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1 IntroductionIn this experiment we will, as implied by the title, use optical systems to studyFourier transforms. Fourier analysis describes how a function may be divided intoa sum (or an integral) of sines and cosines. This is often done in one dimensiononly, but the optical system provides us with them means to easily do it in twodimensions. It is described how two-dimensional functions (or images), expressedin the spatial coordinates (x; y), are transformed. The two-dimensional Fouriertransform is de�ned asFff(x; y)g = ZZ +1�1 f(x; y) exp[�i(kxx + kyy)]dxdy: (1)Today, two-dimensional Fourier transforms can quite easily be found numerically,for example using image processing software (you can also �nd a function for it, �t2,in Matlab). But this still requires some time and computational power. During thisexperiment we will create an instant Fourier transform of a pattern. A di�ractiveslit in uniform illumination gives rise to a di�raction pattern which turns out tobe the fourier transform of the di�ractive slit. It is placed at in�nity (i.e., very farfrom the slit) but a focusing lens can be used to move it to the focal plane of thelens. Similarly, a lens may be used to re-transform the image. Schematically, the
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Figure 1: Schematic illustration of the experiment.setup is shown in Fig. 1. It provides us with the opportunity to view the Fouriertransform, but it also gives us the possibility to meddle with it. By blocking someparts of the Fourier transform, we remove certain frequencies from the image. Thee�ect can then be studied in the image of the object. This process is known as�ltering. Unfortunately, this method for viewing the Fourier transforms has somelimitations. The lenses used are not perfect - they have aberrations which will distortthe transform. But even with a perfect lens, the true transform will not be found,since the �nite size of the lens will cut o� the highest frequences. The lens will actas a low-pass �lter. The extent of this �ltering depends on whether the coherent orthe incoherent illumination is used. 1



The aim of this experiment is to show1. that Fraunhofer di�raction gives the Fourier transform of the di�ractingaperture.2. what two-dimensional transforms of some simple images look like.3. the di�erences that appear for coherent and incoherent illumination.As an extra bonus, you also get the Babinet's principle...2 Theory2.1 Fourier transformation by Fraunhofer di�ractionNow one would think that the Fourier transform on an object, e.g. a square, could beobtained just by illuminating the aperture and then study the di�raction pattern. Inreality, it's a little bit more complicated since the di�raction pattern of an aperturechanges its shape depending on the distance of observation. Generally, there aretwo cases: Fresnel di�raction, where the di�raction pattern close to the apertureis considered, and Fraunhofer di�raction, where the pattern is studied at in�nity.Fresnel di�raction is normally much more complicated, so we will stick to Fraunhoferdi�raction and show that the Fraunhofer di�raction pattern is really the Fouriertransform of the object. Assume that the object consists of an aperture, of any
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Figure 2: Di�raction from an arbitrary aperture, at P (X; Y; Z).shape, in the (x; y) plane. We study the di�raction pattern in the point P , ofcoordinates (X; Y; Z), as illustrated in Fig. 2. Accordning to the Huygens-Fresnelprinciple, the aperture may be regarded as the sum of many point sources thatproduce spherical waves. From the point source located in the small surface elementdS we obtain a spherical wave, which gives rise to the electric �eld dE:dE = �Ar exp[i(kr � !t)]dS (2)2



