion power of further statistical analysis, or in worst cases, alter

Neuropsychol Rev (2015) 25:289–313 293



experimental conclusions by introducing structured noise that
contaminates the real neurally-related results.

Several computational procedures, collectively termed as
the preprocessing pipeline, have been proposed to remove the
confounding sources of variations from the fMRI time series,
and increase the functional signal to noise ratio (fSNR) before
further analysis. The most frequently employed steps are de-
tailed below.

Quality Assurance

Quality assurance (QA) testing is an indispensible but often
ignored aspect of preprocessing in fMRI studies nowadays.
The corruption of fMRI data may occur during data acquisi-
tion due to extreme scanner noise, e.g., Bspike noise^ or other
scanner problems such as signal drift (even for the best-
maintained scanner). If unnoticed, these corrupted datasets
may propagate artifacts into final results of a study. To avoid
frustration later with unusable data, the imaging data should be
examined immediately post scan (e.g., check subjects’ motion
parameters, physiological data, or view the stack of 3D brain
images in a movie). In this way, it may be possible to prompt
the subject to diminish excessive motion or observe and correct
for instrument failures before continuing. QA procedures
should also be employed throughout the preprocessing pipeline
using visual inspection and simple tests (e.g., examining the
mean intensity and standard derivation of slices, calculating
the fSNR for each dataset (Murphy et al. 2007)) to guarantee
the data quality prior to the next step of analysis.

Slice Timing Correction

The majority of fMRI studies use a two-dimensional pulse
sequence that images one slice at a time, resulting in inconsis-
tent acquisition time among different brain slices within one
TR. Such slice-timing errors, if uncorrected, may pose severe
inaccuracy in cases where the temporal information is critical,
e.g., studies positing a causal relationship among different
cortical regions or in rapid event-related experiments. A most
common approach to correct for slice-timing errors is tempo-
ral interpolation, which estimates the signal amplitude of each
slice/voxel at a reference time point by interpolating informa-
tion from neighboring TRs. This method works most effec-
tively when the single-slice sampling rate is much faster than
the signal variability induced by the on-going experiment
(Huettel et al. 2008).

Head Motion Correction

Subjects’ head motion is a prominent concern in most fMRI
studies, particularly those involving hour-long scan duration
(subjects may become increasingly drowsy and restless as time
goes by), tasks requiring physical responses (subjects’ motion

synchronizes with the on-going stimulus), or particular types of
subjects (the young, the elderly and the diseased people).

Subjects’ headmotion can affect the collected data quality in
various ways. To list a few: motion mixes signals from neigh-
boring voxels, yielding dramatic signal variability at the edge of
distinct cortical regions; motion induces spurious distance-
dependent variance (more similar between voxels nearby than
far apart) that may alter the intrinsic correlation structure of the
data; motion interplays with field inhomogeneity and slice ex-
citation, bringing in more complicated noisy fluctuations
(Huettel et al. 2008; Van Dijk et al. 2012; Power et al. 2015).

Disruptive as it appears, motion can be considerably sup-
pressed by strategies during or post acquisition. Head immo-
bilization techniques, such as fixation devices (bite bars,
masks, fixation pads- including inflatable air bags) and use
of a mock scanner (training subject in a simulated environ-
ment) ( Barnea-Goraly et al. 2014), can diminish head move-
ment during the scans. In addition, myriad retrospective
methods have been proposed to correct for motion post acqui-
sition (see (Power et al. 2015) for a review of approaches and
associated concerns). These approaches generally rely on mo-
tion parameters characterized by rigid body realignment,
which assumes the brain to be a rigid object and estimates at
each time point its displacement from a reference position
(along three translational and three rotational axes). Motion
induced signal variance can be mitigated by projecting the
motion measures together with their higher order derivatives
out of the data (Friston et al. 1996; Satterthwaite et al. 2013;
Yan et al. 2013; Power et al. 2014), or realigning the brain
volume acquired at each time point to a fixed position using
spatial interpolation. One may also identify those problematic
time points by visually inspecting the time series of motion
parameters, and apply censoring (excluding those volumes
from further analysis, e.g., (Barch et al. 1999; Lemieux et al.
2007; Kennedy and Courchesne 2008)), or temporal interpo-
lation (extrapolating adjacent volumes, (Power et al. 2014)) to
suppress motion artifacts. Alternative to approaches that em-
ploy the estimated motion parameters, several other tech-
niques attempt to extract motion-related fluctuations from
the collected data itself based on its disparity with neural-
related fluctuations in spatial distribution and temporal char-
acteristics (Liao et al. 2005; Behzadi et al. 2007; Kundu et al.
2012; Satterthwaite et al. 2013; Griffanti et al. 2014; Patel
et al. 2014; Salimi-Khorshidi et al. 2014).

As an alternative to retrospective motion correction applied
during preprocessing, prospective motion correction
(BPromocor^) techniques can be employed during acquisition
(see (Maclaren et al. 2013) for a review). These methods uti-
lize head position information to adjust the slice plane as the
scan progresses so that the imaging plane orientation attempts
to follow that of the head. One class of methods uses motion
information acquired from the fMRI images or a navigator to
alter the scan plane for the next TR. While this method
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requires no additional instrumentation, it is only applicable for
motion that is slow compared to the slice collection time (TR/
number_slices) because the correction always lags the motion
by one TR. Another class of Promocor methods employs ex-
ternal instruments (visual (Forman et al. 2011) or electrical
(Sengupta et al. 2014) to track head orientation in order to
obtain truly real-time (<TR) orientation information. Such
methods have improved correction but entail additional setup
time for the tracking device.

Distortion Correction

fMRI signals may suffer from geometric or intensity distortion
due to inhomogeneity in the static/excitation fields. Field het-
erogeneity distorts the shape and location of tissue in the im-
age because the reconstruction assumes a linear relationship
between signal frequency and space. Hardware shimming em-
bedded in the MR system can compensate for the magnetic
field non-uniformity to a certain extent. In addition, tech-
niques have been developed to correct for distortion in the
reconstructed MR images by measuring the field heterogene-
ity with an additional acquisition of a magnetic field map and
employing image or k-space interpolation during reconstruc-
tion (Jezzard and Balaban 1995; Hutton et al. 2002; Cusack
et al. 2003; Sutton et al. 2003), or in cases when the field maps
are not available (Sled et al. 1998; Arnold et al. 2001; Lewis
and Fox 2004; Studholme et al. 2004; Vovk et al. 2004).

