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Abstract

Cardiovascular Magnetic Resonance (CMR) has become a primary tool for non-invasive assessment of cardiovascular
anatomy, pathology and function. Existing contrast agents have been utilised for the identification of infarction, fibrosis,
perfusion deficits and for angiography. Novel ultrasmall superparamagnetic particles of iron oxide (USPIO) contrast
agents that are taken up by inflammatory cells can detect cellular inflammation non-invasively using CMR, potentially
aiding the diagnosis of inflammatory medical conditions, guiding their treatment and giving insight into their
pathophysiology. In this review we describe the utilization of USPIO as a novel contrast agent in vascular disease.
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Introduction
Inflammation is central to many cardiovascular patho-
physiological processes including atherosclerosis, myo-
cardial infarction and heart failure. Macrophages are key
mediators of these inflammatory pathways, initiating
both destructive and reparative processes [1]. Quantifi-
cation and characterization of tissue macrophage activity
may therefore assist in our understanding of the patho-
genesis of cardiovascular disease and help determine dis-
ease severity and prognosis, as well as providing a
biomarker to assess the efficacy of established or novel
therapeutic interventions.
Cardiovascular magnetic resonance (CMR) is a well-

established clinical imaging modality offering excellent
soft tissue contrast and spatial resolution, whilst avoid-
ing ionizing radiation. Standard gadolinium-based con-
trast agents are paramagnetic and are infused into the
blood pool with variable organ extraction rates, although
subsequent extravasation and redistribution can be used
to identify the interstitial and extracellular spaces. Gado-
linium is commonly used as an CMR contrast agent
after acute myocardial infarction (MI) to identify areas

of tissue infarction and fibrosis [2, 3]. Tissue oedema
and rupture of cell membranes with consequent diffu-
sion of gadolinium into the inter- and intra-cellular
spaces [2] results in a “delayed gadolinium enhance-
ment” effect in infarcted regions. Recent interest has
turned to novel agents that provide additional structural
and functional cellular information. Such ‘smart’ contrast
agents include iron oxide nanoparticles.

Iron oxide nano-particles
Particles of iron oxide are divided into classes based on
their size (Table 1). In this review, we will focus on ultra-
small superparamagnetic particles of iron oxide (USPIOs)
that consist of nanoparticles with a diameter of <50 nm
and include ferumoxtran-10 (Sinerem, Guerbet) and feru-
moxytol (Rienso, Takeda; Feraheme, AMAG Pharmaceuti-
cals). Although Rienso had been authorised for use in
European Union, Takeda since has withdrawn it. However
Feraheme is clinically available in the United States for the
treatment of iron deficiency anemia in adult patients with
chronic kidney disease (CKD).
Ferumoxytol is well tolerated by patients with chronic

kidney disease and iron deficiency anaemia, and had a
similar overall treatment-related adverse event rate to
oral iron [4]. This safety data is further supported by
additional retrospective observational data from three
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large haemodialysis clinics in the United States involving
more than 8600 patients and more than 33,300 adminis-
tered doses of ferumoxytol [5, 6]. The only contraindica-
tions to use are known hypersensitivity or iron overload.
Therefore there is little to limit widespread clinical use
as an imaging agent.
USPIOs can be used as a blood pool contrast agent

but it is their ability to be taken up by inflammatory cells
that has distinguished them [7]. Cellular uptake of
USPIOs occurs through a variety of mechanisms. Phago-
cytosis and receptor-mediated endocytosis are important
for uptake of larger particles, whilst smaller particles are
internalized by pinocytosis. Although the avidity of
macrophage uptake is strongly influenced by particle size
and charge, the surface coating is particularly important
[8, 9]. As a result of their smaller size, USPIOs are less
readily recognized by phagocytic cells and persist in the
circulation for longer than other iron particles (plasma
half-life 14–30 h in humans) [10, 11]. They are capable
of passing through capillary walls, to be taken up by
tissue-resident macrophages and neutrophils (Fig. 1)
[12–14]. These characteristics allow USPIOs to detect
and highlight cellular inflammation within tissues using
CMR.

