
Chapter 8

n-dimensional Fourier Transform

8.1 Space, the Final Frontier

To quote Ron Bracewell from p. 119 of his book Two-Dimensional Imaging, “In two dimensions phenomena
are richer than in one dimension.” True enough, working in two dimensions offers many new and rich
possibilities. Contemporary applications of the Fourier transform are just as likely to come from problems in
two, three, and even higher dimensions as they are in one — imaging is one obvious and important example.
To capitalize on the work we’ve already done, however, as well as to highlight differences between the one-
dimensional case and higher dimensions, we want to mimic the one-dimensional setting and arguments
as much as possible. It is a measure of the naturalness of the fundamental concepts that the extension
to higher dimensions of the basic ideas and the mathematical definitions that we’ve used so far proceeds
almost automatically. However much we’ll be able to do in class and in these notes, you should be able to
read more on your own with some assurance that you won’t be reading anything too much different from
what you’ve already read.

Notation The higher dimensional case looks most like the one-dimensional case when we use vector
notation. For the sheer thrill of it, I’ll give many of the definitions in n dimensions, but to raise the comfort
level we’ll usually look at the special case of two dimensions in more detail; two and three dimensions are
where most of our examples will come from.

We’ll write a point in Rn as an n-tuple, say

x = (x1, x2, . . . , xn) .

Note that we’re going back to the usual indexing from 1 to n. (And no more periodic extensions of the
n-tuples either!) We’ll be taking Fourier transforms and may want to assign a physical meaning to our
variables, so we often think of the xi’s as coordinates in space, with the dimension of length, and x as
the “spatial variable”. We’ll then also need an n-tuple of “frequencies”, and without saying yet what
“frequency” means, we’ll (typically) write

ξ = (ξ1, ξ2, . . . , ξn)

for those variables “dual to x”. Recall that the dot product of vectors in Rn is given by

x · ξ = x1ξ1 + x2ξ2 + · · · + xnξn .

The geometry of Rn is governed by the dot product, and using it will greatly help our understanding as
well as streamline our notation.
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8.1.1 The Fourier transform

We started this course with Fourier series and periodic phenomena and went on from there to define the
Fourier transform. There’s a place for Fourier series in higher dimensions, but, carrying all our hard won
experience with us, we’ll proceed directly to the higher dimensional Fourier transform. I’ll save Fourier
series for a later section that includes a really interesting application to random walks.

How shall we define the Fourier transform? We consider real- or complex-valued functions f defined on
Rn, and write f(x) or f(x1, . . . , xn), whichever is more convenient in context. The Fourier transform of
f(x) is the function Ff(ξ), or f̂(ξ), defined by

Ff(ξ) =

∫

Rn

e−2πix·ξf(x) dx .

The inverse Fourier transform of a function g(ξ) is

F−1g(x) =

∫

Rn

e2πix·ξg(ξ) dξ .

The Fourier transform, or the inverse transform, of a real-valued function is (in general) complex valued.

The exponential now features the dot product of the vectors x and ξ; this is the key to extending the
definitions from one dimension to higher dimensions and making it look like one dimension. The integral
is over all of Rn, and as an n-fold multiple integral all the xj’s (or ξj’s for F−1) go from −∞ to ∞. Realize
that because the dot product of two vectors is a number, we’re integrating a scalar function, not a vector
function. Overall, the shape of the definitions of the Fourier transform and the inverse transform are the

same as before.

The kinds of functions to consider and how they enter into the discussion — Schwartz functions, L1, L2, etc.
— is entirely analogous to the one-dimensional case, and so are the definitions of these types of functions.
Because of that we don’t have to redo distributions et al. (good news), and I’ll seldom point out when this
aspect of the general theory is (or must be) invoked.

Written out in coordinates, the definition of the Fourier transform reads:

Ff(ξ1, ξ2, . . . , ξn) =

∫

Rn

e−2πi(x1ξ1+···+xnξn)f(x1, . . . , xn) dx1 . . . dxn ,

so for two dimensions,

Ff(ξ1, ξ2) =

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1, x2) dx1 dx2 .

The coordinate expression is manageable in the two-dimensional case, but I hope to convince you that it’s
almost always much better to use the vector notation in writing formulas, deriving results, and so on.

Arithmetic with vectors, including the dot product, is pretty much just like arithmetic with numbers.
Consequently, all of the familiar algebraic properties of the Fourier transform are present in the higher
dimensional setting. We won’t go through them all, but, for example,

Ff(−ξ) =

∫

Rn

e−2πix·(−ξ)f(x) dx =

∫

Rn

e2πix·ξf(x) dx = F−1f(ξ) ,

which is one way of stating the duality between the Fourier and inverse Fourier transforms. Here, recall
that if ξ = (ξ1, . . . , ξn) then

−ξ = (−ξ1, . . . ,−ξn) .



8.1 Space, the Final Frontier 337

To be neater, we again use the notation
f−(ξ) = f(−ξ) ,

and with this definition the duality results read exactly as in the one-dimensional case:

Ff− = (Ff)−, (Ff)− = F−1f

In connection with these formulas, I have to point out that changing variables, one of our prized techniques
in one dimension, can be more complicated for multiple integrals. We’ll approach this on a need to know
basis.

It’s still the case that the complex conjugate of the integral is the integral of the complex conjugate, so
when f(x) is real valued,

Ff(−ξ) = Ff(ξ) .

Finally, evenness and oddness are defined exactly as in the one-dimensional case. That is:

f(x) is even if f(−x) = f(x), or without writing the variables, if f− = f .

f(x) is odd f(−ξ) = −f(ξ), or f− = −f .

Of course, we no longer have quite the easy geometric interpretations of evenness and oddness in terms of a
graph in the higher dimensional case as we have in the one-dimensional case. But as algebraic properties of
a function, these conditions do have the familiar consequences for the higher dimensional Fourier transform,
e.g., if f(x) is even then Ff(ξ) is even, if f(x) is real and even then Ff(ξ) is real and even, etc. You could
write them all out. I won’t.

Soon enough we’ll calculate the Fourier transform of some model functions, but first let’s look a little bit
more at the complex exponentials in the definition and get a better sense of what “the spectrum” means
in higher dimensions.

Harmonics, periodicity, and spatial frequencies The complex exponentials are again the building
blocks — the harmonics — for the Fourier transform and its inverse in higher dimensions. Now that they
involve a dot product, is there anything special we need to know?

As mentioned just above, we tend to view x = (x1, . . . , xn) as a spatial variable and ξ = (ξ1, . . . , ξn)
as a frequency variable. It’s not hard to imagine problems where one would want to specify n spatial
dimensions each with the unit of distance, but it’s not so clear what an n-tuple of frequencies should mean.
One thing we can say is that if the spatial variables (x1, . . . , xn) do have the dimension of distance then
the corresponding frequency variables (ξ1, . . . , ξn) have the dimension 1/distance. For then

x · ξ = x1ξ1 + · · · + xnξn

is dimensionless and exp(−2πix · ξ) makes sense. This corresponds to dimensions of time and 1/time in
the one-dimensional time domain and frequency domain picture.

For some further insight let’s look at the two-dimensional case. Consider

exp(±2πix · ξ) = exp(±2πi(x1ξ1 + x2ξ2)) .
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(It doesn’t matter for the following discussion whether we take + or − in the exponent.) The exponent
equals 1 whenever x · ξ is an integer, that is, when

ξ1x1 + ξ2x2 = n, n an integer .

With ξ = (ξ1, ξ2) fixed this is a condition on (x1, x2), and one says that the complex exponential has zero

phase whenever ξ1x1 + ξ2x2 is an integer. This terminology comes from optics.

There’s a natural geometric interpretation of the zero phase condition that’s very helpful in understanding
the most important properties of the complex exponential. For a fixed ξ the equations

ξ1x1 + ξ2x2 = n

determine a family of parallel lines in the (x1, x2)-plane (or in the spatial domain if you prefer that phrase).
Take n = 0. Then the condition on x1 and x2 is

ξ1x1 + ξ2x2 = 0

and we recognize this as the equation of a line through the origin with (ξ1, ξ2) as a normal vector to the
line.1 (Remember your vectors!) Then (ξ1, ξ2) is a normal to each of the parallel lines in the family. One
could also describe the geometry of the situation by saying that the lines each make an angle θ with the
x1-axis satisfying

tan θ =
ξ2
ξ1
,

but I think it’s much better to think in terms of normal vectors to specify the direction — the vector point
of view generalizes readily to higher dimensions, as we’ll discuss.

Furthermore, the family of lines ξ1x1 +ξ2x2 = n are evenly spaced as n varies; in fact, the distance between
the line ξ1x1 + ξ2x2 = n and the line ξ1x1 + ξ2x2 = n+ 1 is

distance =
1

‖ξ‖
=

1√
ξ21 + ξ22

.

I’ll let you derive that. This is our first hint, in two dimensions, of a reciprocal relationship between the
spatial and frequency variables:

• The spacing of adjacent lines of zero phase is the reciprocal of the length of the frequency vector.

Drawing the family of parallel lines with a fixed normal ξ also gives us some sense of the periodic nature
of the harmonics exp(±2πix · ξ). The frequency vector ξ = (ξ1, ξ2), as a normal to the lines, determines
how the harmonic is oriented, so to speak, and the magnitude of ξ, or rather its reciprocal, 1/

√
ξ21 + ξ22

determines the period of the harmonic. To be precise, start at any point (a, b) and move in the direction
of the unit normal, ξ/‖ξ‖. That is, move from (a, b) along the line

x(t) = (x1(t), x2(t)) = (a, b) + t
ξ

‖ξ‖
or x1(t) = a+ t

ξ1
‖ξ‖

, x2(t) = b+ t
ξ2
‖ξ‖

at unit speed. The dot product of x(t) and ξ is

x(t) · ξ = (x1(t), x2(t)) · (ξ1, ξ2) = aξ1 + bξ2 + t
ξ21 + ξ22
‖ξ‖

= aξ1 + bξ2 + t‖ξ‖ ,

1 Note that (ξ1, ξ2) isn’t assumed to be a unit vector, so it’s not the unit normal.
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and the complex exponential is a function of t along the line:

exp(±2πix · ξ) = exp(±2πi(aξ1 + bξ2)) exp(±2πit‖ξ‖) .

The factor exp(±2πi(aξ1 + bξ2)) doesn’t depend on t and the factor exp(±2πit‖ξ‖) is periodic with period
1/‖ξ‖, the spacing between the lines of zero phase. Now, if ξ1 or ξ2 is large, then the spacing of the lines is
close and, by the same token, if ξ1 and ξ2 are small then the lines are far apart. Thus although “frequency”
is now a vector quantity we still tend to speak in terms of a “high frequency” harmonic, when the lines
of zero phase are spaced close together and a “low frequency” harmonic when the lines of zero phase are
spaced far apart (“high” and “low” are relatively speaking, of course). Half way between the lines of zero
phase, when t = 1/2‖ξ‖, we’re on lines where the exponential is −1, so 180◦ out of phase with the lines of
zero phase.

One often sees pictures like the following.
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Here’s what you’re looking at: The function e2πix·ξ is complex valued, but consider its real part

Re e2πix·ξ = 1
2

(
e2πix·ξ + e−2πix·ξ

)

= cos 2πix · ξ = cos 2π(ξ1x1 + ξ2x2)

which has the same periodicity and same lines of zero phase as the complex exponential. Put down white
stripes where cos 2π(ξ1x1 + ξ2x2) ≥ 0 and black stripes where cos 2π(ξ1x1 + ξ2x2) < 0, or, if you want to
get fancy, use a gray scale to go from pure white on the lines of zero phase, where the cosine is 1, down to
pure black on the lines 180◦ out of phase, where the cosine is −1, and back up again. This gives a sense
of a periodically varying intensity, and the slowness or rapidity of the changes in intensity indicate low or
high spatial frequencies.

The spectrum The Fourier transform of a function f(x1, x2) finds the spatial frequencies (ξ1, ξ2). The
set of all spatial frequencies is called the spectrum, just as before. The inverse transform recovers the
function from its spectrum, adding together the corresponding spatial harmonics, each contributing an
amount Ff(ξ1, ξ2). As mentioned above, when f(x1, x2) is real we have

Ff(−ξ1,−ξ2) = Ff(ξ1, ξ2) ,

so that if a particular Ff(ξ1, ξ2) is not zero then there is also a contribution from the “negative frequency”
(−ξ1,−ξ2). Thus for a real signal, the spectrum, as a set of points in the (ξ1, ξ2)-plane, is symmetric about
the origin.2 If we think of the exponentials of corresponding positive and negative frequency vectors adding
up to give the signal then we’re adding up (integrating) a bunch of cosines and the signal really does seem
to be made of a bunch of a stripes with different spacings, different orientations, and different intensities

2 N.b.: It’s not the values Ff(ξ1, ξ2) that are symmetric, just the set of points (ξ1, ξ2) of contributing frequencies.
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(the magnitudes |Ff(ξ1, ξ2)|). It may be hard to imagine that an image, for example, is such a sum of
stripes, but, then again, why is music the sum of a bunch of sine curves?

In the one-dimensional case we are used to drawing a picture of the magnitude of the Fourier transform
to get some sense of how the energy is distributed among the different frequencies. We can do a similar
thing in the two-dimensional case, putting a bright (or colored) dot at each point (ξ1, ξ2) that is in the
spectrum, with a brightness proportional to the magnitude |Ff(ξ1, ξ2)|. This, the energy spectrum or the
power spectrum, is symmetric about the origin because |Ff(ξ1, ξ2)| = |Ff(−ξ1,−ξ2)|.

Here are pictures of the spatial harmonics we showed before and their respective spectra.

Which is which? The stripes have an orientation (and a spacing) determined by ξ = (ξ1, ξ2) which is normal
to the stripes. The horizontal stripes have a normal of the form (0, ξ2) and they are of lower frequency so
ξ2 is small. The vertical stripes have a normal of the form (ξ1, 0) and are of a higher frequency so ξ1 is
large, and the oblique stripes have a normal of the form (ξ, ξ) with a spacing about the same as for the
vertical stripes

Here’s a more interesting example.3

For the picture of the woman, what is the function we are taking the Fourier transform of ? The function
f(x1, x2) is the intensity of light at each point (x1, x2) — that’s what a black-and-white image is for the
purposes of Fourier analysis. Incidentally, because the dynamic range (the range of intensities) can be so
large in images it’s common to light up the pixels in the spectral picture according to the logarithm of the
intensity.

Here’s a natural application of filtering in the frequency domain for an image.

The first picture shows periodic noise that appears quite distinctly in the frequency spectrum. We eliminate
those frequencies and take the inverse transform to show the plane more clearly.4

Finally, there are reasons to add things to the spectrum as well as take them away. An important and
relatively new application of the Fourier transform in imaging is digital watermarking. Watermarking is an
old technique to authenticate printed documents. Within the paper an image is imprinted (somehow — I
don’t know how this is done!) that only becomes visible if held up to a light or dampened by water. The

3 I showed this picture to the class a few years ago and someone yelled : “That’s Natalie!”
4 All of these examples are taken from the book Digital Image Processing by G. Baxes.
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idea is that someone trying to counterfeit the document will not know of or cannot replicate the watermark,
but that someone who knows where to look can easily verify its existence and hence the authenticity of the
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document. The newer US currency now uses watermarks, as well as other anticounterfeiting techniques.

For electronic documents a digital watermark is added by adding to the spectrum. Insert a few extra
harmonics here and there and keep track of what you added. This is done in a way to make the changes in
the image undetectable (you hope) and so that no one else could possibly tell what belongs in the spectrum
and what you put there (you hope). If the receivers of the document know where to look in the spectrum
they can find your mark and verify that the document is legitimate.