Temporal Filtering

In cases where the spectrum distributions of signal and noise
components do not strictly overlap with each other, temporal
filtering – which eliminates noisy frequencies but preserves
signal frequency – can help enhance fSNR of the data. For
instance, in studies employing block-design paradigm (the
task-related signals reside in very narrow frequency bands),
the detection power of the experiments can be effectively im-
proved by suppressing the power of frequencies other than that
of the task. Another common type of temporal filtering is to
remove the slow fluctuations induced by scanner drift. Such
high-pass filtering procedure is also referred to as detrending
(Tanabe et al. 2002), and has been included as a routine step in
most software packages. Besides improving fSNR of a time
series, moderate temporal filtering can also reduce the bias in
ensuing statistical analysis by obscuring the disparity between
assumed and intrinsic models of the data (Friston et al. 2000).

Spatial Smoothing

Benefits from spatial smoothing are mainly threefold. First,
spatial smoothing can improve the fSNR of the data. Due to
functional similarity of adjacent brain areas and signal blur-
ring caused by vascular origins, fMRI data are inherently

spatially correlated as acquired. As a result, proper spatial
smoothing, i.e., typically implemented by convolving the data
with a Gaussian kernel that matches the inherent spatial cor-
relation of fMRI data, could suppress noise sources uncorre-
lated among adjacent imaging voxels and increase the tSNR
of the data (Lowe and Sorenson 1997; Skudlarski et al. 1999;
Parrish et al. 2000; LaConte et al. 2003). Second, spatial
smoothing may also improve the validity of ensuing statistical
analysis by mitigating the difference between inherent spatial
structure of the data and the assumed model, e.g., increasing
the Gaussianity of the data (a key assumption of the general
linear model, and random field theory (Worsley et al. 1998)),
or achieving valid estimation of the degrees of freedom in
ensuing multiple comparisons (Worsley 2005). Lastly, proper
spatial smoothing can also ameliorate the anatomical or func-
tional variations among different subjects. Unfortunately, the
optimum kernel sizes determined by different goals above are
not consistent. For example, to maximize fSNR, the kernel
size should match the spatial correlations of each region, while
to approximate the assumed smooth Gaussian field, the ideal
kernel size should be at least twice the size of a voxel (Worsley
2005). Meanwhile, several drawbacks of spatial smoothing
should be considered as well. For instance, a larger kernel size
will reduce the spatial resolution of acquired data, and may
blur the functional boundaries or shift the activation loci of a
task to an unacceptable level (Geissler et al. 2005; Sacchet and
Knutson 2013). Therefore, there is inherent difficulty in
choosing an appropriate kernel size (see (White et al. 2001;
Worsley 2005; Scouten et al. 2006; Mikl et al. 2008; Weibull
et al. 2008) for exploratory studies and detailed discussions).
As oversimplified recommendations for conventional studies
adopting fixed kernel size throughout the brain (in contrast to
adaptive smoothing strategies, e.g., (Penny et al. 2005; Yue
et al. 2010)), a modest smoothing kernel size (~4 mm) is
suggested for single subject analysis, while a wider kernel size
(6~8mm) can be applied for a group-level analysis. However,
examining the results with no or modest kernel width is al-
ways recommended when a wide smoothing kernel is applied.

Physiological Noise Correction

As BOLD contrast originates from hemodynamically-driven
changes in tissue and vessel oxygenation, it naturally contains
non-neural fluctuations incurred by physiological processes,
such as cardiac pulsatility and respiration (Birn 2012).

Briefly, the cardiac and respiratory-related physiological
noise can be classified into two categories based on their spec-
tral distributions. The first category refers to time-locked fluc-
tuations directly synchronized with the cardiac (~0.8–1.3 Hz)
and respiratory cycles (~0.1–0.3 Hz): cardiac pulsatility in-
duces tissue movement and blood inflow that may cause sig-
nal fluctuations adjacent to large brain vessels (Dagli et al.
1999); respiration engenders chest movement that can alter
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the magnetic susceptibility and MR signal intensity (Raj et al.
2001; Brosch et al. 2002). Such periodical noises have been
demonstrated to be greater than system and thermal noise at
3T or higher magnetic field (Kruger and Glover 2001). With
effectively faster acquisition (e.g., TR<0.5 s), the cyclic fluc-
tuations can be resolved and temporally filtered out of the data
(Biswal et al. 1996; Mitra and Pesaran 1999). However, de-
spite the emergence of fast acquisition techniques, the major-
ity of fMRI studies nowadays still use TR≥2 s for the whole
brain acquisition, causing the cardiac noise to be aliased onto
lower frequencies. To correct for the aliased physiological
noise, several retrospective techniques have been proposed
(Hu et al. 1995; Le and Hu 1996; Glover et al. 2000;
Chuang and Chen 2001; Pfeuffer et al. 2002; Verstynen and
Deshpande 2011). These approaches first characterize the
physiological noise by either modeling them from external
physiological recordings (e.g., photoplethysmography, respi-
ratory belt and pulse oximetry (Verstynen and Deshpande
2011)), or estimating them directly from the acquired data,
then extract the estimated noisy fluctuations out of the time
course of each voxel.

A second category of physiological noise relates to varia-
tions of respiratory volume and heart rate. Variations of
breathing depth and rate lead to altered levels of arterial
CO2, a potent vasodilator modulating blood flow and conse-
quently the amplitude of BOLD signals (Modarreszadeh and
Bruce 1994; Van den Aardweg and Karemaker 2002; Wise
et al. 2004; Birn et al. 2006, 2008a, b; Chang and Glover
2009). The variability of heart rate possesses, which extends
to broader spectrum compared to pulsalitity cycles, has been
shown to account for considerable amounts of BOLD fluctu-
ations in resting state (Shmueli et al. 2007; Chang et al. 2009).
Numerous studies have been proposed to model such noisy
fluctuations from external recordings of physiological data
(Birn et al. 2008a, b; Chang et al. 2009; Verstynen and
Deshpande 2011) or the data itself (in a manner similar to
the removal of motion artifacts) (Beall and Lowe 2007;
Behzadi et al. 2007; Perlbarg et al. 2007; Weissenbacher
et al. 2009; Jo et al. 2010; Anderson et al. 2011; Griffanti
et al. 2014; Salimi-Khorshidi et al. 2014).