Imaging methodology
USPIOs induce local magnetic field inhomogeneities that
shorten T2 and T2* relaxations times resulting in a sig-
nal deficit on magnetic resonance images. USPIOs also
have a T1 shortening effect, particularly at low concen-
trations, and appear bright on T1 weighted images. The
T1 shortening effect mainly depends on the strength of
the magnetic field, and is higher in lower field strength.

A range of approaches have been used to evaluate
USPIO accumulation in tissues. Most simply, images
may be qualitatively assessed for signal deficits. However
this approach is subjective, and signal deficits due to cal-
cification or other artefacts may be misinterpreted.
Manually drawn regions of interest have been used to
allow comparison of signal intensity of the target tissue
with that of control tissue although discrete focal areas
of USPIO accumulation, and thus focal inflammation,
may be missed.
Tissue properties, such as the presence of oedema or

haemorrhage, can alter image intensities on T2* se-
quences, and so pre- and post-contrast images need to
be compared to delineate the impact of USPIO accumu-
lation. This requires accurate co-registration of these
paired scans and adjustments for differences in baseline
intensity. A specific region of interest (ROI) map can be

Table 1 Iron oxide nanoparticle preparations

Particle Size (Diameter) Plasma half-life (h) Application

Microparticles of iron oxide (MPIOs) 1–6 μm [53] 1–2 min Readily endocytosed and detected with CMR [53]. Need
immediate scan following infusion.

Can be combined with ligands for cellular targets allowing
molecular imaging [54].

Large size means they remain in the blood pool and are
suitable for endovascular imaging t [55].

Superparamagnetic particles
of iron oxide (SPIOs)

65–150 nm [56] 2–3 h Ferumoxide (Endorem, Guerbet, France) and ferucarbotran
(Resovist, Bayer-Schering Pharma, Germany).

Recognised by cells of the reticuloendothelial system. Have
been used for oncological imaging including liver studies
where they are taken up by Kuppfer cells in normal tumour-free liver [57].

Mesenchymal stem cell, monocyte/macrophage labelling [58].

Ultrasmall SPIO (USPIOs) <50 nm [59] Ferumoxytol: 9–15 h Ferumoxtran-10 (Sinerem, Guerbet, France) and ferumoxytol
(Rienso, Takeda, United Kingdom).

Ferumoxtran-10:
25–30 h

Very small superparamagnetic
iron oxide particles (VSOPs)

<10 nm [60] 1 h Alternative blood pool agents with longer circulating half-life
than gadolinium based agents [61, 62].

Potential as cell tracking agents [63].

Fig. 1 Murine blood monocyte in peripheral circulation 48 h after
infusion of USPIO. Inlay (bottom right – magnified form black box)
demonstrates USPIO within lysosome
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drawn and subsequently transferred to each subsequent
co-registered image, thus ensuring the signal intensity
can be compared for identical sample regions in differ-
ent scans from the same patient.
Rather than assessing focal image brightness at a single

echo time, the T2* time constant can be calculated from
the exponential decay curve using multiple echo times
(Fig. 2). This method provides greater reproducibility,
broad applicability throughout the field of view, and inde-
pendence from T1 effects and a range of imaging vari-
ables. In the presence of USPIO, the T2* relaxation rate is
increased thus giving a lower T2* value, or higher R2*
value (R2* is the inverse of T2*, R2* = 1/T2*). Calculation
of these values permits the generation of T2* or R2* maps
indicative of USPIO accumulation (Fig. 3).
Various authors have used different techniques to calcu-

late USPIO uptake in tissues, and have reported results
using T2, T2* or R2*. This can cause confusion since higher
values infer diminished USPIO uptake in T2/T2* weighted
images, but higher uptake in R2* maps. For the purposes of
this paper, imaging techniques will be described but results
reported in terms of “increased USPIO uptake.” In order to
account for native R2* values, various authors have used
the delta increase in R2* value from successive scans, or
factor increase. When pre-USPIO scans have not been per-
formed, it must be assumed that non-inflamed tissue has
similar R2* values to pre-USPIO native R2* values.
Finally, it must be noted that USPIO imaging can be