where �A is the strength of the source (i.e., the incident �eld strength at this par-ticular point) and r is the distance between this point on the aperture and theobservation point P , as illustrated in Fig. 2. (This is the normal expression for aspherical wave on complex form - see e.g. Eq. 2.75 in Hecht.) To obtain the total�eld at P , we must sum all the di�erent contributions. This is done by integration:E(P ) = ZZA �Ar exp[i(kr � !t)]dS; (3)where A is the area of the di�racting aperture. This is a fairly complicated ex-pression, and we need to do some approximations. According to the geometry (seeFig. 2) r =p(X � x)2 + (Y � y)2 + Z2 (4)R = pX2 + Y 2 + Z2: (5)Since the size of the object is small compared to the distance R, we can approximater � R in the denominator. However, due to the large value of kr, very small changesto r will cause large changes to the exponential term, so here we need a more accurateapproximation. By some manipulation, we getr = Rr1 + x2 + y2R2 � xX + yYR2 : (6)The term (x2 + y2)=R2 is small and may be neglected. Then expansion in a powerseries yields r � Rr1� 2(xX + yY )R2 � R �1� xX + yYR2 � : (7)Insertion of Eq. (7) into Eq. (3) yieldsE(X; Y; Z) = ZZA �Ar exp[i(kr�!t)]dS � ZZA �AR exp[i(kr�!t)] exp[�ikxX + yYR ]dS:(8)To simplify the expression, we introduce the aperture functionA(x; y)) = �AR exp[i(kr � !t)] = A0(x; y) exp[i�(x; y)] (9)which describes the transmittance of the object. It contains an amplitude partA0(x; y) and a phase part �(x; y). R is constant with respect to the integrationvariables x and y. Eq. (8) may now be rewritten asE(X; Y; Z) = ZZ +1�1 A(x; y) exp[�ik(xX + yY )=R]dxdy: (10)3



The integration can be extended to in�nity, since the aperture function is zeroeverywhere but in the aperture. In order to identify Eq. (10) as a two-dimensionalFourier transform, we de�ne the spatial frequencieskx = kXR ; ky = kYR : (11)Inserted into Eq. (10), they yieldE(kx; ky) = ZZ +1�1 A(x; y) exp[�i(kxx+ kyy)]dxdy: (12)Except for the names of the variables, this is identical to Eq. (1). Consequently, wehave shown that the electric �eld at Fraunhofer di�raction is the Fourier transformof the aperture function, i.e., thatE(kx; ky) = FfA(x; y)g: (13)Since the aperture function describes the geometry of the aperture, this means thedi�raction pattern far away from the object will be its Fourier transform.2.2 Two-dimensional images and transformsIn order to better understand two-dimensional images and their transforms, we'llstart with the easier one-dimensional case. Assume we have a function of one vari-able, f(t), and its transform F (!). The function can always be written as a sum ofsine and cosine functions, that is, as a sum of di�erent frequency components. TheFourier transform of the function will the be the sum of the Fourier transforms ofthe trigonometric functions that constitute f(t). In two dimensions, the same thinghappens. An image can be viewed as a lot of sinusoidal lattices. These lattices havedi�erent spatial frequencies, and di�erent orientations, as illustrated in Fig. 3. The
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Figure 3: Two sinusoidal gratings of di�erent orientations.Fourier transform of a sinusoidal lattice is three delta functions, one in the originand one to each side, as illustrated in Fig. 4. The positions of the the delta pulsesare determined by the spatial frequency of the lattice (the higher the frequency, thelonger the distance to the origin) and by its orientation. This can easily be deducedmathematically, but we leave this to the interested student.4
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Figure 4: The Fourier transforms of the gratings in Fig. 3.2.3 Task 1: Some simple transforms
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2.4 Transforms of several identical partsIf the object consists of several identical parts, the superposition principle says theimage will be the sum of the electrical �eld from each part. Assume there are Nparts, and that each of them gets the local coordinate system (x0; y0), where theorigin is at (xj; yj); j = 1; :::; N , as illustrated in Fig. 5. Introduce the notation

Figure 5: An object consisting of four identical parts.A(x; y) and A1(x0; y0) for the total aperture function and the aperture function forone part, respectively. Then the total �eld will beE(X; Y ) = NXj=1 ZZ +1�1 A1(x0; y0) exp ��ikX(xj + x0) + Y (yj + y0)R �dx0dy0; (14)orE(X; Y ) = ZZ +1�1 A1(x0; y0) exp�ikXx0 + Y y0R � dx0dy0 NXj=1 exp�ikXxj + Y yjR � :(15)For simplicity, introduce the spatial frequences kx and ky as de�ned in Eq. (11).Then the �eld my be written asE(kx; ky) = ZZ 01�1 A1(x0; y0) exp[i(kxx0 + kyy0)]dx0dy0 NXj=1 exp(ikxxj) exp(ikyyj):(16)The sum at the end of the expression is a phase factor only - it will not a�ect thepattern itself. Consequently, several identical parts give the same Fourier transformas one of the parts, except for the extra phase factor.6



