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• Several theoretical formulations have re-
cently been proposed to explain the shape of
peripheral indicator dilution curves.1"5 One
such mathematical approach utilizes convolu-
tion integrals,1' '*• "*• °~u in which concentration
of the indicator is handled as an unknown and
unspecified function of time, C(t). The wide-
spread use of this method, however, will be
limited because the required mathematical
manipulations, when applied to curves ob-
tained in vivo, involve intricate and lengthy
calculations. This type of analysis would be
facilitated if the indicator concentration could
be conveniently expressed as a specific func-
ton of time.9'10 If such a suitable function
were available, it would also be possible to
characterize more accurately normal and ab-
normal indicator dilution curves and perhaps
to gain insight into some of the factors deter-
mining the shape of the curves. In addition,
the availability of such a function would allow
more efficient processing of experimental
curves by high-speed computers.

A number of theoretical and empirical
mathematical expressions for C(t) have been
suggested.2'4t "•12'13 These have found limited
application and have not been subjected to
extensive experimental verification using a
large number of normal and abnormal curves.
One expression for C(t), proposed by Evans in
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1959,,12 has a graphical representation which
bears a remarkable resemblance to indicator
dilution curves without recirculation (see Ap-
pendix). With only minor changes in notation,
this function can be expressed in the form,

C(t) = K(t-AT)ae-<l-AT^P (1)
t = time after injection

C(t) = indicator concentration
at time, t

K — constant scale factor
AT — appearance time

a, /3 = arbitrary parameters

This expression for C(t) has convenient mathe-
matical properties and can be shown to be
applicable to a wide variety of indicator dilu-
tion curves. In the present study curve-fitting
techniques were used to find appropriate
noninteger values of a and /3 (equation 1)
for 114 normal and abnormal curves. Excel-
lent fits were obtained for each of the curves.
From these observations and from the known
mathematical characteristics of the function
in equation 1, it was found that indicator
transit time exhibits essentially the same
mathematical properties as do a number of
random variables, known as "gamma" variates
(see Discussion). The evaluation of equation
1 as a potentially useful means of describing
indicator dilution curves forms the basis of
this report.

Methods
Peripheral arterial dye dilution curves (indocy-

anine green), which had been obtained over a
three-year period at the Duke Cardiovascular Lab-
oratory from catheterized patients without shunts,
were studied. A total of 114 curves were selected
from 70 patients and 2 normal subjects. Of these
curves, 109 were from patients with catheter-
proven valvular heart disease, 3 were from
patients proven at catheterization to be hemody-
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namically normal, and 2 were from normal sub-
jects. The curves were obtained following the
injection of indocyanine green dye into the right
atrium or pulmonary artery, by continuously
sampling peripheral arterial blood through a lin-
ear cuvette densitometer (Colson-Gilford). The
resulting dilution curve was recorded by means of
an Electronics for Medicine photographic record-
er. All of the 114 curves were plotted on semilog
paper and extrapolated in the standard Stewart-
Hamilton manner.14 Details of the technique as
employed in this laboratory have been published
previously.13

Many of the curves often had obvious "smear-

ing," i.e., prolongation of the downslope, which
has been ascribed to the elongation of the injected
slug of dye as it passes through blood vessels and
mixing chambers of various capacities.5 If
Shillingford's spread/appearance-time ratio10 is
used as an index of the degree of this smearing,
the 114 curves included 48 curves which showed
no or minimal smearing (S/AT ratio < 2.0), 43
showed mild to moderate smearing (ratio 2.0 to
3.0), and 23 showed marked smearing (ratio >
3.0).

The ordinates of the extrapolated curves were
measured at one-second intervals and entered on
IBM punch cards. Also included as "input" on the
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FIGURE 1

Comparison of a logarithmically-extrapolated experimental dye curve from a normal human
subject (panel A) with theoretical curves fitted by moments (panel B) and least squares (panel
C). In panel D, all three curves are superimposed on one another. The abscissa represents time
(seconds) following dye injection, and the ordinate is a linear plot of dye concentration. Small
arrows in panels A and D on the downslope of the curve indicate the point at which logarith-
mic extrapolation begins. Values of the parameters in equation 1, along with the intraclass
correlation coefficients, "R," are indicated in panels B and C.
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FIGURE 2

An abnormal dye curve, fitted by moments and least squares, from a 54-year-old female patient
with mitral stenosis and pulmonary hyi>crlension. Notation is the same as in figure 1.

punch cards for each curve were a) the time
following injection (seconds) associated with the
first ordinate from the observed curve, b) the ob-
served appearance time (measured from the mid-
point of the time required to complete the injec-
tion to the initial deflection of the curve), c) the
calibration factor (to convert millimeters of de-
flection on the photographic record to mg per cent
of indocyanine), and d) the volume of injected
dye.