affected by artefact. USPIO also shorten T1, and so

cause signal enhancement of T1 weighted imaging [15].
However, at high concentration USPIO can cause signal
loss with such imaging limiting its use with T1 weighted
sequences [16]. The superparamagnetic nature of the
particles means that they generate strong local magnetic
field inhomogeneities, and it is this magnetic susceptibil-
ity that is being imaged by CMR. However this can
cause loss of distinction of anatomical borders and dis-
tort normal tissues (“blooming artefact”). USPIO will ac-
cumulate in the reticulo-endothelial system including
the liver and spleen. This accumulation can affect neigh-
bouring structures, and care must be taken not mistake
blooming artefact for USPIO uptake.

Cardiovascular applications
Atherosclerotic plaque
Given the central role of macrophage biology in the patho-
genesis of atherosclerosis, USPIOs have an obvious applica-
tion in the investigation of atherosclerotic disease. In pre-
clinical studies, uptake of USPIOs is demonstrable within
numerous atherosclerotic models including aortic plaques
of hyperlipidemic rabbits [17, 18] and mice [19] as well as
the neointimal hyperplasia following balloon injury [12, 20],
and is proportional to plaque macrophage content.
Modulation of inflammation within atherosclerotic pla-

ques can be assessed by USPIO imaging [21]. P38
Mitogen-activated protein kinase (MAPK) is an inflamma-
tory signalling pathway activated by angiotensin II in vari-
ous vascular cell types [22, 23]. Angiotensin II infusion

Fig. 2 Theoretical T2* exponential decay curves. The T2* curve can be plotted using signal intensities from a region of interest (green crosses)
for specific echo times (TEs). In this case, a line of best fit is plotted using the known equation for T2* decay. A T2* map is created from these
derived T2* values giving pixel-by-pixel measurements of T2* reported in units of milliseconds, rather than signal intensity of raw images. The red
curve describes the decay from pre-USPIO tissue, and the green curved indicated a faster decay due to presence of USPIO. The blue line describes
the time constant, T2*
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leads to macrophage accumulation and UPSIO uptake
in atherosclerotic plaques of mice [21, 24] that can be
inhibited by co-administration of a p38 MAPK pathway
inhibitor. Interestingly, this effect was predominantly
manifested by a reduction in USPIO uptake by macro-
phages rather than a reduction in macrophage num-
bers, suggesting an effect on macrophage activity rather
than recruitment. In contrast, the angiotensin II type 1
receptor antagonist, irbesartan, decreased both USPIO
uptake and macrophage content in the apolipoprotein
E deficient mouse model [25].
USPIO uptake occurs in human carotid atherosclerotic

plaques and appears to correlate with the number of iron-
laden macrophages on histology [26]. Consistent with the
inflammatory cell infiltrate associated with vulnerable pla-
ques, 75 % of ruptured or rupture-prone lesions show
USPIO uptake compared to only 7 % of apparently stable
lesions. Determining the overall macrophage burden is
challenging because of a number of factors. There is a
curvilinear relationship between area of signal intensity re-
duction and USPIO concentration. Signal intensity is also
dependent on density of particle accumulation, and a
heterogeneous population of macrophages would be ex-
pected to have differing degrees of USPIO uptake. The
amount of USPIO infused, and by extrapolation perfu-
sion of target tissue, will also determine the magnitude
of CMR changes [27].
USPIO uptake and inflammation does not correlate

with plaque volume or the degree of luminal stenosis
[28], and as already stated USPIO maybe useful in inves-
tigating USPIO activity in contrast to concentration [24].
This raises the possibility of using USPIO uptake to
monitor disease activity in carotid stenosis rather than
using conventional anatomical measurements. For in-
stance, statins reduce inflammation within atheroscler-
otic plaques as well as systemic markers of inflammation
[29, 30] and this has been assessed using USPIO uptake.
The ATHEROMA study (Atorvastatin THerapy: Effects

on Reduction Of Macrophage Activity) compared the ef-
fect of high-dose (80 mg daily) versus low-dose (10 mg
daily) atorvastatin on plaque inflammation [31]. Patients
underwent UPSIO-enhanced CMR at baseline, 6 weeks
and 12 weeks of therapy. Although there were no differ-
ences in USPIO uptake over the course of the study in the
low-dose group, there was a reduction in USPIO uptake in
the high-dose group at both 6 and 12 weeks. This corre-
lated with a reduction in LDL cholesterol and a reduction
in micro-emboli count on trans-cranial Doppler [32].