Functional-Structural Co-registration

The collected 3D stack of anatomical and functional images
generally do not match each other due to different MR con-
trasts and acquisitions (e.g., inconsistent slice orientation,
voxel resolution and image distortion), causing problems in
mapping activity (from functional data, e.g., the task-
activation map) to the anatomical image. Computational pro-
cedures that map functional and structural images to each
other are termed functional-structural co-registration. These
procedures typically resample the anatomical data to the spa-
tial resolution of functional data first, then employ a rigid body

transformation where a cost function (e.g., mutual informa-
tion) is minimized (see (Gholipour et al. 2007; Klein et al.
2009) for reviews).

Spatial Normalization

In most neuroscience studies, we may need to aggregate brain
activities across multiple individuals. Given that the shape and
size of brains are rather inconsistent across subjects, a standard
approach is to normalize each individual’s brain to a template
estimated locally from specific populations (Guimond et al.
2000) or published ones (Talairach atlas (Talairach and
Tournoux 1988) andMNI templates are most commonly used,
see (Brett et al. 2002; Devlin and Poldrack 2007; Lancaster
et al. 2007) for differences and transformations between the
two coordinate systems). Spatial normalization can be inten-
sity, landmark, or surface based (see (Gholipour et al. 2007;
Klein et al. 2009) for reviews). It is typically implemented by
either registering each individual’s functional images to a
functional template directly, or in two steps: (1) co-
registering functional and structural images; (2) registering
the anatomical image to a high-resolution structural template.
These two approaches each have their own advantages and
shortcomings – the former approach avoids inconsistent geo-
metric distortions induced by different imaging contrasts;
while the latter approach appears more robust due to improved
resolution and quality of the structural image – the employ-
ment of which depends on the particular scanning environ-
ment and imaging protocols.

For reference, Fig. 5 offers a summary framework for pre-
processing of fMRI data. Notably, the determination of specific
preprocessing pipeline interacts with numerous factors, e.g.,
types of stimulus, experimental hypothesis, and acquisition en-
vironment (Strother 2006; Huettel et al. 2008). For instance, it is
more proper to perform slice time correction prior to motion
correction with interleaved slice acquisition, while the order
should be switched in a sequential acquisition (green rectangle).
Moreover, for processes that operate linearly on the datasets,
switching orders would yield no differences in the final results
(e.g., procedures in the pink rectangle). Furthermore, it can be
questioned whether to normalize the functional images prior to
or after statistical analysis. The former avoids extra smoothing,
image distortions introduced by imperfect normalization in the
ensuing analysis, whereas the latter makes statistical analysis
demanding matched voxels from different subjects plausible
(e.g., group independent component analysis (Calhoun et al.
2001), atlas-based graph analysis).

The preprocessing steps listed above apply to different task
paradigms as well as resting state scans. Compared to block
trial type designs, event-related designs have relatively lower
detection power and high demand on the temporal precision.
Therefore, removal of various non-neural confounds and slice
timing correction are essential and indispensible for event-

296 Neuropsychol Rev (2015) 25:289–313



related studies. In resting state studies, an additional procedure
– global signal regression (GSR) is sometimes included in the
preprocessing pipeline. GSR averages the time series across
all brain voxels and projects the averaged global signal out of
each voxel’s time series using linear regression, assuming that
the averaged signal is dominated by non-neural fluctuations
that affects brain’s time series globally. GSR has been shown
to improve the specificity of functional connectivity, mitigate
motion artifacts (Satterthwaite et al. 2013; Yan et al. 2013;
Power et al. 2014), and yield prominent anti-correlations in
resting state studies (Fox et al. 2005, 2009). However, this
procedure has been controversial in resting state studies, be-
cause global signal may also carry information related to neu-
ral activity (Scholvinck et al. 2010; Wong et al. 2013).
Moreover, it has been shown both theoretically and practically
that GSR shifts the center of correlation values (by reducing
positive correlations and introducing artificial negative corre-
lations) such that all the correlation values across the brain
sum to a negative value (Murphy et al. 2009; Weissenbacher
et al. 2009; Saad et al. 2012; Gotts et al. 2013). Therefore, the
inclusion of GSR as a preprocessing procedure is advised with
great caution. Generally, noise sources that affect large areas
of the brain (e.g., physiological noise, motion) can bemodeled
by reasonable alternatives discussed earlier (see sections Head
motion correction, physiological noise correction above).
However, there are a few situations where GSR can be con-
sidered. For instance, if the alternative methods are not acces-
sible (e.g., without external recordings of cardiac or respirato-
ry waveforms) or the data contain global confounds that can-
not be effectively modeled by existing approaches, GSR could
be tested, but it is highly recommended to reexamine the re-
sults without GSR. Besides, in studies that do not directly
investigate the interaction patterns among different brain re-
gions, e.g., using pattern recognition methods to classify two
mental states, GSR could be employed as a common data
manipulation procedure. One needs to be careful with the
interpretation of results, because the inherent interaction struc-
ture of the brain has already been altered.

As introduced in the acquisition section, there has been
growing interest in fMRI studies with faster sampling rates
(from conventional seconds to sub-second scales). Faster ac-
quisition promises higher temporal resolution, increased sta-
tistical power (more sampling points with a fixed scan dura-
tion), and the examination of neural information in higher
frequency bands. The majority of existing studies with faster
acquisition (Wu et al. 2008; Boubela et al. 2013; Boyacioglu
et al. 2013; Lee et al. 2013a; Chen and Glover 2015; Gohel
and Biswal 2015) still follow the routine preprocessing pipe-
line employed in conventional studies, which may lack rigor-
ous validation. We mention a few concerns regarding this
issue that warrant careful explorations in the future. First, as
BOLD contrast results from an inherently slow hemodynamic
process, the spectrum of observed neural information
(<0.3 Hz according to the canonical HRF model in SPM8,
Wellcome Trust Centre for Neuroimaging, University
College London, UK) is less likely to accommodate the ob-
servation of functional connectivity at very high frequencies.
It is therefore not yet clear whether one can apply similar de-
noising procedures as used previously to the observed high-
frequency (>0.1 Hz) BOLD functional connectivity data (see
(Chen and Glover 2015) for discussion of HRF in the resting
state and tSNR vs. frequency).. Second, BOLD time series are
inherently auto-correlated, suggesting that the effective num-
ber of degrees of freedoms will not scale linearly with the
number of time frames collected at a fixed scan duration.
Unfortunately, properly accounting for the degrees of freedom
is ignored in many studies, leading to over-estimation of sta-
tistical significance. Third, the energy of BOLD time series is
dominated by low-frequency signals (e.g. at resting state,
power spectrums of spontaneous fluctuations mainly reside
below 0.1 Hz). As a result, if we apply the conventional pre-
processing pipeline to acquired full band time series, parame-
ter fittings involved in different steps may be driven by the
low-frequency data and cannot effectively de-noise the high-
frequency band data. For instance, if we linearly project mo-
tion regressors (see Headmotion correction above) out of each