An IBM 7072/1401 digital computer was pro-
grammed to fit to the experimental curves a
mathematical function of the form (1) above
using each of two different mathematical ap-
proaches: a) the method of moments, b) the
method of least squares. The application of the
method of moments is described in the Appendix.
The least squares fits were found by developing a
program for the Gauss-Newton method of fitting
nonlinear functions as modified by Hartley.17'ls

The computer programs were designed to find the
appropriate values of a and (3 by both methods
and to provide plots of the original experimental
data and the calculated curves.

From each of the 114 extrapolated curves the
predicted and corresponding observed values at
one-second intervals for indicator concentration
were compared to each other. In order to provide
a measure of the deviations from the line of
identity, it was elected to compute "intraclass cor-
relation coefficients" for each curve instead of the

more familiar coefficients of linear correlation.1"
It is important to note that, when values of R
are close to +1 , as they were in this study, very
slight increases in R represent important differ-
ences in closeness of fit.

To examine the possibility of applying the
curve-fitting techniques directly to experimental
curves without the necessity of logarithmic extra-
polation, 22 curves were chosen for further study.
These curves, as originally recorded with recir-
culation intact, were digitized at one-second
intervals and the data entered on punch cards.
The least squares method was applied to the first
portion of these curves, from appearance time to
a point midway in time between the first peak
and the first minimum. The method of moments
could not be employed, because the area under
the extrapolated curve is required in the applica-
tion of this method (see Appendix, equations 28
and 29). From each of the 22 nonextrapolated
curves, an estimate of the cardiac output was ob-
tained by dividing the integrated area under the
fitted function into the amount of dye injected. To
compare the cardiac output estimates derived in
this fashion with the corresponding values ob-
tained by the "classical" Stewart-Hamilton ex-
trapolation technique, the intraclass correlation
coefficient was again employed.

Results

Applying the method of moments to 114
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logarithmically extrapolated curves resulted
in very good fits of equation 1 to the experi-
mental curves; comparison of the observed
and calculated points from each of the curves
resulted in intraclass correlation coefficients
between 0.9332 and 0.9990. By applying the
method of least squares to the same data,
significantly closer fits were obtained in every
case, widi intraclass correlation coefficients
ranging between 0.9805 and 0.9996.

Figures 1 and 2 illustrate examples of a
normal and a markedly abnormal dye curve
fitted by the two methods. The original record,

K = 3.90
a = 3.58

FIGURE 3

Comparison of a dye curve, plotted directly from the
original photographic record without logarithmic ex-
trapolation (indicated by crosses), with the curve de-
rived from equation 1 (indicated by the solid line),
using the method of least squares. Only concentra-
tions indicated by the crosses preceding the arrow
were used as data to derive the least squares fit. This
illustrates that an excellent least squares fit can be
obtained by direct application of equation 1 to the
initial portion of experimental curves without logarith-
mic extrapolation.
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FIGURE 4

Cardiac outputs computed from 22 dye curves by the
standard Stewart-Hamilton method (abscissa) and by
integration of the corresponding function (equation 1),
fitted by least squares (ordinate).

from which the data shown in figure 2 were
derived, exhibited a moderate amount of
arterial pulsation, which accounts for the ir-
regular spacing of the plotted points (fig.
2A and D). The potential usefulness of the
fitted curve as a "smoothing function" in
computer applications is demonstrated by this
figure.