Abdominal aortic aneurysms
Macrophages are intimately involved in the development,
expansion and ultimately rupture of abdominal aortic an-
eurysms. Preliminary evidence of USPIO uptake in human
abdominal aortic aneurysms (AAA) has been described
[33, 34]. In a pilot study, we demonstrated that just under
half of patients with AAA had focal mural uptake of
USPIOs. The aneurysm expansion rate was three-fold
higher in patients with USPIO uptake in the aneurysm
wall (0.66 versus 0.22 cm/year) [35]. Histology of tissue
excised at the time of elective surgical repair confirmed
co-localization of USPIOs with CD68 immunostaining for
macrophages. Thus USPIO-enhanced CMR appears to
identify those patients with more rapid disease progression
requiring earlier preventative surgical or endovascular
intervention to prevent rupture.

Cerebrovascular disease
Stroke results from an acute disruption to the cerebral
blood supply leading to tissue ischemia and eventually
necrosis. Inflammatory cells are recruited to the infarct
zone, but may extend the injury by interacting with “at
risk” cells in the penumbra of the infarct [36, 37]. In a
murine model of middle cerebral artery occlusion,
USPIO uptake is detected in this penumbra region of in-
farction [38, 39]. By 7 days the USPIO is confined to the
infarct itself, and histology confirms a large population

Fig. 3 Cardiac T2* Imaging. Multiple images obtained from increasing echo time points (3 time points shown from the left) can be combined to
create a T2* map (final image on the right). This map includes the spleen and liver (yellow arrows) and the myocardium (white arrow). These
tissues are dark indicating low T2* values consistent with higher USPIO uptake
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of iron-containing macrophages in the infarcted tissue
consistent with migration of macrophages from the pen-
umbra. Further work has indicated that in the setting of
established stroke, USPIO leaks through the injured
blood–brain barrier accounting for the initial accumula-
tion at the periphery of the infarct and intravascular trap-
ping rather than macrophage uptake [40]. In addition
there is widespread uptake resulting from leakage of
USPIO into the cerebro-spinal fluid with delivery of nano-
particals to more remote areas. Thus the application of
USPIO in such settings is limited although it is possible to
track focal USPIO uptake associated with macrophage/
microglial infiltration 6 days after cerebral ischaemia, iden-
tifying a subacute pathological process [41, 42].
Clinical studies have utilized ferumoxtran-10 in patients

4–5 days after stroke, with imaging at 24–36 h and re-
peated 48–72 h later [43]. T1- and T2/T2*-weighted im-
aging reveals parenchymal enhancement that increases
between the 2 scans, corresponding to the expected
macrophage distribution. These USPIO induced changes
do not correspond to conventional gadolinium-enhanced
changes, suggesting they occurred independently of
blood–brain-barrier breakdown. It could be speculated
that these changes may have been due to differences in
blood pooling effects due to perfusion changes rather than
USPIO inflammatory cell uptake. It would be expected
that ischemic volume would correlate with inflammatory
burden and CMR changes if USPIOs were being taken up
by inflammatory cells. Nighoghossian et al. found no such
correlation six days after stroke [44] although the study
had a number of limitations including imperfect timing of
the scans and the completion of only 5 patients using the
more sensitive T2* imaging protocol.
Despite these limitations, a pre-clinical model of the

investigation of anti-inflammatory medication in the
treatment of stroke has major potential [45]. Using a
murine model, the anti-inflammatory agent minocycline
can be evaluated after middle cerebral artery occlusion
[45]. Minocycline treatment reduced USPIO uptake
within the infarct, and was associated with reductions in
infarct size, blood–brain barrier permeability and micro-
glia/macrophage counts.