Higher dimensions In higher dimensions the words to describe the harmonics and the spectrum are
pretty much the same, though we can’t draw the pictures5. The harmonics are the complex exponentials
e±2πix·ξ and we have n spatial frequencies, ξ = (ξ1, ξ2, . . . , ξn). Again we single out where the complex
exponentials are equal to 1 (zero phase), which is when ξ · x is an integer. In three-dimensions a given
(ξ1, ξ2, ξ3) defines a family ξ · x = integer of parallel planes (of zero phase) in (x1, x2, x3)-space. The
normal to any of the planes is the vector ξ = (ξ1, ξ2, ξ3) and adjacent planes are a distance 1/‖ξ‖ apart.
The exponential is periodic in the direction ξ with period 1/‖ξ‖. In a similar fashion, in n dimensions
we have families of parallel hyperplanes ((n− 1)-dimensional “planes”) with normals ξ = (ξ1, . . . , ξn), and
distance 1/‖ξ‖ apart.

8.1.2 Finding a few Fourier transforms: separable functions

There are times when a function f(x1, . . . , xn) of n variables can be written as a product of n functions of
one-variable, as in

f(x1, . . . , xn) = f1(x1)f2(x2) · · · fn(xn) .

Attempting to do this is a standard technique in finding special solutions of partial differential equations
— there it’s called the method of separation of variables. When a function can be factored in this way, its
Fourier transform can be calculated as the product of the Fourier transform of the factors. Take n = 2 as
a representative case:

Ff(ξ1, ξ2) =

∫

Rn

e−2πix·ξf(x) dx

=

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1, x2) dx1 dx2

=

∫ ∞

−∞

∫ ∞

−∞
e−2πiξ1x1e−2πiξ2x2f1(x1)f2(x2) dx1 dx2

=

∫ ∞

−∞

(∫ ∞

−∞
e−2πiξ1x1f1(x) dx1

)
e−2πiξ2x2f2(x2) dx2

= Ff1(ξ1)

∫ ∞

−∞
e−2πiξ2x2f2(x2) dx2

= Ff1(ξ1)Ff2(ξ2)

In general, if f(x1, x2, . . . , xn) = f1(x1)f2(x2) · · · fn(xn) then

Ff(ξ1, x2, . . . ξn) = Ff1(ξ1)Ff2(ξ2) · · · Ffn(ξn) .

If you really want to impress your friends and confound your enemies, you can invoke tensor products in
this context. In mathematical parlance the separable signal f is the tensor product of the functions fi and

5 Any computer graphics experts out there care to add color and 3D-rendering to try to draw the spectrum?



344 Chapter 8 n-dimensional Fourier Transform

one writes
f = f1 ⊗ f2 ⊗ · · · ⊗ fn ,

and the formula for the Fourier transform as

F(f1 ⊗ f2 ⊗ · · · ⊗ fn) = Ff1 ⊗Ff2 ⊗ · · · ⊗ Ffn .

People run in terror from the ⊗ symbol. Cool.

Higher dimensional rect functions The simplest, useful example of a function that fits this description
is a version of the rect function in higher dimensions. In two dimensions, for example, we want the function
that has the value 1 on the square of side length 1 centered at the origin, and has the value 0 outside this
square. That is,

Π(x1, x2) =

{
1 −1

2 < x1 <
1
2 , −

1
2 < x2 <

1
2

0 otherwise

You can fight it out how you want to define things on the edges. Here’s a graph.

We can factor Π(x1, x2) as the product of two one-dimensional rect functions:

Π(x1, x2) = Π(x1)Π(x2) .

(I’m using the same notation for the rect function in one or more dimensions because, in this case, there’s
little chance of confusion.) The reason that we can write Π(x1, x2) this way is because it is identically
1 if all the coordinates are between −1/2 and 1/2 and it is zero otherwise — so it’s zero if any of the
coordinates is outside this range. That’s exactly what happens for the product Π(x1)Π(x2).
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For the Fourier transform of the 2-dimensional Π we then have

FΠ(ξ1, ξ2) = sinc ξ1 sinc ξ2 .

Here’s what the graph looks like.

A helpful feature of factoring the rect function this way is the ability, easily, to change the widths in the
different coordinate directions. For example, the function which is 1 in the rectangle −a1/2 < x1 < a1/2,
−a2/2 < x2 < a2/2 and zero outside that rectangle is (in appropriate notation)

Πa1a2
(x1, x2) = Πa1

(x1)Πa2
(x2) .

The Fourier transform of this is

FΠa1a2
(ξ1, ξ2) = (a1 sinc a1ξ1)(a2 sinc a2ξ2) .

Here’s a plot of (2 sinc 2ξ1)(4 sinc 4ξ2). You can see how the shape has changed from what we had before.
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The direct generalization of the (basic) rect function to n dimensions is

Π(x1, x2, . . . , xn) =

{
1 −1

2 < xk <
1
2 , k = 1, . . . , n

0 otherwise

which factors as
Π(x1, x2, . . . , xn) = Π(x1)Π(x2) · · ·Π(xn) .

For the Fourier transform of the n-dimensional Π we then have

FΠ(ξ1, ξ2, . . . , ξn) = sinc ξ1 sinc ξ2 · · · sinc ξn .

It’s obvious how to modify higher-dimensional Π to have different widths on different axes.

Gaussians Another good example of a separable function — one that often comes up in practice — is
a Gaussian. By analogy to the one-dimensional case, the most natural Gaussian to use in connection with
Fourier transforms is

g(x) = e−π|x|2 = e−π(x2

1
+x2

2
+···+x2

n) .

This factors as a product of n one-variable Gaussians:

g(x1, . . . , xn) = e−π(x2

1
+x2

2
+···+x2

n) = e−πx2

1 e−πx2

2 · · · e−πx2
n = h(x1)h(x2) · · · h(xn) ,

where
h(xk) = e−πx2

k .

Taking the Fourier transform and applying the one-dimensional result (and reversing the algebra that we
did above) gets us

Fg(ξ) = e−πξ2

1 e−πξ2

2 · · · e−πξ2
n = e−π(ξ2

1
+ξ2

2
+···+ξ2

n) = e−π|ξ|2 .
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As for one dimension, we see that g is its own Fourier transform.

Here’s a plot of the two-dimensional Gaussian.

8.2 Getting to Know Your Higher Dimensional Fourier Transform

You already know a lot about the higher dimensional Fourier transform because you already know a lot
about the one-dimensional Fourier transform — that’s the whole point. Still, it’s useful to collect a few of
the basic facts. If some result corresponding to the one-dimensional case isn’t mentioned here, that doesn’t
mean it doesn’t hold, or isn’t worth mentioning — it only means that the following is a very quick and
very partial survey. Sometimes we’ll work in Rn, for any n, and sometimes just in R2; nothing should be
read into this for or against n = 2.

8.2.1 Linearity

Linearity is obvious:
F(αf + βg)(ξ) = αFf(ξ) + βFg(ξ) .

8.2.2 Shifts

In one dimension a shift in time corresponds to a phase change in frequency. The statement of this is the
shift theorem:

• If f(x) ⇋ F (s) then f(x± b) ⇋ e±2πisbF (s).

It looks a little slicker (to me) if we use the delay operator (τbf)(x) = f(x− b), for then we can write

F(τbf)(s) = e−2πisbFf(s) .
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(Remember, τb involves −b.) Each to their own taste.

The shift theorem in higher dimensions can be made to look just like it does in the one-dimensional
case. Suppose that a point x = (x1, x2, . . . , xn) is shifted by a displacement b = (b1, b2, . . . , bn) to
x + b = (x1 + b1, x2 + b2, . . . , xn + bn). Then the effect on the Fourier transform is:

• The Shift Theorem If f(x) ⇋ F (ξ) then f(x ± b) ⇋ e±2πib·ξF (ξ).

Vectors replace scalars and the dot product replaces multiplication, but the formulas look much the same.

Again we can introduce the delay operator, this time “delaying” by a vector:

τbf(x) = f(x − b) ,

and the shift theorem then takes the form

F(τbf)(ξ) = e−2πib·ξFf(ξ) .

(Remember, τb involves a −b.) Each to their own taste, again.

If you’re more comfortable writing things out in coordinates, the result, in two dimensions, would read:

Ff(x1 ± b1, x2 ± b2) = e2πi(±ξ1b1±ξ2b2)Ff(ξ1, ξ2) .

The only advantage in writing it out this way (and you certainly wouldn’t do so for any dimension higher
than two) is a more visible reminder that in shifting (x1, x2) to (x1 ± b1, x2 ± b2) we shift the variables
independently, so to speak. This independence is also (more) visible in the Fourier transform if we break
up the dot product and multiply the exponentials:

Ff(x1 ± b1, x2 ± b2) = e±2πiξ1b1e±2πiξ2b2Ff(ξ1, ξ2) .

The derivation of the shift theorem is pretty much as in the one-dimensional case, but let me show you
how the change of variable works. We’ll do this for n = 2, and, yes, we’ll write it out in coordinates. Let’s
just take the case when we’re adding b1 and b2. First off

F(f(x1 + b2, x2 + b2)) =

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1 + b1, x2 + b2) dx1 dx2

We want to make a change of variable, turning f(x1+b1, x2+b2) into f(u, v) by the substitutions u = x1+b1
and v = x2 + b2 (or equivalently x1 = u − b1 and x2 = v − b2). You have two choices at this point. The
general change of variables formula for a multiple integral (stay with it for just a moment) immediately
produces.

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1 + b1, x2 + b2) dx1 dx2

=

∫ ∞

−∞

∫ ∞

−∞
e−2πi((u−b1)ξ1+(v−b2)ξ2)f(u, v) du dv

=

∫ ∞

−∞

∫ ∞

−∞
e2πib1ξ1e2πib2ξ2e−2πi(uξ2+vξ2)f(u, v) du dv

= e2πi(b1ξ1+b2ξ2)

∫ ∞

−∞

∫ ∞

−∞
e−2πi(uξ2+vξ2)f(u, v) du dv

= e2πi(b1ξ1+b2ξ2)Ff(ξ1, ξ2) ,
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and there’s our formula.

If you know the general change of variables formula then the shift formula and its derivation really are just
like the one-dimensional case, but this doesn’t do you much good if you don’t know the change of variables
formula for a multiple integral. So, for completeness, let me show you an alternative derivation that works
because the change of variables u = x1 + b1, v = x2 + b2 changes x1 and x2 separately.

Ff(x1 + b2, x2 + b2) =

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1 + b1, x2 + b2) dx1 dx2

=

∫ ∞

−∞
e2πix1ξ1

(∫ ∞

−∞
e2πix2ξ2f(x1 + b1, x2 + b2) dx2

)
dx1

=

∫ ∞

−∞
e2πix1ξ1

(∫ ∞

−∞
e−2πi(v−b2)ξ2f(x1 + b1, v) dv

)
dx1

(substituting v = x2 + b2)

= e2πib2ξ2

∫ ∞

−∞
e−2πix1ξ1

(∫ ∞

−∞
e−2πivξ2f(x1 + b1, v) dv

)
dx1

= e2πib2ξ2

∫ ∞

−∞
e−2πivξ2

(∫ ∞

−∞
e−2πix1ξ1f(x1 + b1, v) dx1

)
dv

= e2πib2ξ2

∫ ∞

−∞
e−2πivξ2

(∫ ∞

−∞
e−2πi(u−b1)ξ1f(u, v) du

)
dv

(substituting u = x1 + b1)

= e2πib2ξ2e2πib1ξ1

∫ ∞

−∞
e−2πivξ2

(∫ ∞

−∞
e−2πiuξ1f(u, v) du

)
dv

= e2πib2ξ2e2πib1ξ1

∫ ∞

−∞

∫ ∞

−∞
e−2πi(uξ1+vξ2)f(u, v) du dv

= e2πib2ξ2e2πib1ξ1 Ff(ξ1, ξ2)

= e2πi(b2ξ2+b1ξ1) Ff(ξ1, ξ2) .

And there’s our formula, again.

The good news is, we’ve certainly derived the shift theorem! The bad news is, you may be saying to yourself:
“This is not what I had in mind when you said the higher dimensional case is just like the one-dimensional
case.” I don’t have a quick comeback to that, except that I’m trying to make honest statements about the
similarities and the differences in the two cases and, if you want, you can assimilate the formulas and just
skip those derivations in the higher dimensional case that bug your sense of simplicity. I will too, mostly.

8.2.3 Stretches

There’s really only one stretch theorem in higher dimensions, but I’d like to give two versions of it. The
first version can be derived in a manner similar to what we did for the shift theorem, making separate
changes of variable. This case comes up often enough that it’s worth giving it its own moment in the
sun. The second version (which includes the first) needs the general change of variables formula for the
derivation.

• Stretch Theorem, first version

F(f(a1x1, a2x2)) =
1

|a1| |a2|
F(f)

(
ξ1
a1

,
ξ2
a2

)
.
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There is an analogous statement in higher dimensions.

I’ll skip the derivation.

The reason that there’s a second version of the stretch theorem is because there’s something new that
can be done by way of transformations in higher dimensions that doesn’t come up in the one-dimensional
setting. We can look at a linear change of variables in the spatial domain. In two dimensions we write
this as (

u1

u2

)
=

(
a b
c d

)(
x1

x2

)

or, written out,

u1 = ax1 + bx2

u2 = cx1 + dx2

The simple, “independent” stretch is the special case
(
u1

u2

)
=

(
a1 0
0 a2

)(
x1

x2

)
.

For a general linear transformation the coordinates can get mixed up together instead of simply changing
independently.

A linear change of coordinates is not at all an odd a thing to do — think of linearly distorting an image,
for whatever reason. Think also of rotation, which we’ll consider below. Finally, a linear transformation as
a linear change of coordinates isn’t much good if you can’t change the coordinates back. Thus it’s natural
to work only with invertible transformations here, i.e., those for which detA 6= 0.

The general stretch theorem answers the question of what happens to the spectrum when the spatial
coordinates change linearly — what is F(f(u1, u2)) = F(f(ax1 + bx2, cx1 + dx2))? The nice answer is
most compactly expressed in matrix notation, in fact just as easily for n dimensions as for two. Let A be
an n× n invertible matrix. We introduce the notation

A−T = (A−1)T ,

the transpose of the inverse of A. You can check that also A−T = (AT)−1, i.e., A−T can be defined either
as the transpose of the inverse or as the inverse of the transpose. (A−T will also come up naturally when
we apply the Fourier transform to lattices and “reciprocal lattices”, i.e., to crystals.)

We can now state:

• Stretch Theorem, general version

F(f(Ax)) =
1

|detA|
Ff(A−Tξ) .

There’s another way of writing this that you might prefer, depending (as always) on your tastes. Using
detAT = detA and detA−1 = 1/detA we have

1

|detA|
= |detA−T|

so the formula reads
F(f(Ax)) = |detA−T| Ff(A−Tξ) .
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Finally, I’m of a mind to introduce the general scaling operator defined by

(σAf)(x) = f(Ax) ,

where A is an invertible n× n matrix. Then I’m of a mind to write

F(σAf)(ξ) =
1

|detA|
Ff(A−Tξ) .

Your choice. I’ll give a derivation of the general stretch theorem in Section ??.

Let’s look at the two-dimensional case in a little more detail. To recover the first version of the stretch
theorem we apply the general version to the diagonal matrix

A =

(
a1 0
0 a2

)
with detA = a1a2 6= 0 .

Then

A−1 =

(
1/a1 0

0 1/a2

)
⇒ A−T =

(
1/a1 0

0 1/a2

)
.