Fig. 5 The basic scheme of preprocessing pipelines
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voxel’s time series, the scaling parameter of each regressor
would to a large extent depend on the low-frequency compo-
nent (main fluctuation) of each time series. However, there has
been no clear evidence that the relative relationships between
signals and motion noises are consistent across different fre-
quencies. Indeed, additional noise (high-frequency
components of the motion regressors) may be introduced
due to this preprocessing step and alter the structure of true
neural-related high-frequency signals.

Analysis of Task Studies

After preprocessing, the next step is to examine the research
hypothesis of the designed experiment. In this section, we take
the two-condition blocked design (experimental vs. control), a
widely adopted experimental paradigm in fMRI studies, as an
example to illuminate several common methodologies of sta-
tistical analysis.

In this particular setting, we want to identify voxels active-
ly involved in the imposed task, i.e., voxels whose temporal
behaviors differ significantly between the experimental and
control conditions. Specifically, we test the research hypothe-
sis H1: experimental condition ≠ control condition, against its
null hypothesis H0: experimental condition = control
condition.

The t Test

To introduce the concept of statistical inference in fMRI, the
simplest procedure is to treat each time point as an indepen-
dent sample (at least initially we assume so), and compare
signal amplitudes under different conditions using a standard
two-sample student’s t test. This procedure is repeated for each
brain voxel. To quantify the statistical significance of the es-
timated t-value, a p value is defined – the chance of observing
a statistic t-value or more extreme results under the null hy-
pothesis. If a voxel’s p value is smaller than a user defined
significance level a, we can hence reject the null hypothesis
and classify the voxel as ‘active’.

Primary challenges of the t-test analysis are twofold.
First, the fMRI time series is filtered by a sluggish
hemodynamic process; as a result the actual response
of an active voxel may lag ~5 s of the condition box-
car, requiring that this delay be accounted for in
assigning time points to one or the other state. More
importantly, the transition between brain states cannot
be represented as belonging uniquely to either state,
which can represent a serious loss of statistical power.
Therefore, straightforward as it appears, this t-test ap-
proach is rarely used directly with time series data in
fMRI studies.

Correlation Analysis

A more elegant approach is to examine the temporal synchro-
ny between each voxel’s time series and the predicted re-
sponse of the experiment (Bandettini et al. 1993) – derived
by convolving the task-control boxcar waveform with a ca-
nonical HRF. The correlation coefficient (Eq. (1)) is the most
frequently used metric to quantify the correspondence (or
sometimes referred to as functional connectivity) between
two time series x and y (equal length):

r ¼ 1

n−1

X
x−x

� �
y−y

� �

σxσy
ð1Þ

where n denotes the number of time points per signal, x=y and
σx=σy denote the means and standard deviations of x and y.

The correlation coefficient r ranges from −1 to 1, with 0
meaning no correlation (the null hypothesis), and ±1meaning
perfect positive/negative correlations. An r value can be con-
verted to student’s t-value based on its degrees of freedom
(unconstrained number of parameters), and we can therefore
identify active voxels using similar ways introduced above
(see the t test above). To allow for the variability of temporal
delays in HRFs across different brain voxels, cross correlation
– which estimates the correlation coefficient as a function of
the temporal lag of one signal relative to the other, may be
applied (Friston et al. 1994).

Correlation analyses can only be applied when a single hy-
pothesis is to be tested, i.e.,, to test a voxel’s time series against
another time series, such as that generated as a model for activa-
tion as described above, or to test for similarity with the time
series of another voxel in resting state studies. However, fMRI
experiments frequently involve more than one manipulation or
condition to characterize responses during different temporal
events within the scan, i.e., there are multiple hypotheses to be
tested. In this case, correlation analysis cannot be used, and a
more general method must be employed, as described next.

The General Linear Model (GLM) Analysis

As an alternative to or expansion upon correlation analysis,
the GLM analysis has been widely employed in the fMRI
community to examine the temporal synchrony between ex-
perimental observations and the predicted responses (see
Fig. 6a) (Friston et al. 1995a, b). Briefly, the fMRI time series
y, is modeled as a linearmixture of several model factors (e.g.,
predicted task response) and white Gaussian distributed addi-
tive noise term ε as below:

y ¼ β0 þ β1x1 þ β2x2…þ βnxn þ ε ð2Þ
where xi denotes each model factor, and the parameter weight
βi is the scaling term indicating the contribution of a model
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factor to the dependent variable y. When y refers to a large
number of dependent variables, such as different time points
across a scan in an fMRI study, Eq. (2) represents the GLM.

Statistical testing of the GLM estimates how well each
voxel’s time series is fit by the linear combination of model
factors. There exist routine ways (if the autocorrelation struc-
ture of ε is known) of converting the fitted results to t-, or F-
statistics to assess the significance of each model factor’s con-
tribution to y (assuming the null hypothesis: βi ¼ 0; i > 0,

i.e., no contribution from xi ) (Friston et al. 1995a, b;
Worsley and Friston 1995).

For instance, in the two-conditioned block task case, we
can estimate each voxel’s task relevance by including a single
model factor x1 (the predicted response), and testing the sta-
tistical significance of β1. This is equivalent to correlational
analysis. Through versatile modifications of model factors,
this approach allows more flexible shapes of the predicted
response (originating from inconsistent temporal delays and

Fig. 6 The majority of model-
based and model-free analyses in
fMRI studies can be incorporated
into a coherent scheme of matrix
decomposition. Specifically, the
4-D fMRI dataset can be
rearranged into a 2-D matrix by
aligning all voxels of the same
time point in a row; different
approaches (e.g., GLM (a),
MVPA (b), ICA/PCA (c)) attempt
to decompose the 2-D matrix into
sub-components by imposing
various assumptions of the de-
composed matrix structure (blue
rectangles), then extract the
spatial patterns (network patterns,
pink rectangles) of neural-related
contributions
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variability of HRF shapes across different brain regions), de-
tails can be found in chapter 5 of (Poldrack et al. 2011), and
chapter 10 of (Huettel et al. 2008).