When the initial portions of 22 curves were
fitted without extrapolation by least squares
(appearance time to a point on the downslope
midway in time between the first peak and
the first minimum), excellent curve fits were
again obtained (fig. 3). Figure 4 shows the
comparison between values for the cardiac-
output obtained by integration of the fitted
curves with values obtained by the Stewart-
Hamilton method.14 There was a small, but
statistically significant (* = 6.69, P<0.01),
average difference between the two estimates,
the calculated values being slightly higher
than the values obtained by extrapolation. If
the least squares method was applied to the
same curve both before and after logarithmic
extrapolation, small differences in the resulting
values of K, a, and f3 were noted.
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In general, the values of a and /3 varied in
opposite directions. Short curves with high
peaks were associated with higher values of
a and lower values of /? (fig. 1), while pro-
longed abnormal curves usually had low
values of a with high values of /3 (fig. 2). The
values of /3 varied over a wide range from 1.08
to 8.48 (80% of the values were between 1.21
and 5.18), the larger values (greater than 5.2)
being consistent indicators of prolonged
curves with marked smearing of the down-
slope. The values of a varied between 1.69
and 6.24 (80% of the values between 1.69 and
4.17), except for one curve with a very rapid
rise time and a steep downslope, for which
the value of a was 12.29. The scaling constant,
K, which reflects differences in the calibration
factor and compensates for changes in the
parameters, a and /3, showed the widest varia-
bility (range 0.018 to 256.5, with one value
of 0.00008 for the one rapid curve with a
equal to 12.29).

Values of a, /?, and K obtained by the
method of moments differed, sometimes con-
siderably, from the corresponding values de-
termined by the method of least squares (e.g.,
figs. 1 and 2). Extreme examples of these
discrepancies are illustrated in table 1. The
fact that the fits were fairly close by the meth-
od of moments and very close by least squares,
even though the values for a and f3 often
showed considerable differences, indicates that
the shape of the indicator curve is not highly
sensitive to changes in the parameters, a and /3.

Discussion
THEORETICAL CONSIDERATIONS

Functions like that in (1) above are well-
known in mathematical statistics and in the-
oretical physics, although they do not appear
to have found extensive application in physi-
ology. The function,

TABLE 1

f(r) = (2 )

(0<T<00;«>-1)

T = random variable
a,/3= parameters of distribution

represents a probability density function,
which defines the distribution of a class of

Extreme Examples of Discrepancies Between Param-
eter Estimates (See Text)

Curve no.

1

2

3

a-

0:

K:

Method

Moments
Least squares
Moments
Least squares
Moments
Least squares

Values

4.63
7.81

12.20
8.29

40.95
16.12

Intraclass
correlation

0.9362
0.9958
0.9655
0.9885
0.9577
0.9892

random variables important in statistical the-
ory. f(r)dT is the probability that the random
variate, T, will assume a value in the infini-
tesimal interval from T to T + dr. Because in-
tegration of raexp (— T//3 ) produces a gamma
function (see Appendix; the integral is, in
fact, equal to the denominator in (2)), mem-
bers of this class of random variables are
known as "gamma" variates.

If an indicator dilution curve (without re-
circulation) is considered equivalent to a
density function in the mathematical sense,
each ordinate must be divided by the total
area under the curve, in order to transform
each ordinate to a probability measure. The
probability density function for the random
variable, T, where T may now be used to
designate transit time for individual indicator
particles measured from the appearance time
(i.e., r = t — AT, where t is the particle transit
time from the time of injection and AT is the
appearance time), can be expressed as,

f(r)= C-^P- (3 )

C(T) = indicator concentration
at time, T ( T > 0 )

= 0 ( T < 0 )
A = total area under the

curve

Let us examine the hypothesis that the
random variable, r — t — AT, behaves like a
gamma variate. This would require that the
expressions for f(r) in (2) and (3) be equal.
That is,

f(r)=- ie (4)
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If g(t) is used to represent the probability
density function for the random variate, t,
the transit time following injection, the expres-
sion for g(t) can be easily derived from (4),
using standard statistical mathematical meth-
ods.-0 * The resulting expression for the den-
sity function of t is

8(*) =
_C(t)

-(t-AT)" (5)

C(t) — indicator concentration
at time, t (t> AT)

= 0 (t<AT)
a,/3— distribution parameters

A random variable, such as t, which has the
probability density function shown in (5),
has been called a "modified" gamma vari-
ate.20 t If we multiply (5) by A, we obtain

C(t) =

b (t-ATY (6)

Therefore, two consequences of the hypoth-
eses that T behaves like a gamma variate
are 1) that the indicator transit time, t, would
be equivalent to a "modified" gamma variate,
and 2) that the indicator concentration could
be expressed as a specific function of time
shown in (6) above.