This gives

F(f(a1x1, a2x2)) = F(f(Ax)) =
1

|detA|
Ff(A−Tξ) =

1

|a1| |a2|
Ff

(
ξ1
a1
,
ξ2
a2

)
.

Works like a charm.

An important special case of the stretch theorem is when A is a rotation matrix:

A =

(
cos θ − sin θ
sin θ cos θ

)

A rotation matrix is orthogonal, meaning that AAT = I:

AAT =

(
cos θ − sin θ
sin θ cos θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
cos2 θ + sin2 θ 0

0 cos2 θ + sin2 θ

)
=

(
1 0
0 1

)
.

Thus A−1 = AT so that
A−T = (A−1)T = (AT)T = A .

Also
detA = cos2 θ + sin2 θ = 1 .

The consequence of all of this for the Fourier transform is that if A is a rotation matrix then

F(f(Ax)) = Ff(Aξ), .

In words:

• A rotation in the spatial domain corresponds to an identical rotation in the frequency domain.

This result is used all the time in imaging problems.

Finally, it’s worth knowing that for a 2 × 2 matrix we can write down A−T explicitly:
(
a b
c d

)−1

=
1

detA

(
d −b
−c a

)
so the transpose of this is

(
a b
c d

)−T

=
1

detA

(
d −c
−b a

)

This jibes with what we found for a rotation matrix.
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The indicator function for a parallelogram As an exercise in using the stretch theorem you can
show the following. Consider a parallelogram centered at (0, 0):

One set of data that describes the parallelogram are the distances between sides, p and q, and the vectors
that give the directions of the sides. Let u be a unit vector in the direction of the sides that are p apart
and let v be a unit vector in the direction of the sides that are q apart.

The indicator function P for the parallelogram is the function that is equal to 1 on the parallelogram and
equal to 0 outside the parallelogram. The Fourier transform of P can be shown to be

FP (ξ) =
pq

| sin θ|
sinc

(
p(u · ξ)

sin θ

)
sinc

(
q(v · ξ)

sin θ

)
.

Shift and stretch As an example of using the general formula, let’s combine a shift with a stretch and
show:

F(f(Ax + b)) = exp(2πib ·A−Tξ)
1

|detA|
Ff(A−Tξ)

(I think the exponential is a little crowded to write it as e to a power here.) Combining shifts and stretches
seems to cause a lot of problems for people (even in one dimension), so let me do this in several ways.

As a first approach, and to keep the operations straight, write

g(x) = f(x + b) ,
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and then
f(Ax + b) = g(Ax) .

Using the stretch theorem first,

F(g(Ax)) =
1

|detA|
Fg(A−Tξ)

Applying the shift theorem next gives

(Fg)(A−Tξ) = exp(2πib · A−Tξ)Ff((A−Tξ) .

Putting these together gives the final formula for F(f(Ax + b)).

Another way around is instead to write
g(x) = f(Ax)

and then
f(Ax + b) = f(A(x +A−1b)) = g(x +A−1b) .

Now use the shift theorem first to get

F(g(x +A−1b)) = exp(2πiA−1b · ξ) (Fg)(ξ) = exp(2πib ·A−Tξ) (Fg)(ξ) .

The stretch theorem comes next and it produces

Fg(ξ) = F(f(Ax)) =
1

|detA|
Ff(A−Tξ) .

This agrees with what we had before, as if there was any doubt.

Finally, by popular demand, I do this one more time by expressing f(Ax + b) using the delay and scaling
operators. It’s a question of which comes first, and parallel to the first derivation above we can write:

f(Ax + b) = σA(τ−bf)(x) = (σAτ−bf)(x) ,

which we verify by
(σAτ−bf)(x) = (τ−bf)(Ax) = f(Ax + b) .

And now we have

F(σA(τ−bf))(ξ) =
1

|detA|
F(τ−bf)(A−Tξ) =

1

|detA|
exp(2πiA−Tξ · b)Ff(A−Tξ) .

I won’t give a second version of the second derivation.

8.2.4 Convolution

What about convolution? For two real-valued functions f and g on Rn the definition is

(f ∗ g)(x) =

∫

Rn

f(x− y)g(y) dy .

Written out in coordinates this looks much more complicated. For n = 2, for example,

(f ∗ g)(x1, x2) =

∫ ∞

−∞

∫ ∞

−∞
f(x1 − y1, x2 − y2)g(y1, y2) dy1 dy2 .

The intelligent person would not write out the corresponding coordinatized formula for higher dimensions
unless absolutely pressed. The intelligent person would also not try too hard to flip, drag or otherwise
visualize a convolution in higher dimensions. The intelligent person would be happy to learn, however,
that once again

F(f ∗ g)(ξ) = Ff(ξ)Fg(ξ) and F(fg)(ξ) = (Ff ∗ Fg)(ξ) .

The typical interpretations of convolution — smoothing, averaging, etc. — continue to apply, when applied
by an intelligent person.
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8.2.5 A little δ now, more later

We’ll see that things get more interesting in higher dimensions for delta functions, but the definition of the
plain vanilla δ is the same as before. To give the distributional definition, I’ll pause, just for a moment, to
define what it means for a function of several variables to be a Schwartz function.

Schwartz functions The theory and practice of tempered distributions works the same in higher di-
mensions as it does in one. The basis of the treatment is via the Schwartz functions as the class of test
functions. The condition that a function of several variables be rapidly decreasing is that all partial deriva-
tives (including mixed partial derivatives) decrease faster than any power of any of the coordinates. This
can be stated in any number of equivalent forms. One way is to require that

|x|p |∂qϕ(x)| → 0 as |x| → ∞ .

I’ll explain the funny notation — it’s an example of the occasional awkwardness that sets in when writing
formulas in higher dimensions. p is a positive integer, so that just gives a power of |x|, and q is a multi-index.
This means that q = (q1, . . . , qn), each qi a positive integer, so that ∂q is supposed to mean

∂q1+···+qn

(∂x1)q1(∂x2)q2 · · · (∂xn)qn
.

There’s no special font used to indicate multi-indices — you just have to intuit it.

From here, the definitions of tempered distributions, the Fourier transform of a tempered distribution, and
everything else, goes through just as before. Shall we leave it alone? I thought so.

δ in higher dimensions The δ-function is the distribution defined by the pairing

〈δ, ϕ〉 = ϕ(0, . . . , 0) or 〈δ, ϕ〉 = ϕ(0) in vector notation

where ϕ(x1, , . . . , xn) is a Schwartz function.6 As is customary, we also write this in terms of integration
as: ∫

Rn

ϕ(x)δ(x) dx = ϕ(0)

You can show that δ is even as a distribution (once you’ve reminded yourself what it means for a distribution
to be even).

As before, one has
f(x)δ(x) = f(0)δ(x) ,

when f is a smooth function, and for convolution

(f ∗ δ)(x) = f(x) .

The shifted delta function δ(x − b) = δ(x1 − b1, x2 − b2, , . . . , xn − bn) or δb = τbδ, has the corresponding
properties

f(x)δ(x − b) = f(b)δ(x − b) and f ∗ δ(x − b) = f(x − b) .

In some cases it is useful to know that we can “factor” the delta function into one-dimensional deltas, as
in

δ(x1, x2, . . . , xn) = δ1(x1)δ2(x2) · · · δn(xn) .

6 Actually, δ is in a larger class than the tempered distributions. It is defined by the pairing 〈δ, ϕ〉 = ϕ(0) when ϕ is any
smooth function of compact support.
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I’ve put subscripts on the δ’s on the right hand side just to tag them with the individual coordinates
— there are some advantages in doing this. Though it remains true, as a general rule, that multiplying
distributions is not (and cannot be) defined, this is one case where it makes sense. The formula holds
because of how each side acts on a Schwartz function.7 Let’s just check this in the two-dimensional case,
and play a little fast and loose by writing the pairing as an integral. Then, on the one hand,

∫

R2

ϕ(x)δ(x) dx = ϕ(0, 0)

by definition of the 2-dimensional delta function. On the other hand,

∫

R2

ϕ(x1, x2)δ1(x1)δ2(x2) dx1 dx2 =

∫ ∞

−∞

(∫ ∞

−∞
ϕ(x1, x2)δ1(x1) dx1

)
δ2(x2) dx2

=

∫ ∞

−∞
ϕ(0, x2)δ2(x2) dx2 = ϕ(0, 0).

So δ(x1, x2) and δ1(x1)δ2(x2) have the same effect when integrated against a test function.

The Fourier transform of δ And finally — the Fourier transform of the delta function is, of course,
1 (that’s the constant function 1). The argument is the same as in the one-dimensional case. By duality,
the Fourier transform of 1 is δ. One can then shift to get

δ(x − b) ⇋ e−2πib·ξ or Fδb = e−2πib·ξ .

You can now see (again) where those symmetrically paired dots come from in looking at the spectral
picture for alternating black and white stripes. It comes from the Fourier transforms of cos(2π x · ξ0) =
Re exp(2πi x · ξ0) for ξ0 = (ξ1, 0), ξ0 = (0, ξ2), and ξ0 = (ξ3, ξ3), since

F cos(2π x · ξ0) = 1
2(δ(ξ − ξ0) + δ(ξ + ξ0)) .

7 The precise way to do this is through the use of tensor products of distributions, something we have not discussed, and will
not.
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Scaling delta functions Recall how a one-dimensional delta function scales:

δ(ax) =
1

|a|
δ(x) .

Writing a higher dimensional delta function as a product of one-dimensional delta functions we get a
corresponding formula. In two dimensions:

δ(a1x1, a2x2) = δ1(a1x1)δ2(a2x2)

=
1

|a1|
δ1(x1)

1

|a2|
δ2(x2)

=
1

|a1| |a2|
δ1(x1)δ2(x2) =

1

|a1a2|
δ(x1, x2),

and in n-dimensions

δ(a1x1, . . . , anxn) =
1

|a1 · · · an|
δ(x1, . . . , xn) .

It’s also possible (and useful) to consider δ(Ax) when A is an invertible matrix. The result is

δ(Ax) =
1

|detA|
δ(x) .

See Section ?? for a derivation of this. This formula bears the same relationship to the preceding formula
as the general stretch theorem bears to the first version of the stretch theorem.

8.2.6 The Fourier transform of a radial function

For use in many applications, we’re going to consider one further aspects of the 2-dimensional case. A
function on R2 is radial (also called radially symmetric or circularly symmetric) if it depends only on the
distance from the origin. In polar coordinates the distance from the origin is denoted by r, so to say that
a function is radial is to say that it depends only on r (and that it does not depend on θ, writing the usual
polar coordinates as (r, θ)).

The definition of the Fourier transform is set up in Cartesian coordinates, and it’s clear that we’ll be better
off writing it in polar coordinates if we work with radial functions. This is actually not so straightforward,
or, at least, it involves introducing some special functions to write the formulas in a compact way.

We have to convert
∫

R2

e−2πix·ξf(x) dx =

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)f(x1, x2) dx1 dx2

to polar coordinates. There are several steps: To say that f(x) is a radial function means that it be-
comes f(r). To describe all of R2 in the limits of integration, we take r going from 0 to ∞ and θ
going from 0 to 2π. The area element dx1 dx2 becomes r dr dθ. Finally, the problem is the inner product
x ·ξ = x1ξ1+x2ξ2 in the exponential and how to write it in polar coordinates. If we identify (x1, x2) = (r, θ)
(varying over the (x1, x2)-plane) and put (ξ1, ξ2) = (ρ, φ) (fixed in the integral) then

x · ξ = ‖x‖ ‖ξ‖ cos(θ − φ) = rρ cos(θ − φ) .

The Fourier transform of f is thus

∫ ∞

−∞

∫ ∞

−∞
e−2πix·ξf(x) dx =

∫ 2π

0

∫ ∞

0
f(r)e−2πirρ cos(θ−φ) r dr dθ .
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There’s more to be done. First of all, because e−2πirρ cos(θ−φ) is periodic (in θ) of period 2π, the integral

∫ 2π

0
e−2πirρ cos(θ−φ) dθ

does not depend on φ.8 Consequently,
∫ 2π

0
e−2πirρ cos(θ−φ) dθ =

∫ 2π

0
e−2πirρ cos θ dθ .

The next step is to define ourselves out of trouble. We introduce the function

J0(a) =
1

2π

∫ 2π

0
e−ia cos θ dθ .

We give this integral a name, J0(a), because, try as you might, there is no simple closed form expression
for it, so we take the integral as defining a new function. It is called the zero order Bessel function of the
first kind. Sorry, but Bessel functions, of whatever order and kind, always seem to come up in problems
involving circular symmetry; ask any physicist.

Incorporating J0 into what we’ve done,
∫ 2π

0
e−2πirρ cos θ dθ = 2πJ0(2πrρ)

and the Fourier transform of f(r) is

2π

∫ ∞

0
f(r)J0(2πrρ) r dr

Let’s summarize:

• If f(x) is a radial function then its Fourier transform is

F (ρ) = 2π

∫ ∞

0
f(r)J0(2πrρ) rdr

• In words, the important conclusion to take away from this is that the Fourier transform of a radial
function is also radial.

The formula for F (ρ) in terms of f(r) is sometimes called the zero order Hankel transform of f(r) but,
again, we understand that it is nothing other than the Fourier transform of a radial function.

Circ and Jinc A useful radial function to define, sort of a radially symmetric analog of the rectangle
function, is

circ(r) =

{
1 r < 1

0 r ≥ 1

(And one can argue about the value at the rim r = 1.) Here’s the graph.

8 We’ve applied this general fact implicitly or explicitly on earlier occasions when working with periodic functions, namely if
g is periodic with period 2π then

Z

2π

0

g(θ − φ) dθ =

Z

2π

0

g(θ) dθ

Convince yourself of this; for instance let G(φ) =
R

2π

0
g(θ − φ) dθ and show that G′′(φ) ≡ 0. Hence G(φ) is constant, so

G(φ) = G(0).
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For its Fourier transform the limits of integration on r go only from 0 to 1, and so we have simply

Fcirc(ρ) = 2π

∫ 1

0
J0(2πrρ) r dr .

We make a change of variable, u = 2πrρ. Then du = 2πρdr and the limits of integration go from u = 0
to u = 2πρ. The integral becomes

Fcirc(ρ) =
1

2πρ2

∫ 2πρ

0
uJ0(u) du .

We write the integral this way because, you will now be ecstatic to learn, there is an identity that brings
in the first-order Bessel function of the first kind. That identity goes

∫ x

0
uJ0(u) du = xJ1(x) .

In terms of J1 we can now write

Fcirc(ρ) =
J1(2πρ)

ρ

It is customary to introduce the jinc function, defined by

jinc(ρ) =
J1(πρ)

2ρ
.

In terms of this,
Fcirc(ρ) = 4 jinc(2ρ) .

The graph of Fcirc is:
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I could plot this because Bessel functions are so common (really) that they are built into many mathematical
software packages, such as Matlab or Mathematica. If you think the jinc function looks like some kind of
radially symmetric version of the sinc function you’d be right. But it’s not obvious just how one goes from
sinc to jinc, and we’ll have to pass on this.9

8.2.7 A Derivation of the General Stretch Theorem

The general stretch theorem says that if A is an invertible n× n matrix then

F(f(Ax)) =
1

|detA|
Ff(A−Tξ) .

To derive this let’s start with the left hand side:

F(f(Ax)) =

∫

Rn

e−2πiξ·xf(Ax) dx .

Our object is to make a change of variable, u = Ax. For this, we need to use the change of variables
formula for multiple integrals. In the form we need it, we can state:

If A is an invertible n× n matrix and u = Ax then
∫

Rn

g(Ax) |detA| dx =

∫

Rn

g(u) du .

for an integrable function g.