Compared to correlation analysis, the GLM approach al-
lows for more flexible experimental designs (e.g., experiments
involving three or more cognitive conditions), and can include
any known sources of variability as model factors, such as
nuisance components (e.g., motion parameters, physiological
fluctuations) and non-imaging information (e.g., subjects’ age
and behavioral data, genotypical information, multi-site scan-
ning environment). Other applications of GLM also include
characterizing the impulse responses in event-related designs
(Dale 1999; Glover 1999), studying the psychophysiological
interactions (PPI) among different regions (Friston et al.
1997), and investigating the coupling between fMRI and other
imaging modalities (e.g., EEG recordings (Goldman et al.
2000; Laufs et al. 2003)).

The major limitation of the GLM lies in the validity of
model assumptions in specific fMRI applications (pertaining
to relationships among model factors, between noise and
model factors, and the assumed serial structure of the noise
term, see (Monti 2011; Poline and Brett 2012) for reviews),
which unfortunately, is rarely discussed in most cases. Of
course, the GLM also presupposes linearity of BOLD re-
sponses (Boynton et al. 1996), which may not be valid. In
such cases, higher order models must be utilized (Friston
et al. 1998a, b).

Multivariate Pattern Analysis

Correlation analysis and the GLM introduced above treat each
brain voxel independently and examines its intensity differ-
ences irrespective of all other voxels. However, such a
univariate assumption may not hold rigorously, given that
our brain is a complex system with tight interactions between
different cortical regions. For instance, it is possible that an
experimental condition modulates the activity pattern among
multiple voxels without altering the averaged intensity levels
of each voxel. In such cases and others, it may be statistically
advantageous to examine groups of voxels simultaneously.
Therefore, in contrast to univariate analyses focusing on the
independent activity of individual voxels, a multivariate pat-
tern analysis (MVPA) scheme, which integrates responses of
multiple voxels/regions in an experiment, may be exploited
(see Fig. 6b) (Haxby et al. 2001). Briefly, this set of ap-
proaches reference the concept of pattern classification, seek-
ing to characterize the combination of activities among mul-
tiple voxels/regions to differentiate between experimental
conditions (see (O’Toole et al. 2007; Pereira et al. 2009;
Haxby 2012; Mahmoudi et al. 2012) for reviews). Since
2001, MVPA has been actively applied in fMRI studies to
investigate activity patterns in visual systems and various cog-
nitive processes (see (Haynes and Rees 2006; Norman et al.

2006; Tong and Pratte 2012) for reviews); several MVPA
toolboxes are readily available for non-technical users (e.g.,
a matlab-based Princeton MVPA toolbox (http://code.google.
com/p/princeton-mvpa-toolbox/), a Python-based PyMVPA
toolbox (http://www.pymvpa.org)). Although MVPA is more
sensitive and informative than univariate analysis, several
technical challenges still exist, which potentially prevent it
from being the dominant approach in revealing brain activity
patterns (see (Norman et al. 2006; Haxby 2012; Tong and
Pratte 2012) for more complete discussions). First, it is hard
to identify the neural representations of the learnt classifica-
tion patterns, e.g., questions such as what information is
encoded in the pattern, remain unclear. Second, technical fac-
tors (e.g., which voxels/regions should be covered, what
spatial/temporal scales should be encoded) interplay with the
performance of MVPA in very complicated manners, but are
not easily determined. Finally, due to the high demand of fine-
grained topographies in distinguishing subtle differences
across states, MVPA are typically done in each individual’s
native dataset, posing problems in characterizing activity pat-
terns at a group level (see (Haxby et al. 2011) for a plausible
solution).

Correction for Multiple Comparisons

As mentioned above, the ‘p value’ is defined so to rigorously
assess the statistical significance associated with each ob-
served metric. If a voxel’s p value is smaller than a user de-
fined significance level α, we reject the null hypothesis and
classify the voxel as ‘active’.

However, in a standard fMRI analysis, we are faced with
the challenge of multiple comparisons. For instance, if we
attempt to identify ‘active’ voxels across 100,000 voxels un-
der the significance level α ¼ 0:05, ~ 5000 voxels may be
falsely classified as active by random chance under the null
hypothesis. To correct for these false positive errors (voxels
identified as ‘active’ but which are indeed not) induced by
multiple comparisons, several approaches have been proposed
(see (Nichols 2012) for a review). These approaches generally
fall into two categories. A first category directly introduces
more stringent voxel-wise significance level α (the threshold
of p values) by assigning new error criteria, e.g., Familywise
Error Rate (FWE, the chance of one or more false discoveries
(Nichols and Hayasaka 2003)) and False Discovery Rate
(FDR, the expected proportion of false positives among de-
tected activation (Genovese et al. 2002)). FWE is typically
controlled by Bonferroni procedure and is effective in sup-
pressing false positives, however, it has less power than
FDR in general. A second category of methods controls the
false positive probability of an entire cluster (contiguous
voxels) instead of a single voxel. These methods first define
clusters by retaining ‘active’ voxels above a primary p thresh-
old, then evaluate the statistical significance of cluster
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activation by testing its size against the null hypothesis of no
active voxels in that cluster. Popular approaches include ran-
dom field theory (Worsley et al. 1992, 2004), Monte Carlo
simulation (Forman et al. 1995) and nonparametric permuta-
tion (Holmes et al. 1996; Nichols and Holmes 2002).
Compared to the first category of approaches, these methods
are advantageous in less stringent thresholds, high sensitivity,
and incorporation of the spatial correlation, but have limited
spatial specificity for large clusters (see (Woo et al. 2014) for
detailed discussion).

Inter-subject Analysis

The analyses discussed above have focused on identifying
task activations in a single subject. However, an fMRI study
typically recruits several or many subjects in order to probe
biodiversity and generalize across a population or disease
state. Therefore, we need to combine results across subjects
to better test the experimental hypothesis. There exist two
main approaches to make the group-level inference of task
activation (Huettel et al. 2008).