Future applications
The application of USPIOs to study myocardial inflam-
mation has translational application where the pathology
involves substantial monocyte influx into the plaque or
tissue [46] (Table 2).

Targeted iron oxide particles
Conjugating iron oxide particles with antibodies allows
targeted imaging. Pre-clinical imaging to date has
employed 9.4 Tesla CMR. This would be more sensitive
in detecting USPIO than clinical CMR systems (1.5 or

3-tesla). In addition, injected unconjugated USPIOs
injected directly into the blood stream concentrate
within macrophages resulting in high local distribution.
It remains to be seen if antibody-labelled USPIOs will
be sufficiently concentrated at their target site to allow
detection in clinical CMR systems. Specific subsets of
monocytes or other cell types could be tracked with
successful application of this method. This would allow
delineation of the temporal dynamics of cellular and
immunological processes by repeated scanning. This
has been demonstrated in a pre-clinical model of cerebral
ischaemia using USPIOs grafted with a specific peptide tar-
geting vascular cellular adhesion molecule-1 (VCAM-1).
This study indicated the potential of VCAM-1 to assess
vascular injury.
E-selectin is an adhesion molecule between the endo-

thelium and leukocytes that plays a critical role in the
pathogenesis of inflammation [47]. An E-selectin mono-
clonal antibody-USPIO conjugate has been used to track
vascular inflammation in a murine model of contact
hypersensitivity [48]. More recently, USPIOs have been
conjugated with a scavenger receptor to identify inflam-
mation in atherosclerotic plaques [49].
Another potential confounding factor is that macro-

phages of different subsets or with different activation
status take up USPIO at different rates. This could result
in false positive or negative CMR enhancement. Direct
labeling of cells with USPIO would avoid this error but
published data are limited. Although directly labeling of
macrophages with USPIO and delivery through the ca-
rotid artery has been successful in producing T2* hypo-
enhancement after transient ischaemia, it is associated
with increased mortality in a rat model [50].

USPIO cell labelling and monitoring cell trafficking
The ability to track cells non-invasively in vivo would be a
valuable technique with a number of potential applications
that include inflammatory cell tracking and evaluation of
engraftment of cells administered as part of cell-based
therapies.
USPIOs can be used to label cells in vitro for subse-

quent in vivo tracking. Smooth muscle cells labelled with
iron nanoparticles can be imaged when directly injected
into either healthy or infarcted myocardium in a pre-
clinical model [51]. This technique can be utilized to
label human aortic smooth muscle cells incorporated
into tissue engineered vascular grafts and implanted into
mice [52]. We have also demonstrated that cell tracking
can be achieved in vivo in humans using similar ap-
proaches with the larger SPIOs [53].

Summary
USPIOs are taken up by macrophages, and can be iden-
tified in vivo by CMR scanning. T2 and T2*-weighted
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Table 2 USPIO in cardiovascular disease

Target Model & USPIO preparation Imaging findings

Atherosclerotic plaques Ferumoxtran-10 imaging of rabbit aorta [12]. UPSIOs identified within aortic atherosclerotic plaques.
They are taken up by macrophages.

Ferumoxtran-10 & ferumoxytol in rabbit aorta [64]. Both USPIO preparations could lidentified within atherosclerotic
inflammation. The peak signal for imaging was 2–3 days after
ferumoxytol injection, compared to 4–5 days with ferumoxtran-10.

ApoE−/− mice infused with angiotensin II, or angiotensin II
and a p38 MAPK inhibitor with ferumoxtran-10 imaging [21].

The angiotensin II treated animals had the greatest USPIO
uptake corresponding with macrophage infiltration. The
angiotensin II/p38 MAPK inhibitor group had lower USPIO
uptake, which was no different to untreated controls.
Modulation of inflammatory cell activity within atherosclerotic
plaque could be monitored with USPIO contrast.

ApoE−/− mice treated with irbesartan were compared to
non-treated mice using P904 USPIO [25]. in vivo USPIO
labelled macrophages compared to in vitro USPIO
labelling macrophages.