9 There’s a symmetrization process at work involving repeated convolutions. I have notes on this. . .
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Want to feel good (or at least OK) about this in a familiar setting? Take the case n = 1. Then

∫ ∞

−∞
g(ax) |a|dx =

∫ ∞

−∞
g(u) du ,

making the substitution u = ax. The transformation u = ax of R scales lengths, and the scaling factor is
a. (du = a dx). That’s if a is positive; the absolute value of a is in there in case a is negative — thus “sense
reversing”. In n-dimensions the transformation u = Ax scales n-dimensional volumes, and the scaling
factor is detA. (du = detAdx.) The absolute value |detA| is in there because a matrix A with detA > 0
is sense preserving on Rn, and it is sense reversing if detA < 0. Thus, in general,

du = |detA| dx

so the substitution u = Ax leads right to the formula

∫

Rn

g(Ax) |detA| dx =

∫

Rn

g(u) du .

To apply this to the Fourier transform of f(Ax) we have

∫

Rn

e−2πiξ·xf(Ax) dx =

∫

Rn

e−2πiξ·A−1(Ax) f(Ax)
1

|detA|
|detA| dx

=
1

|detA|

∫

Rn

e−2πiξ·A−1(Ax) f(Ax) |detA| dx (now substitute u = Ax)

=
1

|detA|

∫

Rn

e−2πiξ·A−1u f(u) du

If you think this looks complicated imagine writing it out in coordinates!

Next we use an identity for what happens to the dot product when there’s a matrix operating on one of
the vectors, namely, for a matrix B and any vectors ξ and u,

ξ ·Bu = BTξ · u .

We take B = A−1 and then
ξ ·A−1u = A−Tξ · u .

With this:
1

|detA|

∫

Rn

e−2πiξ·A−1u f(u) du =
1

|detA|

∫

Rn

e−2πiA−Tξ·uf(u) du.

But this last integral is exactly F(f)(A−Tξ). We have shown that

F(f(Ax)) =
1

|detA|
F(f)(A−Tξ) ,

as desired.

Scaling the delta function The change of variables formula also allows us to derive

δ(Ax) =
1

|detA|
δ(x) .
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Writing the pairing of δ(Ax) with a test function ϕ via integration —not strictly legit, but it helps to
organize the calculation —leads to

∫

Rn

δ(Ax)ϕ(x) dx =

∫

Rn

δ(Ax)ϕ(A−1Ax)
1

|detA|
|detA| dx

=
1

|detA|

∫

Rn

δ(u)ϕ(A−1u) du (making the change of variables u = Ax)

=
1

|detA|
ϕ(A−10) (by how the delta function acts)

=
1

|detA|
ϕ(0) (A−10 = 0 because A−1 is linear)

Thus δ(Ax) has the same effect as
1

| detA|
δ when paired with a test function, so they must be equal.

8.3 Higher Dimensional Fourier Series

It’s important to know that most of the ideas and constructions for Fourier series carry over directly to
periodic functions in two, three, or higher dimensions. Here we want to give just the basic setup so you
can see that the situation, and even the notation, is very similar to what we’ve already encountered. After
that we’ll look at a fascinating problem where higher dimensional Fourier series are central to the solution,
but in a far from obvious way.

Periodic Functions The definition of periodicity for real-valued functions of several variables is much
the same as for functions of one variable except that we allow for different periods in different slots. To
take the two-dimensional case, we say that a function f(x1, x2) is (p1, p2)-periodic if

f(x1 + p1, x2) = f(x1, x2) and f(x1, x2 + p2) = f(x1, x2)

for all x1 and x2. It follows that
f(x1 + p1, x2 + p2) = f(x1, x2)

and more generally that
f(x1 + n1p1, x2 + n2p2) = f(x1, x2)

for all integers n1, n2.

There’s a small but important point associated with the definition of periodicity having to do with prop-
erties of f(x1, x2) “one variable at a time” or “both variables together”. The condition

f(x1 + n1p1, x2 + n2p2) = f(x1, x2)

for all integers n1, n2 can be taken as the definition of periodicity, but the condition f(x1 + p1, x2 + p2) =
f(x1, x2) alone is not the appropriate definition. The former implies that f(x1 + p1, x2) = f(x1, x2) and
f(x1, x2 + p2) = f(x1, x2) by taking (n1, n2) to be (1, 0) and (0, 1), respectively, and this “independent
periodicity” is what we want. The latter condition does not imply independent periodicity.

For our work now it’s enough to assume that the period in each variable is 1, so the condition is

f(x1 + 1, x2) = f(x1, x2) and f(x1, x2 + 1) = f(x1, x2) ,
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or
f(x1 + n1, x2 + n2) = f(x1, x2) for all integers n1, n2 .

If we use vector notation and write x for (x1, x2) and (why not) n for the pair (n1, n2) of integers, then
we can write the condition as

f(x + n) = f(x) ,

and, except for the typeface, it looks like the one-dimensional case.

Where is f(x1, x2) defined? For a periodic function (of period 1) it is enough to know the function for
x1 ∈ [0, 1] and x2 ∈ [0, 1]. We write this as

(x1, x2) ∈ [0, 1]2 .

We can thus consider f(x1, x2) to be defined on [0, 1]2 and then extended to be defined on all of R2 via
the periodicity condition.

We can consider periodicity of functions in any dimension. To avoid conflicts with other notation, in this
discussion I’ll write the dimension as d rather than n. Let x = (x1, x2, . . . , xd) be a vector in Rd and let
n = (n1, n2, . . . , nd) be an d-tuple of integers. Then f(x) = f(x1, x2, . . . , xd) is periodic (of period 1 in
each variable) if

f(x + n) = f(x) for all n .

In this case we consider the natural domain of f(x) to be [0, 1]d, meaning the set of points (x1, x2, . . . , xd)
where 0 ≤ xj ≤ 1 for each j = 1, 2, . . . , d.

Complex exponentials, again What are the building blocks for periodic functions in higher dimen-
sions? We simply multiply simple complex exponentials of one variable. Taking again the two-dimensional
case as a model, the function

e2πix1e2πix2

is periodic with period 1 in each variable. Note that once we get beyond one dimension it’s not so helpful
to think of periodicity “in time” and to force yourself to write the variable as t.

In d dimensions the corresponding exponential is

e2πix1 e2πix2 · · · e2πixd

You may be tempted to use the usual rules and write this as

e2πix1 e2πix2 · · · e2πixd = e2πi(x1+x2+···+xd) .

Don’t do that yet.

Higher harmonics, Fourier series, et al. Can a periodic function f(x1, x2, . . . , xd) be expressed as
a Fourier series using multidimensional complex exponentials? The answer is yes and the formulas and
theorems are virtually identical to the one-dimensional case. First of all, the natural setting is L2([0, 1]d).
This is the space of square integrable functions:

∫

[0,1]d
|f(x)|2 dx <∞
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This is meant as a multiple integral, e.g., in the case d = 2 the condition is

∫ 1

0

∫ 1

0
|f(x1, x2)|

2 dx1 dx2 <∞ .

The inner product of two (complex-valued) functions is

(f, g) =

∫ 1

0

∫ 1

0
f(x1, x2)g(x1, x2) dx1 dx2 .

I’m not going to relive the greatest hits of Fourier series in the higher dimensional setting. The only thing
I want us to know now is what the expansions look like. It’s nice — watch. Let’s do the two-dimensional
case as an illustration. The general higher harmonic is of the form

e2πin1x1 e2πin2x2 ,

where n1 and n2 are integers. We would then imagine writing the Fourier series expansion as

∑

n1,n2

cn1n2
e2πin1x1 e2πin2x2 ,

where the sum is over all integers n1, n2. More on the coefficients in a minute, but first let’s find a more
attractive way of writing such sums.

Instead of working with the product of separate exponentials, it’s now time to combine them and see what
happens:

e2πin1x1e2πin2x2 = e2πi(n1x1+n2x2)

= e2πi n·x (dot product in the exponent!)

where we use vector notation and write n = (n1, n2). The Fourier series expansion then looks like

∑

n

cne
2πin·x .

The dot product in two dimensions has replaced ordinary multiplication in the exponent in one dimen-
sion, but the formula looks the same. The sum has to be understood to be over all points (n1, n2) with
integer coefficients. We mention that this set of points in R2 is called the two-dimensional integer lattice,
written Z2. Using this notation we would write the sum as

∑

n∈Z2

cne
2πi n·x .

What are the coefficients? The argument we gave in one dimension extends easily to two dimensions (and
more) and one finds that the coefficients are given by

∫ 1

0

∫ 1

0
e−2πin1x1e−2πin2x2f(x1, x2) dx1 dx2 =

∫ 1

0

∫ 1

0
e−2πi(n1x1+n2x2)f(x1, x2) dx1 dx2

=

∫

[0,1]2
e−2πi n·xf(x) dx

Thus the Fourier coefficients f̂(n) are defined by the integral

f̂(n) =

∫

[0,1]2
e−2πi n·xf(x) dx
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It should now come as no shock that the Fourier series for a periodic function f(x) in Rd is

∑

n

f̂(n)e2πi n·x ,

where the sum is over all points n = (n1, n2, . . . , nd) with integer entries. (This set of points is the integer
lattice in Rd, written Zd.) The Fourier coefficients are defined to be

f̂(n) =

∫

[0,1]d
e−2πi n·xf(x) dx .

Coming up next is an extremely cool example of higher dimensional Fourier series in action. Later we’ll
come back to higher dimensional Fourier series and their application to crystallography.

8.3.1 The eternal recurrence of the same?

For this example we need to make some use of notions from probability, but nothing beyond what we used
in discussing the Central Limit Theorem in Chapter ??. For this excursion, and your safe return, you will
need:

• To remember what “probability” means.

• To know that for independent events the probabilities multiply, i.e., Prob(A,B) = Prob(A) Prob(B),
meaning that the probability of A and B occuring (together) is the product of the separate proba-
bilities of A and B occuring.

• To use expected value, which we earlier called the mean.

Though the questions we’ll ask may be perfectly natural, you may find the answers surprising.

Ever hear of a “random walk”? It’s closely related to “Brownian motion” and can also be described as a
“Markov process”. We won’t take either of these latter points of view, but if — or rather, when — you
encounter these ideas in other courses, you have been warned.

Here’s the setup for a random walk along a line:

You’re at home at the origin at time n = 0 and you take a step, left or right chosen with
equal probability; flip a coin; — heads you move right, tails you move left. Thus at time n = 1
you’re at one of the points +1 or −1. Again you take a step, left or right, chosen with equal
probability. You’re either back home at the origin or at ±2. And so on.

• As you take more and more steps, will you get home (to the origin)?

• With what probability?

We can formulate the same question in two, three, or any number of dimensions. We can also tinker with
the probabilities and assume that steps in some directions are more probable than in others, but we’ll stick
with the equally probable case.

9 With apologies to F. Nietzsche
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Random walks, Markov processes, et al. are used everyday by people who study queuing problems, for
example. More recently they have been applied in mathematical finance. A really interesting treatment is
the book Random Walks and Electrical Networks by P. Doyle and J. L. Snell.

To answer the questions it’s necessary to give some precise definitions, and that will be helped by fixing
some notation. Think of the space case d = 3 as an example. We’ll write the location of a point with
reference to Cartesian coordinates. Start at the origin and start stepping. Each step is by a unit amount
in one of six possible directions, and the directions are chosen with equal probability, e.g., throw a single
die and have each number correspond to one of six directions. Wherever you go, you get there by adding
to where you are one of the six unit steps

(±1, 0, 0), (0,±1, 0), (0, 0,±1) .

Denote any of these “elementary” steps, or more precisely the random process of choosing any of these
steps, by step; to take a step is to choose one of the triples, above, and each choice is made with probability
1/6. Since we’re interested in walks more than we are individual steps, let’s add an index to step and
write step1 for the choice in taking the first step, step2 for the choice in taking the second step, and so on.
We’re also assuming that each step is a new adventure — the choice at the n-th step is made independently
of the previous n− 1 steps. In d dimensions there are 2d directions each chosen with probability 1/2d, and
stepn is defined in the same manner.

The process stepn is a discrete random variable. To be precise:

• The domain of stepn is the set of all possible walks and the value of stepn on a particular walk is
the n’th step in that walk.

(Some people would call stepn a random vector since its values are d-tuples.) We’re assuming that
distribution of values of stepn is uniform (each particular step is taken with probability 1/2d, in general)
and that the steps are independent. Thus, in the parlance we’ve used in connection with the Central Limit
Theorem, step1, step2, . . . , stepn are independent, identically distributed random variables.

• The possible random walks of n steps are described exactly as

walkn = step1 + step2 + · · · + stepn, or, for short, just wn = s1 + s2 + · · · + sn .

I’m using the vector notation for w and s to indicate that the action is in Rd.
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Here’s a picture in R3.

After a walk of n steps, n ≥ 1, you are at a lattice point in Rd, i.e., a point with integer coordinates. We
now ask two questions:

1. Given a particular lattice point l, what is the probability after n steps that we are at l?

2. How does walkn behave as n→ ∞?

These famous questions were formulated and answered by G. Pólya in 1921. His brilliant analysis resulted
in the following result.

Theorem In dimensions 1 and 2, with probability 1, the walker visits the origin infinitely
often; in symbols

Prob(walkn = 0 infinitely often) = 1 .

In dimensions ≥ 3, with probability 1, the walker escapes to infinity:

Prob
(

lim
n→∞

|walkn| = ∞
)

= 1 .
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One says that a random walk along a line or in the plane is recurrent and that a random walk in higher
dimensions is transient.

Here’s the idea — very cunning and, frankly, rather unmotivated, but who can account for genius? For
each x ∈ Rd consider

Φn = e2πi wn·x ,

where, as above, wn is a walk of n steps. For a given n the possible values of wn, as a sum of steps
corresponding to different walks, lie among the lattice points, and if wn lands on a lattice point l then
the value of Φn for that walk is e2πi l·x . What is the expected value of Φn over all walks of n steps? It is
the mean, i.e., the weighted average of the values of Φn over the possible (random) walks of n steps, each
value weighted by the probability of its occurrence. That is,

Expected value of Φn =
∑

l

Prob(wn = l)e2πi l·x .

This is actually a finite sum because in n steps we can have reached only a finite number of lattice points,
or, put another way, Prob(wn = l) is zero for all but finitely many lattice points l.

From this expression you can see (finite) Fourier series coming into the picture, but put that off for the
moment.10 We can compute this expected value, based on our assumption that steps are equally probable
and independent of each other. First of all, we can write

Φn = e2πi wn·x = e2πi(s1+s2+···+sn)·x = e2πi s1·x e2πi s2·x · · · e2πi sn·x .

So we want to find the expected value of the product of exponentials. At this point we could appeal to
a standard result in probability, stating that the expected value of the product of independent random
variables is the product of their expected values. You might be able to think about this directly, however:
The expected value of e2πi s1·xe2πis2·x · · · e2πisn·x is, as above, the weighted average of the values that the
function assumes, weighted by the probabilities of those values occuring. In this case we’d be summing over
all steps s1, s2, . . . , sn of the values e2πis1·xe2πis2·x · · · e2πisn·x weighted by the appropriate probabilities.
But now the fact that the steps are independent means

Prob(s1 = s1, s2 = s2, . . . , sn = sn) = Prob(s1 = s1) Prob(s2 = s2) · · ·Prob(sn = sn)

(probabilities multiply for independent events)

=
1

(2d)n

,

and then

Expected value of Φn = Expected value of e2πis1·x e2πis2·x · · · e2πisn·x

=
∑

s1

∑

s2

· · ·
∑

sn

Prob(s1 = s1, s2 = s2, . . . , sn = sn)e2πi s1·x e2πis2·x · · · e2πisn·x

=
∑

s1

∑

s2

· · ·
∑

sn

1

(2d)n

e2πi s1·x e2πi s2·x · · · e2πi sn·x .