The first, and more straightforward way is to combine
(through temporal concatenation or averaging) the time points
of all the examined subjects in a single time series, and perform
single-subject level analysis as introduced above. This ap-
proach relies on the key assumption that the experimental effect
is fixed across all the recruited subjects, so it is termed a fixed-
effect analysis. If this assumption (inter-subject variation=0,
only intra-subject variation exists) holds true, temporal combi-
nation of each subject’s data can improve the detection power
by either increasing the degrees of freedom (concatenation) or
reducing intra-subject variations (averaging). However, due to
this assumption, the result of fixed-effect analysis is very sensi-
tive to outliers within the recruited subjects (subjects with ex-
treme task responses). Consequently, the conclusions are re-
stricted to the specific subjects scanned within the study, and
may not generalize to a larger population.

In contrast to fixed-effect analysis, a random-effect analysis
is more commonly applied in fMRI studies nowadays. This
analysis assumes that each subject is drawn from a large pop-
ulation of subjects, and that his response represents an inde-
pendent sample from the overall distribution of task effects.
The random-effect analysis is performed in two stages. In the
first stage, summary statistics regarding task activation from
each individual subject is analyzed independently. In the sec-
ond stage, the distribution of summary statistics derived from
the first stage is tested for significance. For instance, we can
use a simple t-test to examine whether the summary statistics
from all the subjects are drawn from a distribution with a mean
of zero. If intra-subject variations in the first stage are carried
up to the second stage, this analysis can also be referred to as
mixed-effect analysis (Poldrack et al. 2011). Because random-
effect analysis permits the inferences of the entire population

from which the subjects are drawn, it is preferable to fixed-
effect analysis in most applications, and has been made avail-
able with various fMRI statistical toolboxes (see Table 2).

Analysis of Resting State Data

In task-based experiments (blocked, event-related, or mixed
designs), we can target brain regions/patterns associated with
the on-going stimulus by examining each brain voxel’s tem-
poral synchrony with the task waveform. By contrast, during
task-free mental conditions (e.g., resting state, levels of con-
sciousness, continuous hypercapnia/hypocapnia challenges),
we do not have explicit timing information to model the tem-
poral behavior of neural-related fluctuations inherent in each
brain voxel. To reveal the patterns of functional connectivity
governing a task-free condition, several schemes of analyses
have been proposed in the past two decades.

The first approach is seed-voxel based analysis (see
Figs. 6a and 7a) (Biswal et al. 1995; Cordes et al. 2000;
Greicius et al. 2003; Hyde and Jesmanowicz 2012). This ap-
proach extracts the time series of a seed region, typically the
activation/deactivation locus delineated from a prior task scan
or a node within the network under investigation, and esti-
mates its temporal synchrony with the rest brain voxels using
GLM or correlation analysis introduced earlier. The topogra-
phy of the network, i.e., regions significantly coupled with the
seed voxel, informs the functional interaction patterns of the
seed/network, and can be further compared under types of
mental conditions or groups of subjects (healthy controls vs.
clinical population) to examine its modulation by cognitive
loads and neuropsychiatric disorders.

A second type of analysis enables the exploration of whole-
brain functional connectivity configuration without prior se-
lections of network seeds using data-driven or model-free
methods. Among all these model-free approaches, i.e., ap-
proaches without prior assumptions, independent component

Table 2 Several of the major fMRI toolboxes with flexible
preprocessing pipelines and statistical analysis models

Toolbox Website

AFNI http://afni.nimh.nih.gov/afni/

Brain
voyager

http://www.brainvoyager.com

FIASCO http://www.stat.cmu.edu/~fiasco/

FreeSurfer http://surfer.nmr.mgh.harvard.edu

FSL http://fsl.fmrib.ox.ac.uk/fsl/

MEDx http://ftp.medicalnumerics.com/products/medx/index.
html

REST http://restfmri.net/forum/index.php

SPM http://www.fil.ion.ucl.ac.uk/spm/

Stimulate https://www.cmrr.umn.edu/stimulate/
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analysis (ICA) is the most frequently employed in task-free
fMRI studies (see Figs. 6c and 7b) (McKeown and Sejnowski
1998; Calhoun et al. 2001; van de Ven et al. 2004; Beckmann
et al. 2005; Smith et al. 2009; Beckmann 2012). Very briefly,
ICA separates the whole brain voxels into additive subcom-
ponents by assuming that the subcomponents are non-
Gaussian and they are statistically independent from each oth-
er. The spatial patterns of the obtained independent compo-
nents (ICs) resemble those network patterns resolved by seed-
based analysis (Greicius et al. 2004), and are consistent across
different studies or subjects (Damoiseaux et al. 2006).
Besides, ICA is able to identify certain non-neural sources
of variability, such as motion or physiological noise, as sepa-
rate subcomponents, and can therefore aid preprocessing
(Liao et al. 2005; Beckmann 2012). Major shortcomings of
this approach include: (1) ICs correspond tomore complicated
representation of the raw fMRI data than seed-based function-
al connectivity maps, making it difficult to interpret group
differences in clinical or neuropsychiatric applications; (2)
the resolved ICs and their spatial patterns vary as a function
of the number of subcomponents specified by the user; and (3)
the classification of components into noise or signal is subject
to user-induced interpretation bias.

In addition to ICA, several other model-free approaches
have been proposed to characterize the functional connectivity
patterns in task-free states. For instance, principal component
analysis (PCA) projects the raw fMRI data into orthogonal
spaces – principal components (PCs), and only focuses on
the space spanned by the leading few PCs (i.e., PCs explaining
the most variance of the original dataset) (Friston et al. 1993).
A number of clustering techniques (Fig. 7c), such as hierar-
chical clustering (Cordes et al. 2002), Normalized-cut (van
den Heuvel et al. 2008), Laplacian based clustering (Thirion
et al. 2006), fuzzy clustering (Chuang et al. 1999), and spectral
clustering (Craddock et al. 2012), have been applied to pro-
duce resting state networks as well. Clustering analysis

attempts to parcellate the brain into distinct clusters such that
intra-cluster similarity is higher than inter-cluster similarity.
Naturally, voxels belonging to the same functional network
(with strong temporal synchrony) will fall within the same
cluster, if the cluster number is properly chosen.