This shows that the electrical �eld E at the image plane is the Fourier transformof the aperture function for one part of the pattern A1, multiplied by the Fouriertransform of delta pulses at the origin of each part, i.e., thatE = FfA(x; y)g = FfA1(x0; y0)g � F ( NXj=1 �(x� xj)�(y � yj)) : (17)(Compare to the convolution theorem which says thatFfAg = FfA1g � Ffgg = FfA1 � gg :) (18)Tee conclusion is that several identical parts of a �gure may be described as theaperture function of the part, convoluted with delta functions at the centre of eachpart, as illustrated in Fig 6.
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x x xFigure 6: Several identical parts can mathematically be described as a convolutionbetween one part and several delta functions.2.5 Task 2: The transform of two circlesa) Use two delta functions and a circ function to describe two circles at a distancea from each other. Place one circle at the origin, and the other at (a; 0). A circfunction is de�ned ascirc(x; y) = � 1 : (x2 + y2)1=2 � D=20 : (x2 + y2)1=2 > D=2 (19)where D is the diameter of the circle.b) Find the Fourier transform of the two circles! You don't need to calculate theFourier transform of a single circle (it is an Airy disc, as you probably know) sincethe phase factor is the interesting part. Then look at Fig. 7. Is this the di�ractionpattern of two circles?c) Find the distance between the two circles, expressed in their diameter D. Inthe di�raction pattern of a circle, we know that the distance from the centre to the�rst dark ring is kpD2� = 1:22 ; where kp =qk2x + k2y: (20)Assume that there are n dark lines inside the circle.7



Figure 7: Is this the di�raction pattern of two circles?2.6 Babinet's principleAssume there are two complementary objects �1 and �2. Complementary means the�rst object is dark where the other is transparent, and transparent where the otheris dark, as illustrated in Fig. 8. According to Babinet's principle, the di�ractionpatterns of those objects will be identical. Assume that E1 is the �eld behind �1,
Figure 8: Two complementary objects.and E2 the �eld behind �2. If both objects are illuminated at the same time, nolight at all will get through. This meansE1 + E2 = 0 , E1 = �E2 ) I1 = I2 (21)This means the intensities behind the object are identical.(Because of the �nite size of the objects, they are not truly complementary.Because of this, Babinet's principle doesn't apply to the 0:th di�raction order (thecentre of the transforms).)2.7 Transfer theoryIn optical imaging there are two main types of illumination, namely coherent orincoherent. The coherent system is linear with respect to amplitude, and the inco-herent is linear with respect to intensity (i.e., for coherent light we add amplitudes,8