10 Also, though it’s not in the standard form, i.e., a power series, I think of Pólya’s idea here as writing down a generating

function for the sequence of probabilities Prob(wn = l). For an appreciation of this kind of approach to a great variety of
problems — pure and applied — see the book Generatingfunctionology by H. Wilf. The first sentence of Chapter One reads:
“A generating function is a clothesline on which we hang up a sequence of numbers for display.” Seems pretty apt for the
problem at hand.



368 Chapter 8 n-dimensional Fourier Transform

The sums go over all possible choices of s1, s2,. . . ,sn. Now, these sums are “uncoupled”, and so the nested
sum is the product of ∑

s1

1

2d
e2πi s1·x

∑

s2

1

2d
e2πi s2·x · · ·

∑

sn

1

2d
e2πi sn·x .

But the sums are, respectively, the expected values of e2πisj ·x , j = 1, . . . , n, and these expected values are

all the same. (The steps are independent and identically distributed). So all the sums are equal, say, to
the first sum, and we may write

Expected value of Φn =
(

1

2d

∑

s1

e2πi s1·x
)n

A further simplification is possible. The first step s1, as a d-tuple has exactly one slot with a ±1 and the
rest 0’s. Summing over these 2d possibilities allows us to combine “positive and negative terms”. Check
the case d = 2, for which the choices of s1 are

(1, 0) , (−1, 0) , (0, 1) , (0,−1) .

This leads to a sum with four terms:

∑

s1

1

2 · 2
e2πi s1·x =

∑

s1

1

2 · 2
e2πi s1·(x1,x2)

= 1
2(1

2e
2πix1 + 1

2e
−2πix1 + 1

2e
2πix2 + 1

2e
−2πix2)

= 1
2(cos 2πx1 + cos 2πx2)

The same thing happens in dimension d, and our final formula is

∑

l

Prob(wn = l)e2πi l·x =
(

1

d
(cos 2πx1 + cos 2πx2 + · · · + cos 2πxd)

)n
.

Let us write
φd(x) =

1

d
(cos 2πx1 + cos 2πx2 + · · · + cos 2πxd) .

Observe that |φd(x)| ≤ 1, since φd(x) is the sum of d cosines by d and | cos 2πxj | ≤ 1 for j = 1, 2, . . . , d.

This has been quite impressive already. But there’s more! Let’s get back to Fourier series and consider the
sum of probabilities times exponentials, above, as a function of x; i.e., let

f(x) =
∑

l

Prob(wn = l) e2πi l·x .

This is a (finite) Fourier series for f(x) and as such the coefficients must be the Fourier coefficients,

Prob(wn = l) = f̂(l) .

But according to our calculation, f(x) = φd(x)n, and so this must also be the Fourier coefficient of φd(x)n,
that is,

Prob(wn = l) = f̂(l) = (̂φd)n(l) =

∫

[0,1]d
e−2πi l·xφd(x)n dx .

In particular, the probability that the walker visits the origin, l = 0, in n steps is

Prob(wn = 0) =

∫

[0,1]d
φd(x)n dx .
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Then the expected number of times the walker visits the origin for a random walk of infinite length is

∞∑

n=0

Prob(wn = 0) ,

and we can figure this out.11 Here’s how we do this. We’d like to say that

∞∑

n=0

Prob(wn = 0) =

∞∑

n=0

∫

[0,1]d
φd(x)n dx

=

∫

[0,1]d

(
∞∑

n=0

φd(x)
n

)

dx =

∫

[0,1]d

1

1 − φd(x)
dx

using the formula for adding a geometric series. The final answer is correct, but the derivation isn’t quite
legitimate: The formula for the sum of a geometric series is

∞∑

n=0

rn =
1

1 − r

provided that |r| is strictly less than 1. In our application we know only that |φd(x)| ≤ 1. To get around
this difficulty, let α < 1, and write

∞∑

n=0

Prob(wn = 0) = lim
α→1

∞∑

n=0

αn Prob(wn = 0) = lim
α→1

∫

[0,1]d

( ∞∑

n=0

αnφd(x)
n

)
dx

= lim
α→1

∫

[0,1]d

1

1 − αφd(x)
dx =

∫

[0,1]d

1

1 − φd(x)
dx

(Pulling the limit inside the integral is justified by convergence theorems in the theory of Lebesgue inte-
gration, specifically, dominated convergence. Not to worry.)

• The crucial question now concerns the integral
∫

[0,1]d

1

1 − φd(x)
dx .

Is it finite or infinite?

This depends on the dimension — and this is exactly where the dimension d enters the picture.

Using some calculus (think Taylor series) it is not difficult to show (I won’t) that if |x| is small then

1 − φd(x) ∼ c|x|2 ,

for a constant c. Thus
1

1 − φd(x)
∼

1

c|x|2
,

and the convergence of the integral we’re interested in depends on that of the “power integral”
∫

x small

1

|x|2
dx in dimension d .

It is an important mathematical fact of nature (something you should file away for future use) that

11 For those more steeped in probability, here’s a further argument why this sum is the expected number of visits to the
origin. Let Vn be the random variable which is 1 if the walker returns to the origin in n steps and is zero otherwise. The
expected value of Vn is then Prob(wn = 0) · 1, the value of the function, 1, times the probability of that value occurring.
Now set V =

P

∞

n=0
Vn. The expected value of V is what we want and it is the sum of the expected values of the Vn, i.e.

P

∞

n=0
Prob(wn = 0).
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• The power integral diverges for d = 1, 2.

• The power integral converges for d ≥ 3

Let me illustrate why this is so for d = 1, 2, 3. For d = 1 we have an ordinary improper integral,

∫ a

0

dx

x2
, for some small a > 0 ,

and this diverges by direct integration. For d = 2 we have a double integral, and to check its properties
we introduce polar coordinates (r, θ) and write

∫

|x| small

dx1 dx2

x2
1 + x2

2

=

∫ 2π

0

∫ a

0

r dr dθ

r2
=

∫ 2π

0

(∫ a

0

dr

r

)
dθ .

The inner integral diverges. In three dimensions we introduce spherical coordinates (ρ, θ, ϕ), and something
different happens. The integral becomes

∫

|x| small

dx1 dx2 dx3

x2
1 + x2

2 + x2
3

=

∫ π

0

∫ 2π

0

∫ a

0

ρ2 sinφdρ dθ dϕ

ρ2
.

This time the ρ2 in the denominator cancels with the ρ2 in the numerator and the ρ-integral is finite. The
same phenomenon persists in higher dimensions, for the same reason (introducing higher dimensional polar
coordinates).

Let’s take stock. We have shown that

Expected number of visits to the origin =
∞∑

n=0

Prob(wn = 0) =

∫

[0,1]d

1

1 − φd(x)
dx

and that this number is infinite in dimensions 1 and 2 and finite in dimension 3. From here we can go on
to prove Pólya’s theorem as he stated it:

Prob(walkn = 0 infinitely often) = 1 in dimensions 1 and 2.

Prob(limn→∞ |walkn| = ∞) = 1 in dimensions ≥ 3.

For the case d ≥ 3, we know that the expected number of times that the walker visits the origin is finite.
This can only be true if the actual number of visits to the origin is finite with probability 1. Now the
origin is not special in any way, so the same must be true of any lattice point. But this means that for
any R > 0 the walker eventually stops visiting the ball |x| ≤ R of radius R with probability 1, and this is
exactly saying that Prob(limn→∞ |walkn| = ∞) = 1.

To settle the case d ≤ 2 we formulate a lemma that you might find helpful in this discussion.12

Lemma Let pn be the probability that a walker visits the origin at least n times and let qn be
the probability that a walker visits the origin exactly n times. Then pn = pn

1 and qn = pn
1 (1−p1)

12 We haven’t had many lemmas in this class, but I think I can get away with one or two.
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To show this we argue as follows. Note first that p0 = 1 since the walker starts at the origin. Then

pn+1 = Prob(visit origin at least n+ 1 times)

= Prob(visit origin at least n+ 1 times given visit at least n times) · Prob(visit at least n times)

= Prob(visit origin at least 1 time given visit at least 0 times) · pn

(using independence and the definition of pn)

= Prob(visit at least 1 time) · pn

= p1 · pn

From p0 = 1 and pn+1 = p1 · pn it follows (by induction) that pn = pn
1 .

For the second part,

qn = Prob(exactly n visits to origin)

= Prob(visits at least n times) − Prob(visits at least n+ 1 times)

= pn − pn+1 = pn
1 (1 − p1)

Now, if p1 were less than 1 then the expected number of visits to the origin would be

∞∑

n=0

nqn =
∞∑

n=0

npn
1 (1 − p1) = (1 − p1)

∞∑

n=0

npn
1

= (1 − p1)
p1

(1 − p1)2
(Check that identity by differentiating identity

1

1 − x
=

∞∑

n=0

xn)

=
p1

1 − p1
<∞

But this contradicts the fact we established earlier, namely

Expected visits to the origin =

∫

[0,1]2

1

1 − φ2(x)
dx = ∞ .

Thus we must have p1 = 1, that is, the probability of returning to the origin is 1, and hence walkn must
equal 0 infinitely often with probability 1.

8.4 III, Lattices, Crystals, and Sampling

Our derivation of the sampling formula in Chapter ??? was a direct application and combination of the
important properties of the III function,

IIIp(t) =
∞∑

k=−∞

δ(t− kp) .

Without redoing the whole argument here, short as it is, let me remind you what it is about III that made
things work.



372 Chapter 8 n-dimensional Fourier Transform

• δ’s being what they are, IIIp is the tool to use for periodizing and for sampling:

(f ∗ IIIp)(t) =

∞∑

k=−∞

f(t− kp)

f(t)IIIp(t) =

∞∑

k=−∞

f(kp)δ(t− kp) .

• For the Fourier transform,

FIIIp =
1

p
III1/p .

• It is through this property of the Fourier transform that periodizing in one domain corresponds to
sampling in the other domain. Pay particular attention here to the reciprocity in spacing between
IIIp and its Fourier transform.

The sampling formula itself says that if Ff(s) is identically 0 for |s| ≥ p/2 then

f(t) =

∞∑

k=−∞

f

(
k

p

)
sinc(pt− k) .

We now want to see how things stand in two dimensions; there isn’t much difference in substance between
the two-dimensional case and higher dimensions, so we’ll stick pretty much to the plane.

8.4.1 The two-dimensional III

The formula FIIIp = (1/p)III1/p depends crucially on the fact that IIIp is a sum of impulses at evenly spaced

points — this is an aspect of periodicity. We’ve already defined a two-dimensional δ, so to introduce a
III that goes with it we need to define what “evenly spaced” means for points in R2. One way of spacing
points evenly in R2 is to take all pairs (k1, k2), k1, k2 integers. The corresponding III-function is then
defined to be

III(x1, x2) =
∞∑

k1,k2=−∞

δ(x1 − k1, x2 − k2) .

Bracewell, and others, sometimes refer to this as the “bed of nails”.

The points k = (k1, k2) with integer coordinates are said to form a lattice in the plane. We denote this
particular lattice, called the integer lattice, by Z2; we’ll have more general lattices in a short while. As a
model of a physical system, you can think of such an array as a two-dimensional crystal, where there’s an
atom at every lattice point.

Since we prefer to write things in terms of vectors, another way to describe Z2 is to use the standard basis
of R2, the vectors e1 = (1, 0), e2 = (0, 1), and write the points in the lattice as

k = k1e1 + k2e2 .

We can thus think of the elements of a lattice either as points or as vectors, and observe that the sum of
two lattice points is another lattice point and that an integer multiple of a lattice point is another lattice
point. The III-function can be written

IIIZ2(x) =

∞∑

k1,k2=−∞

δ(x − k1e1 − k2e2) =
∑

k∈Z
2

δ(x − k) .

It is easy to show that IIIZ2 is even.
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Periodicity on Z2 and FIIIZ2 As in the one-dimensional case, IIIZ2 is the tool to use to work with
periodicity. If we form

Φ(x) = (ϕ ∗ IIIZ2)(x) =
∑

k∈Z2

ϕ(x − k) ,

assuming that the sum converges, then Φ is periodic on the lattice Z2, or briefly, is Z2-periodic. This
means that

Φ(x + n) = Φ(x)

for all x and for any lattice point n ∈ Z2, and this is true because

Φ(x + n) =
∑

k∈Z2

ϕ(x + n − k) =
∑

k∈Z2

ϕ(x − k) = Φ(x) ;

the sum (or difference) of two lattice points, n − k, is a lattice point, so we’re still summing over Z2 and
we get back Φ.

Using periodicity, and the fact that Z2 is particularly “evenly spaced” as a set of points in R2 leads to the
important and remarkable formula

FIIIZ2 = IIIZ2

corresponding precisely to the one-dimensional case. I’ll put the details of the derivation of this in Section
??. It’s also true that

F−1IIIZ2 = IIIZ2

because IIIZ2 is even.

At this point the most basic version of the two-dimensional sampling formula is already easily within
reach. It’s much more interesting, however, as well as ultimately much more useful to allow for some
greater generality.
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8.4.2 Lattices in general

Z2 isn’t the only example of a set of evenly spaced points in the plane, though perhaps it’s the example
of the most evenly spaced points. It’s easy to imagine “oblique” lattices, too. Not all crystals are square,
after all, or even rectangular, and we want to be able to use general lattices to model crystals. We’ll now
consider such oblique arrangements, but be warned that the subject of lattices can go on forever; the effort
here is to be brief to the point.

We adopt the vector point of view for defining a general lattice. Take any basis u1, u2 of R2 and consider
all the points (or vectors) that are integer linear combinations of the two. These form:

Lattice points = p = p1u1 + p2u2, p1, p2 = 0,±1,±2, . . .

We’ll denote such a lattice by L. The sum and difference of two lattice points is again a lattice point, as
is any integer times a lattice point.13

The vectors u1 and u2 are said to be a basis for the lattice. Other vectors can also serve as a basis, and
two bases for the same lattice are related by a 2 × 2 matrix with integer entries having determinant 1. (I
won’t go through the derivation of this.) The parallelogram determined by the basis vectors (any basis
vectors) is called a fundamental parallelogram for the lattice, or, in crystallographers” terms, a unit cell.
A fundamental parallelogram for Z2 is the square 0 ≤ x1 < 1, 0 ≤ x2 < 1.14 By convention, one speaks of
the area of a lattice in terms of the area of a fundamental parallelogram for the lattice, and we’ll write

Area(L) = Area of a fundamental parallelogram .

Two fundamental parallelograms for the same lattice have the same area since the bases are related by a
2 × 2 integer matrix with determinant 1 and the area scales by the determinant.

If we take the natural basis vectors e1 = (1, 0) and e2 = (0, 1) for R2 we get the integer lattice Z2 as
before. We can see that any lattice L can be obtained from Z2 via an invertible linear transformation A,
the one that takes e1 and e2 to a basis u1 = Ae1 and u2 = Ae2 that defines L. This is so precisely
because A is linear: if

p = p1u1 + p2u2, p1, p2 integers ,

is any point in L then
p = p1(Ae1) + p2(Ae2) = A(p1e1 + p2e2) ,

showing that p is the image of a point in Z2. We write

L = A(Z2)

A fundamental parallelogram for L is determined by u1 and u2, and so

Area(L) = Area of the parallelogram determined by u1 and u2 = |detA| .