A third type of analysis simplifies cortical regions as distrib-
uted functional nodes, and computes the pair-wise functional
correlations of these nodes to achieve a global view of functional
organization. The functional nodes can be derived by spatially
parcellating the brain voxels into functionally homogeneous
ROIs, or more conveniently, employing the recently reported
functional atlas (Craddock et al. 2012; Shirer et al. 2012).
Obviously, this approach offers a more intuitive, comprehensive
characterization of the connection patterns. However, as it as-
sumes functional homogeneity within each functional ROI/
node and is assumed to inherit the information carried at
individual-voxel level, whether these atlas ROIs can be general-
ized to broader populations or mental disorders is questionable.
For instance, it has been demonstrated that the functional con-
nectivity map at rest may reorganize under different types of
neuropsychological disease or age modulation (see (Fox and
Greicius 2010; van den Heuvel and Hulshoff Pol 2010;
Rosazza and Minati 2011; Lee et al. 2013b) for reviews). At
the very least, given that alternations of atlas topography may
be more or less reflected as changes in the node-level connectiv-
ity, we can still use this functional node level analysis as a pre-
liminary step to target candidate brain regions, then employ ap-
proaches such as seed-based analysis to examine in detail the
disruptive functional dissociations in more detailed manners.

Advanced Analysis

From Functional Connectivity to Effective Connectivity

The vast majority of clinical inferences drawn from resting
fMRI studies stem from quantifications of functional

Fig. 7 Network patterns of the
default mode network (a special
resting state network) generated
by different analyses approaches
(red overlays). Results from the
seed-based correlation analysis
and ICA are thresholded for
display
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connectivity – the direct temporal synchrony among distribut-
ed cortical regions. Nonetheless, these metrics do not inform
further the directional causal influence between neuronal sys-
tems that underlie the observed macroscopic correlation.
Therefore, there have been growing efforts exploiting effective
connectivity, the directed causal influence that one neuronal
system exerts on another (see (Friston 2009; Friston 2011a;
Poldrack et al. 2011; Valdes-Sosa et al. 2011; Stephan and
Roebroeck 2012) for reviews). Approaches estimating the ef-
fective connectivity generally start with sets of assumptions
on the inherent data structure (time series, correlation matrix
or higher-order statistics) or underlying biophysics to be
modeled, then seek the optimum models using criteria such
as maximum likelihoods or Bayesian inferences, and finally
invoke the learned model parameters to conclude causality or
conditional dependences. The most common approaches in-
clude dynamic causal modeling (DCM) (Friston 2011b;
Friston et al. 2003, 2011, 2014; Penny et al. 2004, 2010; Lee
et al. 2006; Stephan et al. 2007, 2008, 2010; Marreiros et al.
2008; Schuyler et al. 2010; Seghier et al. 2010; Daunizeau
et al. 2011; Li et al. 2011; Lohmann et al. 2012), Granger
causality analysis (Granger 1969; Goebel et al. 2003;
Harrison et al. 2003; Roebroeck et al. 2005; Deshpande
et al. 2009), structural equation modeling (SEM) (McIntosh
and Gonzales-Lima 1994; Buchel and Friston 1997; Horwitz
et al. 1999; Bullmore et al. 2000), psychophysiological inter-
action (Friston et al. 1997), graphical causal modeling (Pearl
2000; Spirtes et al. 2000), dynamic Bayesian networks
(Rajapakse and Zhou 2007), and switching linear dynamic
system (Smith et al. 2010); and have been actively employed
in clinical studies to identify abnormal interactions in patients
(e.g., Alzheimer’s disease (Agosta et al. 2010; Rytsar et al.
2011; Liu et al. 2012; Neufang et al. 2014; Zhong et al.
2014), depression (Schlosser et al. 2008; Almeida et al.
2009; Goulden et al. 2010; Moses-Kolko et al. 2010;
Hamilton et al. 2011; Iwabuchi et al. 2014; Liu et al. 2015),
and schizophrenia (Schlosser et al. 2003; Kim et al. 2008;
Benetti et al. 2009; Crossley et al. 2009; Dima et al. 2009;
Allen et al. 2010; Diaconescu et al. 2011; Deserno et al. 2012;
Guller et al. 2012; Mukherjee et al. 2012; Birnbaum and
Weinberger 2013; Zhang et al. 2013; de la Iglesia-Vaya et al.
2014; Hutcheson et al. 2015)). As suggested by the way it is
termed, effective connectivity opens a promising avenue to
perceive the neural-related couplings of our brain systems.
Nevertheless, such goals are challenging to achieve in real
implementations due to the biophysics of fMRI and several
technical limitations. First, fMRI by nature inevitably contain
spatiotemporal variability from hemodynamic sources.
Without rigorously correcting for hemodynamic variability,
it may not be sensible to claim that the observed causal rela-
tionship reflects a neuronal origin (Chang et al. 2008; David
et al. 2008; Deshpande et al. 2010; Roebroeck et al. 2011;
Webb et al. 2013). Second, to make integrative and precise

inferences of information flow at the neuronal level, an ideal
model should include the whole set of brain regions (even for
cases assessing the effective connectivity between two re-
gions) and superior to all alternative possible structures. The
problem is thus problematic due to computational complexity
(enormously large dimension expanded by the model space)
and inadequate samples (the number of unknown free param-
eters is much larger than the number of time points per fMRI
scan). To tackle the problem, we can enforce specific con-
straints on the model space by prior assumptions or briefly
characterizing the causal structure of the data using ap-
proaches such as graphical causal modeling (Ramsey et al.
2010). Apart from the two major concerns discussed here,
effective connectivity faces other challenges, e.g., modeling
causal structure across multiple subjects, see (Ramsey et al.
2010; Poldrack et al. 2011; Valdes-Sosa et al. 2011) for dis-
cussions and plausible solutions.