Irbesartan treatment resulted in decreased USPIO uptake
compared to controls, which was associated with a significant
reduction in macrophage-covered area. The use of in vitro
labelled macrophages did not produce a significant difference
in T2* values despite a difference in macrophage accumulation
at histology.

Carotid atherosclerosis Human carotid plaques using ferumoxtran-10 [65]. USPIOs taken up by macrophages could be identified in
human atherosclerotic plaques. High risk plaques took up
USPIO more avidly.

Ferumoxtran-10 uptake within carotid plaques of patients
with symptomatic and asymptomatic disease [66].

There was more USPIO signal in “contralateral asymptomatic
plaques” compared to “truly asymptomatic” patients. Patients
with stroke disease have a higher inflammatory burden within
non-culprit carotid artery plaques compared with the plaques
from asymptomatic patients.

Comparison of carotid plaques of patients awaiting
CABG to asymptomatic patients using ferumoxtran-10 [67].

Higher USPIO uptake within the CABG group. The plaques of
the CABG patients exhibited a USPIO related signal of i 16.4 %
compared to 8.4 % in asymptomatic patients. Patients
awaiting CABG had higher inflammatory plaque burden.

The ATHEROMA study (Atorvastatin THerapy: Effects on
Reduction Of Macrophage Activity) to investigate the effects
of high-dose versus low-dose statin with ferumoxtran-10
imaging [31, 32].

Significant reduction in USPIO uptake in the high-dose
atorvastatin group at 6 and 12 weeks. This correlated with
favourable reductions in LDL cholesterol and micro-emboli
count. Quantitative T2* values showed a highly significant
reduction in USPIO-related signal over the course of follow-
up. Modulation of plaque inflammation by statins can be
monitored by USPIO imaging.

Stroke Murine model of middle cerebral artery occlusion
using ferumoxtran-10 [38].

48 h after stroke, USPIO signal identified within peri-infarct
zone. Histology confirmed a large population of iron
containing macrophages in the infarcted tissue.

Murine model with ferumoxtran-10 and T2-weighted
imaging with multiple scanning points in the first 72 h
after stroke [39].

Disruption of the blood brain barrier leads to leakage of
USPIO into the CSF, limiting the specificity of inflammatory
cell imaging.

Spatio-temporal distribution of ferumoxtran-10 was
monitored in a rat model of transient cerebral infarction
using T1- and T2-weighted CMR sequences [68].

Maximum USPIO related signal occurred on day 2. The
technique was successful in achieving non-invasive imaging
of inflammation associated with transient ischaemia, but was
not sensitive enough to identify increased macrophage
infiltration at later time points.

Murine model to investigate the effects of anti-inflammatory
minocycline after middle cerebral artery occlusion using
P904 [45].

Treatment reduced infarct size, blood–brain barrier
permeability and microglia/macrophage counts. This
correlated with decreased R2* value (and USPIO uptake)
on imaging as well as tissue iron content.

Ferumoxtran-10 administered to patients 4–5 days
after suffering a stroke with imaging performed 24–36 h
and 48–72 h later [43].

T1 weighted imaging revealed parenchymal enhancement
that increased between the 2 scans, corresponding to the
expected macrophage distribution. T2/T2* weighted imaging
revealed increased USPIO enhancement between scans,
which the authors interpreted as blood pool effect. These
USPIO induced changes did not correspond to conventional
gadolinium enhanced changes, suggesting they occurred
independent of blood–brain-barrier breakdown.

Myocardial infarction USPIO agent NC100150 as a blood pool agent in
a rodent model of reperfusion after MI [69].

Hyperenhancement of the myocardium by UPSIO was
compared to infarct size. USPIO T1-weighted hyper-enhancement
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scanning provide a sensitive method of assessing USPIO
accumulation.
USPIO-enhanced magnetic resonance imaging is a

promising method for assessing inflammatory processes
associated with a range of cardiovascular diseases includ-
ing those affecting the atherosclerotic plaque and large ar-
teries. Potential clinical applications are under evaluation
and include assessing the effects of novel pharmacological
agents and in vivo cell tracking to determine the fate of
cells administered as part of cell therapy.
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