Here, for example, is the lattice obtained from Z2 by applying

A =

(
3 −1
1 2

)

A basis is u1 = (3, 1), u2 = (−1, 2) (Draw the basis on the lattice!) The area of the lattice is 7.

13 In mathematical terminology a lattice is a module over Z; a module is like a vector space except that you can’t divide by
the scalars (the integers in this case) only add and multiply them. For a module, as opposed to a vector space, the scalars
form a ring, not a field.
14 It’s a common convention to define a fundamental parallelogram to be “half open”, including two sides (x1 = 0 and x2 = 0

in this case) and excluding two (x1 = 1 and x2 = 1). This won’t be an issue for our work.



8.4 III, Lattices, Crystals, and Sampling 375

8.4.3 III for a lattice

It doesn’t take a great leap in imagination to think about introducing III for a general lattice: If L is a
lattice in R2 then the III function associated with L is

IIIL(x) =
∑

p∈L

δ(x − p) .

So there’s your general “sum of delta functions at evenly spaced points”. We could also write the definition
as

IIIL(x) =

∞∑

k1,k2=−∞

δ(x − k1u1 − k2u2) .

As L can be obtained from Z2 via some linear transformation so too can IIIL be expressed in terms of IIIZ2 .
If L = A(Z2) then

IIIL(x) =
∑

p∈L

δ(x − p) =
∑

k∈Z2

δ(x −Ak) .

Next, using the formula for δ(Ax) from earlier in this chapter,

δ(x −Ak) = δ(A(A−1x − k)) =
1

|detA|
δ(A−1x − k)

Therefore

IIIL(x) =
1

|detA|
IIIZ2(A−1x) .

Compare this to our earlier formulas on how the one-dimensional III-function scales: With

IIIp(x) =
∞∑

k=−∞

δ(x− kp)
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and

III(px) =

∞∑

k=−∞

δ(px− k)

we found that

III(px) =
1

|p|
III1/p(x)

Periodizing and sampling Periodizing with IIIL via convolution results in a function that is periodic
with respect to the lattice. If

Φ(x) = (ϕ ∗ IIIL)(x) =
∑

p∈L

ϕ(x − p)

then
Φ(x + p) = Φ(x)

for all x ∈ R2 and all p ∈ L. Another way of saying this is that Φ has two “independent” periods, one
each in the directions of any pair of basis vectors for the lattice. Thus if u1, u2 are a basis for L then

Φ(x + k1u1) = Φ(x) and Φ(x + k2u2) = Φ(x), k1, k2 any integers.

IIIL is also the tool to use for sampling on a lattice, for

(ϕIIIL)(x) =
∑

p∈L

ϕ(p)δ(x − p) .

We’re almost ready to use this.

Dual lattices and FIIIL Of the many (additional) interesting things to say about lattices, the one
that’s most important for our concerns is how the Fourier transform of IIIL depends on L. This question
leads to a fascinating phenomenon, one that is realized physically in x-ray diffraction images of crystals.

We mentioned earlier that for the integer lattice we have

FIIIZ2 = IIIZ2 .

What about the Fourier transform of IIIL? We appeal to the general similarity theorem to obtain, for
L = AZ2,

FIIIL(ξ) =
1

|detA|
F(IIIZ2(A−1x))

=
1

|detA|

1

|detA−1|
FIIIZ2(ATξ)

(we just get AT on the inside because we’re already working with A−1)

= FIIIZ2(ATξ)

= IIIZ2(ATξ)

There’s a much neater version of this last result, and one of genuine physical importance. But we need a
new idea.
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In crystallography it is common to introduce the reciprocal lattice associated to a given lattice. Given a
lattice L, the reciprocal lattice is the lattice L∗ consisting of all points (or vectors) q such that

q · p = an integer for every p in the lattice L.

In some other areas of applications, and in mathematics, the reciprocal lattice is known as the dual lattice.
I’ll show my heritage and generally use the term dual lattice.

Warning People in crystallography, those in Material Sciences for example, use the reciprocal
lattice all the time and define it this way. However, in some fields and for some applications
the reciprocal lattice is normalized differently to require that q ·p be an integer multiple of 2π.
This alternate normalization is exactly tied up with the alternate ways of defining the Fourier
transform, i.e., while we use e−2πi ξ·x, putting the 2π in the exponential, others do not put the
2π there and have to put a factor in front of the integral, and so on. I can do no more than to
issue this warning and wish us all luck in sorting out the inconsistencies.

To develop the notion of the dual lattice a little, and to explain the terminology “reciprocal”, suppose we
get the lattice L from Z2 by applying an invertible matrix A to Z2. We’ll show that the reciprocal lattice
L∗ of L is given by

L∗ = A−T(Z2) .

There’s a maxim lurking here. Use of the Fourier transform always brings up “reciprocal” relations of some
sort, and in higher dimensions more often than not:

• “Reciprocal” means inverse transpose.

Notice, by the way, that (Z2)∗ = Z2, since A in this case is the identity, i.e., Z2 is “self-dual” as a lattice.
This, coupled with the discussion to follow, is another reason for saying that Z2 wins the award for most
evenly spaced points in R2.

Here’s why L∗ = A−T(Z2). Suppose q = A−Tm for some m = (m1,m2) in Z2. And suppose also, because
L = A(Z2), that p = Am′ for some other m′ = (m′

1,m
′
2) in Z2. Then

q · p = A−Tm ·Am′

= m · A−1(Am′) (because of how matrices operate with the dot product)

= m · m′ = m1m
′
1 +m2m

′
2 (an integer)

We want to draw two conclusions from the result that L∗ = A−T(Z2). First, we see that

Area(L∗) = |det A−T| =
1

|det A|
=

1

Area(L)
.

Thus the areas of L and L∗ are reciprocals. This is probably the crystallographer’s main reason for using
the term reciprocal.

The second conclusion, and the second reason to use the term reciprocal, has to do with bases of L and of
L∗. With L = A(Z2) let

u1 = Ae1, u2 = Ae2

be a basis for L. Since L∗ = A−T(Z2), the vectors

u∗
1 = A−Te1, u∗

2 = A−Te2
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are a basis for L∗. They have a special property with respect to u1 and u2, namely

ui · u
∗
j = δij (Kronecker delta) .

This is simple to show, after all we’ve been through:

ui · u
∗
j = Aei · A

−Tej = ei · A
TA−Tej = ei · ej = δij .

Now, in linear algebra — independent of any connection with lattices — bases {u1, u2} and {u∗
1, u

∗
2} of

R2 are called dual (or sometimes, reciprocal) if they satisfy

ui · u
∗
j = δij (Kronecker delta) .

We can therefore summarize what we’ve found by saying

• If {u1, u2} is a basis for a lattice L and if {u∗
1, u

∗
2} is the dual basis to {u1, u2}, then {u∗

1, u
∗
2} is a

basis for the dual lattice L∗.

Lots of words here, true, but it’s worth your while understanding what we’ve just done. You’re soon to
see it all in action in the sampling formula.

Here’s a picture of the dual lattice to the lattice pictured earlier. It’s obtained from Z2 by applying

A−T =

(
2/7 −1/7
1/7 3/7

)
.

As the scales on the axes show, the dual lattice is, in this case, much more “compressed” than the original
lattice. Its area is 1/7.
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Back to the Fourier transform. We showed that if L = A(Z2) then

FIIIL(ξ) = IIIZ2(ATξ) .

We want to call forth the reciprocal lattice. For this,

IIIZ2(ATξ) =
∑

n∈Z2

δ(ATξ − n)

=
∑

n∈Z2

δ(AT(ξ −A−Tn))

=
1

|detAT|

∑

n∈Z2

δ(ξ −A−Tn) =
1

|detA|

∑

n∈Z2

δ(ξ −A−Tn) .

But this last expression is exactly a sum over points in the reciprocal lattice L∗. We thus have

F(IIIL)(ξ) =
1

|detA|
IIIL∗(ξ) .

Bringing in the areas of fundamental parallelograms for L and L∗ we can write this either in the form

F(IIIL)(ξ) = Area(L∗)IIIL∗(ξ) or Area(L)F(IIIL)(ξ) = IIIL∗(ξ) .

Interchanging the roles of L and L∗, we likewise have

F(IIIL∗)(ξ) = Area(L)IIIL(ξ) or Area(L∗)F(IIIL∗)(ξ) = IIIL(ξ) .
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Formulas for the inverse Fourier transforms look just like these because the III’s are even.

Compare these results to the formula in one dimension,

FIIIp =
1

p
III1/p ,

and now you’ll see why I said “Pay particular attention here to the reciprocity in spacing between IIIp and
its Fourier transform” at the beginning of this section.

Higher dimensions Everything in the preceding discussion goes through in higher dimensions with no

significant changes, e.g., “area” becomes “volume”. The only reason for stating definitions and results in
two-dimensions was to picture the lattices a little more easily. But, certainly, lattices in three dimensions
are common in applications and provide a natural framework for understanding crystals, for example. Let’s
do that next.

8.4.4 The Poisson Summation Formula, again, and FIII
Z

2

Back in Chapter 5 we derived the Poisson summation formula: if ϕ is a Schwartz function then

∞∑

k=−∞

Fϕ(k) =

∞∑

k=−∞

ϕ(k) .

It’s a remarkable identity and it’s the basis for showing that

FIII = III

for the one-dimensional III. In fact, the Poisson summation formula is equivalent to the Fourier transform
identity.

The situation in higher dimensions is completely analogous. All that we need is a little bit on higher
dimensional Fourier series, which we’ll bring in here without fanfare; see the earlier section on “Higher
dimensional Fourier series and random walks” for more background.

Suppose ϕ is a Schwartz function on R2. We periodize ϕ to be periodic on the integer lattice Z2 via

Φ(x) = (ϕ ∗ IIIZ2)(x) =
∑

n∈Z2

ϕ(x − n) .

Then Φ has a two-dimensional Fourier series

Φ(x) =
∑

k∈Z2

Φ̂(k)e2πik·x .

Let’s see what happens with the Fourier coefficients.

Φ̂(k1, k2) =

∫ 1

0

∫ 1

0
e−2πi(k1x1+k2x2)Φ(x1, x2) dx1 dx2

=

∫ 1

0

∫ 1

0
e−2πi(k1x1+k2x2)

∞∑

n1,n2=−∞

ϕ(x1 − n1, x2 − n2) dx1 dx2

=

∞∑

n1,n2=−∞

∫ 1

0

∫ 1

0
e−2πi(k1x1+k2x2)ϕ(x1 − n1, x2 − n2) dx1 dx2 .
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Now we make the change of variables u = x1−n1, v = x2−n2. We can either do this “separately” (because
the variables are changing separately) or together using the general change of variables formula.15 Either
way, the result is

∞∑

n1,n2=−∞

∫ 1

0

∫ 1

0
e−2πi(k1x1+k2x2)ϕ(x1 − n1, x2 − n2) dx1 dx2

=

∞∑

n1,n2=−∞

∫ 1−n1

−n1

∫ 1−n2

−n2

e−2πi(k1(u+n1)+k2(v+n2)ϕ(u, v) du dv

=
∞∑

n1,n2=−∞

∫ 1−n1

−n1

∫ 1−n2

−n2

e−2πi(k1n1+k2n2)e−2πi(k1u+k2v)ϕ(u, v) du dv

=
∞∑

n1,n2=−∞

∫ 1−n1

−n1

∫ 1−n2

−n2

e−2πi(k1u+k2v)ϕ(u, v) du dv

=

∫ ∞

−∞

∫ ∞

−∞
e−2πi(k1u+k2v)ϕ(u, v) du dv

= Fϕ(k1, k2) .

We have found, just as we did in one dimension, that the Fourier series for the Z2-periodization of ϕ is

Φ(x) =
∑

k∈Z2

Fϕ(k)e2πi k·x .

We now evaluate Φ(0) in two ways, plugging x = 0 into its definition as the periodization of ϕ and into
its Fourier series. The result is ∑

k∈Z2

Fϕ(k) =
∑

k∈Z2

ϕ(k) .

To wrap it all up, here’s the derivation of

FIIIZ2 = IIIZ2

based on the Poisson summation formula. For any Schwartz function ψ,

〈FIIIZ2 , ψ〉 = 〈IIIZ2 ,Fψ〉 =
∑

k∈Z2

Fψ(k) =
∑

k∈Z2

ψ(k) = 〈IIIZ2 , ψ〉 .

8.5 Crystals

In a few paragraphs, here’s one reason why all this stuff on dual lattices is so interesting. The physical
model for a crystal is a three-dimensional lattice with atoms at the lattice points. An X-ray diffraction
experiment scatters X-rays off the atoms in the crystal and results in spots on the X-ray film, of varying
intensity, also located at lattice points. From this and other information the crystallographer attempts to
deduce the structure of the crystal. The first thing the crystallographer has to know is that the lattice of
spots on the film arising from diffraction is the dual of the crystal lattice. (In fact, it’s more complicated

15 Right here is where the property of Z2 as the “simplest” lattice comes in. If we were working with an “oblique” lattice we
could not make such a simple change of variables. We would have to make a more general linear change of variables. This
would lead to a more complicated result.
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than that, for it is the projection onto the two-dimensional plane of the film of the three-dimensional dual
lattice.)

We can explain this phenomenon — atoms on a lattice, spots on the dual lattice — via the Fourier
transform. What the crystallographer ultimately wants to find is the electron density distribution for the
crystal. The mathematical model for crystals puts a delta at each lattice point, one for each atom. If we
describe the electron density distribution of a single atom by a function ρ(x) then the electron density
distribution of the crystal with atoms at points of a (three-dimensional) lattice L is

ρL(x) =
∑

p∈L

ρ(x − p) = (ρ ∗ IIIL)(x) .

This is now a periodic function with three independent periods, one in the direction of each of the three
basis vectors that determine L. We worked with a one-dimensional version of this in Chapter 5.

The basic fact in X-ray crystallography is that the “scattered amplitude” of the X-rays diffracting off the
crystal is proportional to the magnitude of the Fourier transform of the electron density distribution. This
data, the results of X-ray diffraction, comes to us directly in the frequency domain. Now, we have

FρL(ξ) = Fρ(ξ)FIIIL(ξ) = Fρ(ξ)Volume(L∗) IIIL∗(ξ) ,

where L∗ is the dual lattice. Taking this one more step,

FρL(ξ) = Volume(L∗)
∑

q∈L∗

Fρ(q)δ(ξ − q) .

The important conclusion is that the diffraction pattern has peaks at the lattice points of the reciprocal

lattice. The picture is not complete, however. The intensities of the spots are related to the magnitude
of the Fourier transform of the electron density distribution, but for a description of the crystal it is also
necessary to determine the phases, and this is a hard problem.

Here’s a picture of a macroscopic diffraction experiment. On the left is an array of pinholes and on the
right is the diffraction pattern. The spots on the right are at the lattice points of the reciprocal lattice.

The goal of X-ray diffraction experiments is to determine the configuration of atoms from images of this
type. Making the analysis even harder is that for 3D crystal lattices the images on an X-ray film are the
projection onto the image plane of the 3D configuration. Just how difficult it may be to infer 3D structure
from 2D projections is illustrated by a famous experiment: “Fun in Reciprocal Space” published in the
distinguished American journal The New Yorker.
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8.6 Bandlimited Functions on R2 and Sampling on a Lattice

Let’s develop the sampling formula in two dimensions. A function f on R2 is bandlimited if Ff is identically
zero outside of some bounded region. We always assume that f is real valued, and hence Ff(−ξ) = Ff(ξ).
Thus, as we’ve pointed out before, if Ff(ξ) 6= 0 then Ff(−ξ) 6= 0 and so, as a point set in R2, the spectrum
is symmetric about the origin.