From Voxel/ROI-Wise Correlations to Complex Network
Behavior

As mentioned earlier (see analysis of resting state data above),
a systematic view of the brain’s functional organization could
be achieved by parcellating brain voxels into discrete func-
tional nodes and examining the global interactions among
these nodes. Indeed, such data manipulation and simplifica-
tion also make it plausible to characterize the network-wise, or
community-wise behavior of the data. Numerous quantitative
metrics, originally proposed in graph theory, have been intro-
duced to learn the complex network behavior of our brain’s
functional structure, such as small-world topology (Watts and
Strogatz 1998), scale-free network patterns (Barabasi and
Albert 1999), rich club behavior (van den Heuvel and
Sporns 2011), efficiency of global/local information flow
(Latora and Marchiori 2001), hierarchies and modular struc-
tures (Meunier et al. 2010), etc. (see (Bullmore and Sporns
2009; Meunier et al. 2010; Rubinov and Sporns 2010;
Bullmore and Sporns 2012; Sporns 2013) for reviews of com-
plex network measures). These metrics, complimentary to
conventional node-wise measures, have provided new oppor-
tunities to understand brain functions and neuropsychological
diseases under the setting of a complex system (see (Bassett
and Bullmore 2009; Stam and van Straaten 2012; Filippi et al.
2013; Hulshoff Pol and Bullmore 2013; Stam 2014) for re-
views of clinical investigations). Despite the wide application
of complex measures in clinical explorations, several potential
challenges still lie ahead. For instance, the robustness of the
estimated network-wise behavior is apparently vulnerable to
choice of functional ROIs (Smith et al. 2011). If the ROIs
employed to extract node time series for further network anal-
ysis do not match the actual functional boundaries of the data
well, time series from different functional regions may mix
with each other and obscure the actual community behavior of
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our brain. In this sense, functional, locally derived atlases are
generally preferable to anatomical, standard atlases defined
from large groups of subjects. Besides, these metrics from
graph theory usually summarize the brain’s complex
network-wise behavior in one single value. One can question
whether the observed differences between groups of subjects
(e.g., healthy controls vs. clinical populations) originate from
neural sources, or from those confounds that affect brain
voxels globally, e.g., motion and physiological processes
(Smith 2012). Therefore, rigorous modeling and careful re-
moval of potential noise confounds are essential for relevant
studies. Examining the dependence of derived metrics to the
processing pipeline (by including or excluding certain skepti-
cal steps) can also enhance the reliability of the results.
Furthermore, these complex network behaviors typically de-
viate substantially from the bottom-level temporal synchrony
among functional nodes, making clinical interpretations on
the results not easy.

From Static Functional Connectivity to Brain Dynamics

Until a few years ago, studies investigating the RS functional
connectivity have invoked the key assumption of temporal
constancy, i.e., that interactions among different cortical re-
gions remain unchanged during the entire scan. However,
such assumptions are invalidated by recent observations that
the network patterns may undergo substantial changes across
a single RS scan (Chang and Glover 2010; Kiviniemi et al.
2011; Handwerker et al. 2012; Jones et al. 2012; Hutchison
et al. 2013; Allen et al. 2014). In contrast to extracting the
functional connectivity metrics by integrating time points over
the whole scan as performed in conventional static studies,
these dynamic analyses investigate the variability of brain
connectivity metrics at sub time periods across the scan ses-
sion (see (Hutchison et al. 2013; Calhoun et al. 2014) for
reviews of methodology). The dynamic property of RS func-
tional connectivity may carry information (at least) as important
as those time-averagedmetrics widely explored in neuroscience
studies or clinical applications, e.g., it is entirely possible that
clinical populations possess disrupted dynamics, which taken
together with abnormal time-averaged metrics, may offer better
understanding of the associated disorders. Preliminary applica-
tions include mental disorders such as schizophrenia (Sakoglu
et al. 2010; Damaraju et al. 2014; Ma et al. 2014; Rashid et al.
2014; Shen et al. 2014; Yu et al. 2015), major depression (Allen
and Cohen 2010), Alzheimer’s disease (Jones et al. 2012), opi-
oid analgesia (Robinson et al. 2015), temporal lobe epilepsy
(Morgan et al. 2015) and childhood autism (Price et al. 2014).
Of note, as studies of brain dynamic functional connectivity are
at quite an exploratory stage, the associated interpretations of
disrupted dynamics in disorders are still very cursory – it is yet
hard to identify the true mechanism from candidates such as
changes in autonomic processes, vigilance states, or behavioral

origins (see (Hutchison et al. 2013) for a review). Hence, exter-
nal measurements of physiological processes (e.g., galvanic
skin response, respiratory and cardiac data) will be surely ben-
eficial for confound reduction or identification of potential
mechanisms.

It is important to highlight two technical challenges of dy-
namic studies. The first challenge lies in the inability of a
standard fMRI scan (with minutes-long duration) to character-
ize the complete patterns of time-varying functional connec-
tivity (an implicit premise for between group comparison).
The total number of interaction patterns that different cortical
regions may exhibit, although not quantified yet, is presum-
ably huge. In contrast, the patterns that can be captured by
~10 min long scanning snapshots are very limited. It is there-
fore speculative whether the altered patterns of brain dynam-
ics in a clinical group (if they exist) indeed result from the
associated disorder, or simply the stochastic nature of limited
samples per scan. A second challenge relates to the number of
time points (independent observations, if not considering the
hemodynamic autocorrelation in time series) involved in the
estimation of each connectivity pattern. Most current dynamic
analyses implicitly assume that the time our brain spends in
each network pattern is substantially shorter than the total scan
duration. There is therefore a tradeoff between the statistical
power of a limited snapshot of the brain’s behavior and the
temporal resolution with which it is desired to test for dynamic
changes. The consequent danger is that the number of time
points collected when the brain is in a certain network pattern
may not be adequate to yield statistically robust estimations.
Collectively, at the current stage, longer scan durations (more
network patterns) and faster acquisition rates (more samples)
may improve the reliability of dynamic brain connectivity.

Analysis Software

Many software packages have been developed for the analysis
of fMRI data. These programs have flexible pipelines for pre-
processing and multilevel task and resting state analysis (see
Table 2 for some popular toolboxes).

Conclusions

Functional MRI has had a long history of development for,
and application to, a large body of basic systems-level neuro-
science investigation (see (Bandettini 2012) for a review). The
original block design experiments have been augmented by
many other types of experimental design, but remain a work-
horse method for psychiatric studies. While most aspects of
BOLD contrast are by now well understood, it remains an
active area of research. Furthermore, acquisition methods are
reasonably standardized by now with the use of single-shot
EPI, although faster, more efficient methods such as SMS
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have been recently introduced. Both task-based and resting
state experiments have shown great promise in understanding
the brain’s behavior in healthy and diseased populations, and
in guiding clinical therapy. Pattern classification and other
forms of multivariate analyses are being employed to develop
biomarkers of disease (Nash et al. 2013), and with which to
predict outcome for therapeutic intervention (Hoeft et al.
2011). Because BOLD fMRI relies on an indirect indicator
of metabolic contrast, and because the signals are small, it is
crucial to perform adequate compensation for confounds such
as physiological noise, dynamic brain states, and subject mo-
tion, and to use great rigor in the acquisition and analysis
pipelines to make sure the imaging data and derivative results
are robust and reproducible across the duration of the study.
With proper attention to all these factors, fMRI has become an
invaluable tool for psychiatric investigations.
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