Since A, the area under a given dilution
curve, is a constant, the function in (6) is a
two-parameter family of curves. When specific
values are given to the arbitrary distribution
parameters, a and /3, the shape of a given
curve is specified. For convenience it is use-
ful to represent the elaborate expression in
brackets as a constant, K. In other portions
of this paper, therefore, we have used the
expression,

C(t) = K(t-AT)« erc-we (1)
where K can be considered as a "scale factor."
While K is clearly a function of a and /?, as
well as of the area under the indicator curve,

* Pages 147 ff.
t Page 91.
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from the mathematical point of view, this
point becomes of academic interest once ap-
propriate values for a and /3 have been deter-
mined by curve-fitting techniques. The con-
stant, K, can be expressed in terms of the
peak concentration from the recorded dilution
curve, Cp, and the parameter, a and /3 (see
Appendix, equation 34):

K = Cp(e/ap)' (34)
Substitution of this expression into equation 1
gives the relation

t - AT)a e-"-AT>^ (7)

Although algebraically identical to equation 6,
the elimination of the gamma function from
the denominator makes the expression some-
what simpler to handle in the computer. The
computer program for least squares curve-fit-
ting employed in this study treated the func-
tion, C(t), in the form given in (7), rather
than that in (1) because the latter expression
obscures the mathematical dependence of the
constant K on the parameters a and /3. For
the solution by moments, a and ft are deter-
mined from computed values ttC(t)/A and
Xt2C(t)/A and the appearance time (see Ap-
pendix, equations 32 and 33), so that none of
the equivalent functional expressions, (1),
(6), or (7), are explicitly required for the
solution.

The data in this report testify to the fact
that functions from the family of curves (6)
(or, equivalently, (1)) provide an excellent
description of the mathematical behavior of
the portion of indicator curves before recircu-
lation occurs. Though the approach employed
here is strictly empirical, the fits are close
enough to warrant the conclusion that the
hypothesis given above is, for practical pur-
poses, correct. The close correspondence be-
tween experimental dye curves and fitted
curves allows description of indicator transit
time in terms of the well-known and con-
venient mathematical properties of gamma
variates (see Applications, below).

It seems unlikely that it will be proved
analytically that indicator transit time is strict-
ly a modified gamma variate in the statistical
mathematical sense (as it can be shown, for
example, that the waiting time between emis-
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sions of alpha particles from a radioactive
substance is a gamma variate) .20 * There are,
however, two mathematical models which
have already been proposed which lead to
expressions for C(t) exactly equivalent to
density functions of gamma variates. In New-
man's paper,1' equation 2a, derived for flow
through two mixing chambers of equal vol-
ume, can be expressed in the form,

(8)

V = volume of each mixing
chamber

I = amount of dye injected

If we note that A in our notation is analogous
to I/Q, and if we substitute 1//3 for Q/V, the
following results are obtained:

C(t) =
v-

= IJL\(t-AT)e-(l-AT>'f> (9)

Since r (2) is equal to 1, equation 9 is exactly
equivalent to equation 6 above with a = 1.

Warner5 has suggested that diastolic vol-
ume in the chambers of the heart is probably
the major determinant of smearing of the
downslope of abnormal dye curves. The high
values of (3 obtained in this study for curves
exhibiting marked smearing suggest that
chamber volume may also be a major deter-
minant of the parameter, (3. These observa-
tions, taken in conjunction with the formal
analogy between (3 from (6) and V/Q of
Newman's equation 2a, may indicate a very
direct relation between /3 and cardiac cham-
ber volume.

Sheppard4 has discussed a "stochastic"
model, where the indicator particles are con-
sidered to pass through a sequence of mixing
compartments, all of which are alike. From
this model is derived an equation, which, in

* Pages 98 ff.

the notation used in this paper, can be written
as:

[n(t-AT)]n-1e-"<t-AT> (10)
(n = the number of mixing compartments)

As Sheppard points out, this expression is
equivalent to a Poisson distribution curve.
Simple algebraic transformation, and substitu-
tion of A for I/Q, result in the following ex-
pression:

C(t) =
(t - AT)n -l(rn«-A

If we let

and
a = n —.