We want to derive a sampling formula associated with a lattice L by following the recipe of first periodizing
Ff via IIIL, then cutting off, and then taking the inverse Fourier transform. The result will be a sinc
reconstruction of f from its sampled values — but just where those sampled values are is what’s especially
interesting and relevant to what we’ve just done.

To get the argument started we assume that the support of Ff lies in a parallelogram. This parallelogram
determines a fundamental parallelogram for a lattice L, and the spectrum gets shifted parallel to itself
and off itself through convolution with IIIL. This periodization is the first step and it’s analogous to the
one-dimensional case when the spectrum lies in an interval, say from −p/2 to p/2, and the spectrum gets
shifted around and off itself through convolution with IIIp. Recall that the crucial limitation is that the
spectrum only goes up to p/2 and down to −p/2, while IIIp has δ’s spaced p apart. The spacing of the
δ’s is big enough to shift the spectrum off itself and no smaller spacing will do. Correspondingly in two
dimensions, the parallelogram containing the spectrum determines a lattice with “big enough spacing” for
a III based on the lattice to shift the spectrum off itself.

Using the general stretch theorem, we’ll be able to get the general result by first deriving a special case,
when the spectrum lies in a square. Suppose, then, that Ff(ξ) is identically zero outside the (open) square
|ξ1| < 1/2, |ξ2| < 1/2. We work with the integer lattice Z2 with basis e1 and e2. The (open) fundamental
parallelogram for Z2 is 0 < ξ1 < 1, 0 < ξ2 < 1 and the spectrum is inside the center fourth of four copies
of it, as pictured.

Periodizing Ff by IIIZ2 shifts the spectrum off itself, and no smaller rectangular lattice will do for this.
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We then cut off by the two-dimensional rect function Π(x1, x2) = Π(x1)Π(x2) and this gives back Ff :

Ff(ξ) = Π(ξ1)Π(ξ2)(Ff ∗ IIIZ2)(ξ) .

This is just as in the one-dimensional case, and now it’s time to take the inverse Fourier transform. Using
FIIIZ2 = IIIZ2, or rather F−1IIIZ2 = IIIZ2 , and invoking the convolution theorem we obtain

f(x) = f(x1, x2) = (sincx1 sincx2) ∗ (f(x) · IIIZ2(x))

= (sincx1 sincx2) ∗
(
f(x) ·

∞∑

k1,k2=−∞

δ(x − k1e1 − k2e2)
)

= (sincx1 sincx2) ∗

∞∑

k1,k2=−∞

f(k1, k2)δ(x1 − k1, x2 − k2)

=

∞∑

k1,k2=−∞

f(k1, k2) sinc(x1 − k1) sinc(x2 − k2) .

In solidarity with the general case soon to follow, let’s write this “square sampling formula” as

f(x) =

∞∑

k1,k2=−∞

f(k1e1 + k2e2) sinc(x · e1 − k1) sinc(x · e2 − k2) .

Now suppose that the spectrum of Ff lies in the (open) parallelogram, as pictured, with u1 and u2 parallel
to the sides and as long as the sides.

Let A be the 2× 2 matrix that takes e1 to u1 and e2 to u2, so that A maps the lattice Z2 to the lattice L
with basis u1 and u2. Let B = A−T (hence B−T = A) and remember that B takes Z2 to the dual lattice
L∗ of L. A basis for L∗ (the dual basis to u1 and u2) is

u∗
1 = Be1, u∗

2 = Be2 .
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Next let
g(x) = f(Bx) .

According to the general stretch theorem,

Fg(ξ) =
1

|detB|
Ff(B−Tξ) = |detA| Ff(Aξ) .

The determinant factor out front doesn’t matter; what’s important is that the spectrum of g is in the
square −1/2 < ξ1 < 1/2, −1/2 < ξ2 < 1/2, since the corresponding points Aξ lie in the parallelogram
containing the spectrum of f , i.e., Fg is identically zero outside the square.

We now apply the square sampling formula to g to write

g(x) =

∞∑

k1,k2=−∞

g(k1e1 + k2e2) sinc(x · e1 − k1) sinc(x · e2 − k2)

With y = Bx we can then say

f(y) =

∞∑

k1,k2=−∞

f(B(k1e1 + k2e2)) sinc(B−1y · e1 − k1) sinc(B−1y · e2 − k2)

=
∞∑

k1,k2=−∞

f(k1Be1 + k2Be2) sinc(ATy · e1 − k1) sinc(ATy · e2 − k2)

=
∞∑

k1,k2=−∞

f(k1u
∗
1 + k2u

∗
2) sinc(y · Ae1 − k1) sinc(y · Ae2 − k2)

=

∞∑

k1,k2=−∞

f(k1u
∗
1 + k2u

∗
2) sinc(y · u1 − k1) sinc(y · u2 − k2) .

We’re done. Change y to x for psychological comfort, and the “lattice sampling formula” says that

f(x) =
∞∑

k1,k2=−∞

f(k1u
∗
1 + k2u

∗
2) sinc(x · u1 − k1) sinc(x · u2 − k2). (8.1)

This is a sinc reconstruction formula giving the function in terms of sample values on a lattice. But it’s
the dual lattice! Here’s how to remember the highlights:
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• The spectrum of f lies in a parallelogram, which determines a lattice with basis u1 and u2.

• That lattice determines a dual lattice (in the spatial domain) with dual basis u∗
1 and u∗

2.

• The sincs use data from the lattice, while the sample points are exactly the points in the dual lattice.

Look back at the one-dimensional sampling formula and tell yourself what you see of this picture.

Exercise What should we mean by “sampling rate” vis à vis the two-dimensional lattice sampling for-
mula?

The next topics on this path would be to investigate aliasing and to consider the case of a finite spectrum
and finite sampling. Another time, another class.

8.7 Naked to the Bone

Our final topic in the course will be a quick development of the use of the Fourier transform in medical
imaging. We’ll find that the two-dimensional Fourier transform is perfectly suited to the problem of
recovering a density function — a function representing bones, internal organs, the whole lot — from the
projections of that density obtained by passing parallel beams of X-rays through a two-dimensional cross
section of the body. (For the discussion of the use of the Fourier transform I’m not making a distinction
between the original methods of tomography using X-rays and those of magnetic resonance imaging.)

For an account of the history of medical imaging, I recommend the book Naked to the Bone: Medical

Imaging in the Twentieth Century by Bettyann Kevles, from which I stole the title of this section.

Dimmer and dimmer What happens when light passes through murky water? It gets dimmer and
dimmer the farther it goes, of course — this is not a trick question. If the water is the same murkiness
throughout, meaning, for example, uniform density of stuff floating around in it, then it’s natural to assume
that the intensity of light decreases by the same percent amount per length of path traveled. Through
absorption, scattering, etc., whatever intensity comes in, a certain percentage of that intensity goes out;
over a given distance the murky water removes a percentage of light, and this percentage depends only on
the distance traveled and not on where the starting and stopping points are.16 We’re assuming here that
light is traveling in a straight line through the water.

Constant percent change characterizes exponential growth, or decay, so the attenuation of the intensity of
light passing through a homogeneous medium is modeled by

I = I0e
−µx ,

where I0 is the initial intensity, x is the distance traveled, and µ is a (positive) “murkiness constant”. x has
dimension of length and µ has dimension 1/length and units “murkiness/length”. µ is constant because
we assume that the medium is homogeneous. We know the value of I0, and one measurement of x and I
will determine µ. In fact, what we do is to put a detector at a known distance x and measure the intensity
when it arrives at the detector.

16 Optical fibers provide an interesting and important study in the progress of making something — glass in this case — less
murky. In the Appendix 8.12 I’ve attached a graph showing just how dramatic the progress has been.
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Now suppose the water is not uniformly murky, but rather the light passes through a number of layers,
each layer of uniform murkiness. If the i’th layer has murkiness constant µi and is of length ∆xi, and if
there are n layers, then the intensity of light that reaches the detector can be modeled by

I = I0 exp

(
−

n∑

i=1

µi∆xi

)
.

Clearly, if the murkiness is described by a function µ(x), then the intensity arriving at the detector is
modeled by

I = I0 exp

(
−

∫

L
µ(x) dx

)
,

where L is the line the light travels along. It’s common to call the number

p =

∫

L
µ(x) dx = − ln

(
I

I0

)

the attenuation coefficient.

Can we recover the density function µ(x) from knowledge of the intensity? Not so easily. Certainly not
from a single reading — many arrangements of murkiness along the path could result in the same final
intensity at the detector.

If we could vary the detector along the path and record the results then we would be able to determine
µ(x). That is, if we could form

p(ξ) =

∫ ξ

ξ0

µ(x) dx ,

as a function of a variable position ξ along the line (ξ0 is some fixed starting point — the source) then we
could find µ from p by finding the derivative p′′. The trouble is moving the detector through the murky
water along the path.

Tomography X-rays are light, too, and when they pass through murky stuff (your body) along a straight
line they are attenuated and reach a detector on the other end at a reduced intensity. We can continue to
assume that the attenuation, the decrease in intensity, is exponentially decreasing with the path length.
The exponential of what? What do the X-rays pass through?

From the start we set this up as a two-dimensional problem. Take a planar slice through your body. The
gunk in this two-dimensional slice — bones, organs, other tissue — is of variable density ; let’s say it’s
described by an unknown function µ(x1, x2). We consider µ(x1, x2) to be zero outside the section of the
body. Take a line L through this slice — in the plane of the slice, the path that an X-ray would follow —
and parameterize the line by x1(s), x2(s), where s is the arclength parameter going from s0 to s1. (The
“arclength parameter” means that we move along the line at unit speed.) Then the density along the line
is µ(x1(s), x2(s)) and the attenuation of the X-ray intensity along the line is

I = I0 exp

(
−

∫ s1

s0

µ(x1(s), x2(s)) ds

)

Instead of writing out the parameters and limits, we often write the integral simply as
∫

L
µ(x1, x2) ds .

We’ll refer to this as a line integral of µ along L.
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• The fundamental problem of tomography17 is to determine the function µ(x, y) from these line inte-
grals, taken over many lines through the region.

For example — what’s inside?

In trying to solve this problem, what’s not allowed is to move the detector through the body — that’s not
covered by HMO plans. What is allowed is to rotate the source (and the detector) to get X-rays circling
around the two-dimensional cross-section of the body, and what we’ll have are families of parallel X-rays.
Before laying all this out, it pays to organize our study of the problem.

8.8 The Radon Transform

For each line L, cutting through the slice, the integral
∫

L
µ(x1, x2) ds

is a number. The operation “line determines number” thus defines a real-valued function of L. The whole
subject of tomography is about this function. To work with it effectively we need to be able describe the
set of all lines — not the (Cartesian) equation of a given line, but some kind of parametric description for
the collection of lines. This will allow us to write the integral as a function of these parameters.

There are many ways to describe the collection of all lines in the plane. One that may seem most natural
to you is to use the “slope-intercept” form for the equation of a line; a line can be written as y = mx+ b
where m is the slope and b is the y-intercept. A line can thus be associated with a unique pair (m, b) and

17 tomos means “section” in Greek



8.8 The Radon Transform 389

vice versa. There’s a catch here, however — vertical lines (lines x = constant, infinite slope) are left out
of this description.

Another approach, one that allows us to describe all lines and that is well suited for the function of L,
above, goes as follows. First, a line through the origin is determined by its unit normal vector n. Now,
n and −n determine the same line, so we represent all the (distinct) normal vectors as (cos φ, sin φ) for
an angle φ satisfying 0 ≤ φ < π, measured counterclockwise from the x1-axis. In other words, there is
a one-to-one correspondence between the φ’s with 0 ≤ φ < π and the collection of all lines through the
origin.

A line not through the origin can then be described by its unit normal vector together with the directed

distance of the line from the origin, a positive number if measured in the direction of n and a negative
number if measured in the direction −n. Call this directed distance ρ. Thus −∞ < ρ <∞.

The set of pairs (ρ, φ) provides a parameterization for the set of all lines in the plane. Once again:

• A pair (ρ, φ) means, in this context, the unique line with normal vector n = (cos φ, sinφ) which is at
a directed distance ρ from the origin, measured in the direction n if ρ > 0 and in the direction −n

if ρ < 0.

Anytime you’re confronted with a new coordinate system you should ask yourself what the situation is
when one of the coordinates is fixed and the other is free to vary. In this case, if φ is fixed and ρ varies we
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get a family of parallel lines.

For the other case, when ρ is fixed, we have to distinguish some cases. The pairs (0, φ) correspond to lines
through the origin. When ρ is positive and φ varies from 0 to π (including 0, excluding π) we get the
family of lines tangent to the upper semicircle of radius ρ (including the tangent at (ρ, 0) excluding the
tangent at (−ρ, 0)). When ρ < 0 we get lines tangent to the lower semicircle (including the tangent at
(−|ρ|, 0), excluding the tangent at (|ρ|, 0)).

Using the coordinates (ρ, φ) we therefore have a transform of the function µ(x1, x2) to a function Rµ(ρ, φ)
defined by

Rµ(ρ, φ) =

∫

L(ρ,φ)
µ(x1, x2) ds .

This is called the Radon transform of µ, introduced by Johann Radon — way back in 1917! The funda-
mental question of tomography can then be stated as:

• Is there an inversion formula for the Radon transform? That is, from knowledge of the values Rµ(ρ, φ)
can we recover µ?
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We’ve indicated the dependence of the integral on ρ and φ by writing L(ρ, φ), but we want to use the
coordinate description of lines to write the integral in a still more convenient form. Using the dot product,
the line determined by (ρ, φ) is the set of points (x1, x2) with

ρ = x · n = (x1, x2) · (cosφ, sinφ) = x1 cosφ+ x2 sinφ .

or described via the equation

ρ− x1 cosφ− x2 sinφ = 0 , −∞ < x1 <∞, −∞ < x2 <∞ .

Now consider the delta function “along the line”, that is,

δ(ρ− x1 cosφ− x2 sinφ)

as a function of x1, x2. This is also called a line impulse and it’s an example of the greater variety one has
in defining different sorts of δ’s in two-dimensions. With some interpretation and argument (done in those
notes) one can show that integrating a function f(x1, x2) against the line impulse associated with a line
L results precisely in the line integral of f along L. This is all we’ll need here, and with that the Radon
transform of µ(x1, x2) can be expressed as

R(µ)(ρ, φ) =

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(ρ − x1 cosφ− x2 sinφ) dx1 dx2 .

This is the form we’ll most often work with. One also sees the Radon transform written as

R(µ)(ρ, n) =

∫

R2

µ(x)δ(ρ − x · n) dx .

This expression suggests generalizations to higher dimensions — interesting, but we won’t pursue them.

Projections It’s often convenient to work with R(µ)(ρ, φ) by first fixing φ and letting ρ vary. Then we’re
looking at parallel lines passing through the domain of µ, all perpendicular to a particular line making
an angle φ with the x1-axis (that line is the common normal to the parallel lines), and we compute the
integral of µ along these lines.

This collection of values, R(µ)(ρ, φ) with φ fixed, is often referred to as a projection of µ, the idea being
that the line integrals over parallel lines at a fixed angle are giving some kind of profile, or projection, of
µ in that direction.18 Then varying φ gives us a family of projections, and one speaks of the inversion
problem as “determining µ(x1, x2) from its projections”.

This is especially apt terminology for the medical applications, since that’s how a scan is made:

1. Fix an angle and send in a bunch of parallel X-rays at that angle.

2. Change the angle and repeat.

8.9 Getting to Know Your Radon Transform

We want to develop a few properties of the Radon transform, just enough to get some sense of how to work
with it. First, a few comments on what kinds of functions µ(x1, x2) one wants to use; it’s interesting but
we won’t make an issue of it.