but for incoherent light we add intensities). The main point of this section is toshow that the imaging properties of the two systems are di�erent, a fact that willalso be con�rmed experimentally. Assume there is a point source (x; y) in the ob-
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( 0 , 0 ) ( x , y )h ( X , Y ) h ( X - x , Y - y )Figure 9: A point source and its distribution in the image plane. When the sourceis moved, the image is moved in the same way.ject plane, and that it produces the �eld h(X � x; Y � y) in the image plane. Thecorresponding intensity is jh(X � x; Y � y)j2, as illustrated in Fig. 9. If the incident�eld and intensity is E(x; y) and I(x; y) respectively, the resulting �eld or intensityin the image plane can be found by adding all those little point sources together(integration). We �nd thatE 0(X; Y ) = ZZ h(X � x; Y � y)E(x; y)dxdy (22)for coherent light, and thatI 0(X; Y ) = ZZ jh(X � x; Y � y)j2I(x; y)dxdy (23)for incoherent light. Since both expressions are convolutions, they can be Fouriertransformed to yield FfE 0g = H � FfEg (24)FfI 0g = H �H � FfIg (25)whereH = Ffhg. H andH�H are the transfer functions of the system. For an ideallens,H is illustrated in Fig. 10. This transfer function (a attop) is valid for coherentlight. For incoherent light two attops should be convoluted, to give the triangulartransfer function of Fig. 11. It's worth noticing that the limiting frequency (thehighest frequency that can be imaged by the system) for the incoherent light is twicethat of the coherent light. Incoherent light is better for imaging high frequencies,while the lower frequencies are imaged better in coherent light.9
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k xFigure 10: The transfer function for an ideal lens in coherent illumination.
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k xFigure 11: The transfer function for an ideal lens in incoherent illumination.2.8 Summary of the theoryAfter reading the instructions, and before performing the experimental tasks, youshould know the following:1. That the Fourier transform of an object may be found through Fraunhoferdi�raction2. That an object containing several identical patterns will give the Fouriertransform of this pattern, modulated by an interference pattern.3. Accordning to Babinet's principle, two complementary objects give thesame intensity pattern.4. That transfer functions can be used to see what spatial frequencies asystem will image.5. That coherent and incoherent systems have di�erent transfer functions,and consequently di�erent imaging properties.3 Experiment3.1 EquipmentThe basic equipment for this experiment is displayed in Fig. 12. A HeNe laser10
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s c r e e nFigure 12: Schematic illustration of the experiment. L1 and L2 give a magni�edimage of the Fourier plane. L4 re-transforms it into an image of the object, whichcan be seen on the screen.provides coherent illumination, via a microscope objective (with a micrometer hole)that creates a spherical wave. Then lens L1 performs the Fourier transformation, anda holder is placed at the Fourier plane. Two lenses L2 and L3 provide a magni�cationof the Fourier transform on the screen. The lens L4 will be inserted and removedmany times during the experiment, since it projects the image on the screen. Forincoherent illumination, the laser is replaced by a lamp.Never look into the laser beam!The intensity is high enough to cause eye damage.Don't touch the lenses or the objects, other than at the edges.3.2 TasksSetting up the experimentpart 1 * Turn the laser on.* Move the �-hole in the transverse direction until the transmit-ted intensity is maximized.* Move the �-hole towards the microscope objective. Be carefulthat you don't move them close enough to touch each other.* Move the �-hole in the transverse direction again. Repeat theprocedure until the hole is in the focal point of the micro-scope objective (i.e., when there is no interference pattern inthe transmitted intensity).* Insert lens L1.* Place a di�usely reecting surface (a piece of aluminum) in thex-y-holder and �nd the Fourier plane by maximizing the specklesize. 11



* Insert lenses L2 and L3 so that the Fourier plane is magni�edon the screen. Use for example object 9.* Insert lens L4 so that the object is imaged on the screen.Some simple transformspart 2 * Place object 1 in the object holder. It consists of four geomet-rical patterns. Look at their images on the screen!* Block all patterns except one at the object. Then view theFourier transform on the screen (i.e., remove L4). The trans-form is di�cult to see, so you need almost complete darkness.There might be a better version of the Fourier pattern at thex-y-holder.Task: Observe and draw the transforms of all four patterns.Several identical imagespart 3 * Insert object 2 (two circular holes). Observe the Fourier trans-form.Task: Draw the Fourier transform of two circles. Does it agreewith your predictions in task 2 of the theory section? use theFourier transform to determine the distance between the circles,expressed in their diameter. Check your results by measuringthe distance in the image of the object! Think of possible causesfor errors.part 4 * Replace object 2 by object 3 (three circles). Try to predictthe Fourier transform, then look at it. Was your predictionaccurate?Task: Draw the Fourier transform.part 5 * Insert object 4 (random circles).Task: Draw the Fourier transform. Explain what you see!part 6 * Insert object 5 (random circles).Task: Draw the Fourier transform. Explain what you see. Arethe circles really random?Babinet's principlepart 7 * Insert object 6 (two gratings).12