18 Important: Don’t be fooled by the term “projection”. You are not geometrically projecting the shape of the two-
dimensional cross section (that the lines are cutting through). You are looking at the attenuated, parallel X-rays that emerge
as we move a source along a line. The line is at some angle relative to a reference axis.
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Inspired by honest medical applications, we would not want to require that the cross-sectional density
µ(x1, x2) be smooth, or even continuous. Jump discontinuities in µ(x1, x2) correspond naturally to a change
from bone to muscle, etc. Although, mathematically speaking, the lines extend infinitely, in practice the
paths are finite. In fact, the easiest thing is just to assume that µ(x1, x2) is zero outside of some region —
it’s describing the density of a slice of a finite extent body, after all.

Examples There aren’t too many cases where one can compute the Radon transform explicitly. One
example is the circ function, expressed in polar coordinates as

circ(r) =

{
1 r ≤ 1

0 r > 1

We have to integrate the circ function along any line. Think in terms of projections, as defined above.
From the circular symmetry, it’s clear that the projections are independent of φ.

Because of this we can take any convenient value of φ, say φ = 0, and find the integrals over the parallel
lines in this family. The circ function is 0 outside the unit circle, so we need only to find the integral (of
the function 1) over any chord of the unit circle parallel to the x2-axis. This is easy. If the chord is at a
distance ρ from the origin, |ρ| ≤ 1, then

R(1)(ρ, 0) =

∫ p

1 − ρ2

−
p

1 − ρ2

1 dx2 = 2
√

1 − ρ2 .
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Thus for any (ρ, φ),

R circ(ρ, φ) =

{
2
√

1 − ρ2 |ρ| ≤ 1

0 |ρ| > 1

Gaussians again Another example where we can compute the Radon transform exactly is for a Gaussian:

g(x1, x2) = e−π(x2

1
+x2

2
) .

Any guesses as to what Rg is? Let’s do it.

Using the representation in terms of the line impulse we can write

Rg(ρ, φ) =

∫ ∞

−∞

∫ ∞

−∞
e−π(x2

1
+x2

2
)δ(ρ− x1 cosφ− x2 sinφ) dx1 dx2 .

We now make a change of variables in this integral, putting

u1 = x1 cosφ+ x2 sinφ,

u2 = −x1 sinφ+ x2 cosφ.

This is a rotation of coordinates through an angle φ, making the u1-axis correspond to the x1-axis. The
Jacobian of the transformation is 1, and we also find that

u2
1 + u2

2 = x2
1 + x2

2 .
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In the new coordinates the integral becomes:

Rg(ρ, φ) =

∫ ∞

−∞

∫ ∞

−∞
e−π(u2

1
+u2

2
)δ(ρ − u1) du1du2

=

∫ ∞

−∞

(∫ ∞

−∞
e−πu2

1δ(ρ− u1) du1

)
e−πu2

2 du2

=

∫ ∞

−∞
e−πρ2

e−πu2

2 du2 (by the sifting property of δ)

= e−πρ2

∫ ∞

−∞
e−πu2

2 du2

= e−πρ2

(because the Gaussian is normalized to have area 1)

Writing this in polar coordinates, r = x2
1 + x2

2, we have shown that

R(e−πr2

) = e−πρ2

.

How about that.

Linearity, Shifts, and Evenness We need a few general properties of the Radon transform.

Linearity: R(αf + βg) = αR(f) + βR(g). This holds because integration is a linear function of the
integrand.
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Shifts: This is a little easier to write (and to derive) in vector form. Let n = (cosφ, sinφ). The result is

R(µ(x − b)) = (Rµ)(ρ− b · n, φ)

In words: shifting x by b has the effect of shifting each projection a distance b · n in the ρ-variable.

To derive this we write the definition as

R(µ(x − b)) =

∫

R2

µ(x − b)δ(ρ− x · n) dx

If b = (b1, b2) then the change of variable u1 = x1 − b1 and u2 = x2 − b2, or simply u = x − b with
u = (u1, u2), converts this integral into

R(µ(x − b)) =

∫

R2

µ(u)δ(ρ− (u + b) · n) du

=

∫

R2

µ(u)δ(ρ− u · n − b · n)) du

= (Rµ)(ρ− b · n, φ)

Evenness: Finally, the Radon transform always has a certain symmetry — it is always an even function
of ρ and φ. This means that

Rµ(−ρ, φ+ π) = Rµ(ρ, φ) .

Convince yourself that this makes sense in terms of the projections. The derivation goes:

Rµ(−ρ, φ+ π) =

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(−ρ− x1 cos(φ+ π) − x2 sin(φ+ π)) dx1 dx2

=

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(−ρ− x1(− cosφ) − x2(− sinφ)) dx1 dx2

=

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(−ρ+ x1 cosφ+ x2 sinφ) dx1 dx2

=

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(ρ − x1 cosφ− x2 sinφ) dx1 dx2 (because δ is even)

= Rµ(ρ, φ)

8.10 Appendix: Clarity of Glass

Here’s a chart showing how the clarity of glass has improved over the ages, with some poetic license in
estimating the clarity of the windows of ancient Egypt. Note that on the vertical axis on the left the tick
marks are powers of 10 but the units are in decibels — which already involve taking a logarithm! The big
jump in clarity going to optical fibers was achieved largely by eliminating water in the glass.
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8.11 Medical Imaging: Inverting the Radon Transform

Let’s recall the setup for tomography. We have a two-dimensional region (a slice of a body) and a density
function µ(x1, x2) defined on the region. The Radon transform of µ is obtained by integrating µ along
lines that cut across the region. We write this as

Rµ(ρ, φ) =

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(ρ − x1 cosφ− x2 sinφ) dx1 dx2 .

Here (ρ, φ) are coordinates that specify a line; φ (0 ≤ φ < π) is the angle the normal to the line makes with
the x1-axis and ρ (−∞ < ρ <∞) is the directed distance of the line from the origin. δ(ρ−x1 cosφ−x2 sinφ)
is a line impulse, a δ-function along the line whose (Cartesian) equation is ρ− x1 cosφ− x2 sinφ = 0.

If we fix φ and vary ρ, then Rµ(ρ, φ) is a collection of integrals along parallel lines through the region, all
making the same angle, φ + π/2, with a reference axis, the x1-axis. This set of values is referred to as a
projection of µ. Thus one often speaks of the Radon transform as a collection of projections parameterized
by an angle φ.

In practice µ(x1, x2) is unknown, and what is available are the values Rµ(ρ, φ). These values (or rather
a constant times the exponential of these values) are what your detector registers when an X-ray reaches
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it having gone through the region and having been attenuated according to its encounter with µ(x1, x2).
The problem is to reconstruct µ(x1, x2) from these meter readings, in other words to invert the Radon
transform.

Among those who use these techniques, µ(x1, x2) is often referred to simply as an image. In that termi-
nology the problem is then “to reconstruct the image from its projections”.

The Projection-Slice Theorem The inversion problem is solved by a result that relates the two-

dimensional Fourier transform of µ to a one-dimensional Fourier transform of R(µ), taken with respect

to ρ. Once Fµ is known, µ can be found by Fourier inversion.

The formulation of this relation between the Fourier transforms of an image and its projections is called
the Projection-Slice Theorem19 and is the cornerstone of tomography. We’ll go through the derivation,
but it must be said at once that, for practical applications, all of this has to be implemented numerically,
i.e., with the DFT (and the FFT). Much of the early work in Computer Assisted Tomography (CAT)
was in finding efficient algorithms for doing just this. An important issue are the errors introduced by
approximating the transforms, termed artifacts when the reconstructed image µ(x1, x2) is drawn on a
screen. We won’t have time to discuss this aspect of the problem.

Starting with

Rµ(ρ, φ) =

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(ρ − x1 cosφ− x2 sinφ) dx1 dx2 ,

what is its Fourier transform with respect to ρ, regarding φ as fixed? For lack of a better notation, we
write this as Fρ(R(µ)). Calling the frequency variable r — dual to ρ — we then have

FρR(µ)(r, φ) =

∫ ∞

−∞
e−2πirρRµ(ρ, φ) dρ

=

∫ ∞

−∞
e−2πirρ

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)δ(ρ − x1 cosφ− x2 sinφ) dx1 dx2 dρ

=

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)

(∫ ∞

−∞
δ(ρ− x1 cosφ− x2 sinφ)e−2πirρ dρ

)
dx1 dx2

=

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)e

−2πir(x1 cos φ+x2 sinφ) dx1 dx2

=

∫ ∞

−∞

∫ ∞

−∞
µ(x1, x2)e

−2πi(x1r cos φ+x2r sin φ) dx1 dx2

Check out what happened here: By interchanging the order of integration we wind up integrating the line
impulse against the complex exponential e−2πirρ. For that integration we can regard δ(ρ−x1 cosφ−x2 sinφ)
as a shifted δ-function, and the integration with respect to ρ produces e−2πi(x1r cos φ+x2r sin φ). Now if we let

ξ1 = r cosφ

ξ2 = r sinφ

the remaining double integral is

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x1ξ1+x2ξ2)µ(x1, x2) dx1 dx2 =

∫

R2

e−2πix·ξ µ(x) dx .

19 Also called the Central Slice Theorem, or the Center Slice theorem.
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This is the two-dimensional Fourier transform of µ.

We have shown

• The Projection-Slice Theorem:

FρR(µ)(r, φ) = Fµ(ξ1, ξ2), ξ1 = r cosφ, ξ2 = r sinφ .

Observe that

r2 = ξ21 + ξ22 and tan φ =
ξ2
ξ1
.

This means that (r, φ) are polar coordinates for the (ξ1, ξ2)-frequency plane. As φ varies between 0 and π
(including 0, excluding π) and r between −∞ and ∞ we get all the points in the plane.

Reconstructing the image That last derivation happened pretty fast. Let’s unpack the steps in using
the projection-slice theorem to reconstruct an image from its projections.

1. We have a source and a sensor that rotate about some center. The angle of rotation is φ, where
0 ≤ φ < π.

2. A family of parallel X-rays pass from the source through a (planar) region of unknown, variable
density, µ(x1, x2), and are registered by the sensor.

For each φ the readings at the meter thus give a function gφ(ρ) (or g(ρ, φ)), where ρ is the (directed)
distance that a particular X-ray is from the center of the beam of parallel X-rays.

Each such function gφ, for different φ’s, is called a projection.

3. For each φ we compute Fgφ(r), i.e., the Fourier transform of gφ(ρ) with respect to ρ.

4. Since gφ(ρ) also depends on φ so does its Fourier transform. Thus we have a function of two variables,
G(r, φ), the Fourier transform of gφ(ρ). The projection-slice theorem tells us that this is the Fourier
transform of µ:

Fµ(ξ1, ξ2) = G(r, φ), where ξ1 = r cosφ, ξ2 = r sinφ .

Thus (Fµ)(ξ1, ξ2) is known.

5. Now take the inverse two-dimensional Fourier transform to recover µ:

µ(x) =

∫

R2

e2πix·ξ Fµ(ξ) dξ .

Running the numbers Very briefly, let’s go through how one might set up a numerical implementation
of the procedure we’ve just been through. The function that we know is g(ρ, φ) — that’s what the sensor
gives us, at least in discrete form. To normalize things we suppose that g(ρ, φ) is zero for |ρ| ≥ 1. This
means, effectively, that the region we’re passing rays through is contained within the circle of radius one
— the region is bounded so we can assume that it lies within some disk, so we scale to assume the the
region lies within the unit disk.
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Suppose we have M equal angles, φj = jπ/M , for j = 0, . . . ,M − 1. Suppose next that for each angle we
send through N X-rays. We’re assuming that −1 ≤ ρ ≤ 1, so the rays are spaced ∆ρ = 2/N apart and we
index them to be

ρn =
2n

N
, n = −

N

2
, . . . ,

N

2
− 1 .

Then our projection data are the MN values

gnj = g(ρn, φj) , j = 0, . . . ,M − 1 , n = −
N

2
, . . . ,

N

2
− 1 .

The first step in applying the projection slice theorem is to find the one-dimensional Fourier transform of
g(ρ, φj) with respect to ρ, which, since the function is zero for |ρ| ≥ 1, is the integral

Fg(r, φj) =

∫ 1

−1
e−2πirρg(ρ, φj) dρ .

We have to approximate and discretize the integral. One approach to this is very much like the one we
took in obtaining the DFT (Chapter 6). First, we’re integrating with respect to ρ, and we already have
sample points at the ρn = 2n/N ; evaluating g at those points gives exactly gnj = g(ρn, φj). We’ll use these
for a trapezoidal rule approximation.

We also have to discretize in r, the “frequency variable” dual to ρ. According to the sampling theorem, if
we want to reconstruct Fg(r, φj) from its samples in r the sampling rate is determined by the extent of
g(ρ, φj) in the spatial domain, where the variable ρ is limited to −1 ≤ ρ ≤ 1. So the sampling rate in r
is 2 and the sample points are spaced 1/2 apart:

rm =
m

2
, m = −

N

2
, . . . ,

N

2
− 1 .

The result of the trapezoidal approximation using ρn = 2n/N and of discretizing in r using rm = m/2 is

Fg(rm, φj) ≈
2

N

N/2∑

n=−N/2+1

e−2πiρnrmgnj

=
2

N

N/2∑

n=−N/2+1

e−2πinm/Ngnj .

(The 2 in 2/N comes in from the form of the trapezoidal rule.) Up to the constant out front, this is a DFT
of the sequence (gnj), n = −N/2 + 1, . . . , N/2. (Here n is varying, while j indexes the projection.) That
is,

Fg(rm, φj) ≈
2

N
F (gnj)[m] .

Computing this DFT for each of the M projections φj (j = 0, . . . ,M − 1) gives the data Fg(rm, φj). Call
this

Gmj = F (gnj)[m] .

The next step is to take the two-dimensional inverse Fourier transform of the data Gmj . Now there’s an
interesting problem that comes up in implementing this efficiently. The Gmj are presented as data points
based on a polar coordinate grid in the frequency domain:
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The vertices in this picture are the points (rm, φj) and that’s where the data points Gmj live. However,
efficient FFT algorithms depend on the data being presented on a Cartesian grid. One way this is often
done is to manufacture data at Cartesian grid points by taking a weighted average of the Gmj at the polar
grid points which are nearest neighbors:

GCartesian = waGa +wbGb + wcGc + wdGd .

Choosing the weighting factors wa, wb, wc and wc is part of the art, but the most significant introductions

of error in the whole process come from this step.

The final picture is then created by

µ(grid points in spatial domain) = F −1(GCartesian) .
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This is your brain. This is your brain on Fourier transforms Here are some pictures of a Fourier
reconstruction of a model brain.20. The “brain” is modeled by a high density elliptical shell (the skull)
with lower density elliptical regions inside.

It’s possible to compute explicity the Radon transform for lines going through an elliptical region, so the
sampling can be carried out based on these formulas. There are 64 projections (64 φj ’s) each sampled at 64
points (64 ρn’s) in the interval [−1, 1]. Here’s the plot of the values of the projections (the Radon transforms
along the lines). As in pictures of the (Fourier) spectrum of images, the values here are represented via
shading; white represents large values and black represents small values. The horizontal axis is ρ and the
vertical is φ.

20 See the paper: L A. Shepp and B. F. Logan, The Fourier reconstruction of a head section, IEEE Trans. Nucl. Sci., NS-21
(1974) 21–43.
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And here is the reconstructed brain.