* Insert an aluminum piece that allows you to block the left orthe right side of the object.Task: Regard the two Fourier transforms (from the left andthe right part). Are they di�erent from each other?Task: Remove the aluminum piece, and instead block the 0:thorder in the Fourier plane (make a black dot on a piece of glass).Look at the image of the object. What has happened? Explain!Task: Now block everything except the 0:th order in the Fourierplane (make a small hole in a piece of paper). Look at the im-age, and explain what has happened.Task: Make a slightly bigger hole, which lets orders 0 and +1through. Explain what you see.Frequency �lteringpart 8 * Insert object 7 (a sector star).* Image the star on the screen. Then watch the Fourier trans-form. Di�erent parts of the Fourier transform correspond todi�erent parts of the image. Try to understand how they areconnected!Task: Around order 0 in the Fourier tranform, there is a darkarea. Why?Task: Perform low-pass and high-pass �ltering, using holesand dots. Regard the image of the object, and explain whathappens!Task: Use a piece of paper to block the lower half of the Fourierplane, but place it low so that the central part of the transformcan pass through. The use the x-y-holder to move the paperslowly, until the central part is blocked too. Watch the imageof the object while doing this. Explain what happens!Transfer theorypart 9 * Use the same object (7), but perform low-pass �ltering in theFourier plane, so that the limiting frequency is at half the radiusof the star.* Insert �lters in front of the object, to reduce the intensity ofthe light.* ONLY CONTINUE IF THE ASSISTANT IS PRESENT!* The assistant will check that the intensity level is low enough.13



* Look into the system through the last lens L4. You will see animage of the sector star. (You can replace L4 by a telescope ifyou want to.)* NOBODY SHOULD TOUCH THE SYSTEM WHILE SOME-BODY IS LOOKING INTO IT! Changes might lead to suddenchanges in intensity level.* Insert the di�using glass behind the object. This is allowed,since it will only reduce the intensity.* Increase the intensity slowly, by moving the �lter, until theperson watching can see a speckle pattern.* Move the di�using glass back and forth in the holder (carefulnot to un-block the opening). Now you have made the lightincoherent.Task: What has happened to the image and the limiting fre-quency? Which was better for imaging the high frequences, thecoherent or the incoherent light?part 10 * Replace object 7 by object 8, remove all �lters and the di�usingglass and insert L4. Object 8 consists of two gratings, whoseamplitude transmittance is shown in Fig. 13.
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Figure 13: The amplitude transmittance of the two gratings in object 8.Task: What is the intensity transmittance of the two gratings?* Observe each grating and their Fourier transforms, both sepa-rately (block part of the image) and together.Task: Explain the di�erences between the two Fourier trans-forms! Identify the two gratings. This is a di�cult task - askyour assistant if you can't solve it.* Remove the aluminum piece that blocks half the image, andinsert a �lter in the Fourier plane. It should, just barely, letthree orders pass.Task: Then move the �lter in the Fourier plane, along theFourier transform, and see what happens to the image. Explain!14



Filters and pattern recognitionpart 11 * Insert object 9 (di�erent gratings).* Watch the image and the Fourier transform. Try to explain howdi�erent parts of the Fourier transform correspond to di�erentparts of the image.* Insert a �lter that lets only order 0 through.Task: Move the hole using the x-y-holder, so that di�erentparts of the Fourier transform are transmitted. Watch the im-age! Can you explain what happens to it?Task: Make a �lter in the Fourier plane, which removes allhorizontal gratings but not the others.part 12 * Insert object 12 (three circles).* Observe the image of the object. What do you think the Fouriertransform will look like? Look at the Fourier transform to seeif you were right!Task: Explain the Fourier transform!Task: Make a �lter on the Fourier plane, which removes twoof the circles but lets the third one through!part 13 * Keep object 12 but remove the �lter.* Turn the laser o�, and introduce white light. Don't changethe system, just introduce the white light through a mirror at� 45�. This way, you can remove the mirror and turn the laseron, and the system will still be aligned.* Regard the image using L4. You might need to insert some�lters.Task: Make the three circles appear in di�erent colours, forexample one red, one yellow and one blue!part 14 * If there is still time, there are extra tasks for those interested.Ask the assistant!
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