_ 1
n

(12)

(13)

in equation 6 above, expression (11) becomes

A
C(t): -At-AT)-

For Sheppard's model, where n is an integer,
a can only take on integer values. Therefore
(see Appendix A, equation 36), a! = r ( a +
1), so that expression (14) becomes identical
to expression (6), and transit time in the
stochastic model is precisely a gamma variate
in the mathematical sense. For Sheppard's
model to comply with the data reported in
this study, the relations (12) and (13) would
have to apply. Unfortunately, all of the values
for y3 obtained by least squares in this investi-
gation were greater than 1, a situation incom-
patible with relations (12) and (13) for
integer values of n. The fact that the model
does not provide an adequate representation
of curves obtained in vivo was predicted by
Sheppard.4

Inherent in the methods of determination
of a and (3, as carried out in this study, is an
unfortunate dependence of the computed
values on the observed appearance time. If
the method of moments is used, the mean
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 by guest on March 12, 2013http://circres.ahajournals.org/Downloaded from 

http://circres.ahajournals.org/


INDICATOR TRANSIT TIME 509

transit time (first moment) is computed by
the usual formula, 2tC(t)/2C(t), and will not
be in error, but the values for a and /3 will be
subject to error if appearance time is incor-
rectly determined. Theoretically the appear-
ance time would not have to be specified at all
if the third moment from the experimental
curve, 2f-C(t)/2C(t), is used to obtain the
required solutions for a and f$ (and, inciden-
tally, for AT). In practice, however, the third
and higher moments are critically dependent
on the values for C(t) far out in the tail of the
curve, where reliable experimental observa-
tions cannot be made. Consequently, the solu-
tions for a, f3, and AT obtained by using the
first three moments often fail to provide even
a satisfactory fit to the curve.

If the least squares method is used to fit
equation 7, with the observed appearance
time introduced into the computer program as
input (as was done to obtain the data pre-
sented in this report), the resulting solutions
for a and fi are again dependent on the ob-
served appearance time. In this instance,
unlike the case of the moments solutions, the
computed mean transit time will not be iden-
tical to the value obtained from the standard
formula, 2tC(t)/2C(t). As a matter of fact,
the mean transit time, computed from the least
squares parameters, will usually be about one
or two seconds less than the value obtained
by other methods. At first glance, one might
suspect this would result from the usual ten-
dency to overestimate the appearance time
from the experimental curve, but this seems
not to be the correct explanation for this dis-
crepancy. Preliminary experience in this labo-
ratory with another computer program for
least squares estimation of a and /3, which
does not require specification of the appear-
ance times, indicates that such a mathematical
approach is quite workable and provides ex-
cellent curve fits (in contrast to the use of the
third moment mentioned above). When this
program is resorted to, the mean transit time,
computed from the solved values for a, /?,
and AT, still is usually one or two seconds less
than the conventionally-computed value. This
indicates that the lower value for mean transit

Circulation Research, Volume XIV, June 1964

time does not result from an inaccurately ob-
served value for appearance time.

The explanation for this finding seems to
reside in a more fundamental difference be-
tween the gamma distribution curve and the
Stewart-Hamilton exponential curve. Although
the fits of the least squares curves are excellent
up until the point where logarithmic extra-
polation begins (small arrows in figs. 1 and 2),
the gamma curve then passes below the log-
arithmically extrapolated curve. This is illus-
trated in the fourth panels of figures 1 and 2.
This results in a lower computed mean transit
time for the gamma curve than for the log-
arithmically extrapolated curve. Therefore, the
gamma curve provides an excellent fit up to
the onset of recirculation, but, from this point
on, there is a small, but important, difference
between the logarithmically extrapolated
curve and the gamma curve. This consistent
difference also explains the consistently small-
er area for the gamma curves as compared to
the logarithmically extrapolated curves. The
difference in area probably accounts for the
slightly higher cardiac output data obtained
from the gamma curves (fig. 4). It will be of
considerable interest to examine the cor-
respondence between the gamma distribution
curve and experimental curves obtained in
situations where no recirculation is permitted
to occur.

Equation 6, like the log normal equation of
Stow and Hetzel,13 remains an empirical rep-
resentation for C(t), despite the fact that the
family of curves includes as special cases the
two equations, 8 and 10, which were derived
from simplified mathematical models. It differs
from the log normal equation in having two,
rather than only one, distribution parameters.
This may imply a somewhat larger variety of
curve shapes available for fitting to experi-
mental data, but the relative merits of equa-
tion 6 and the log normal curve have not been
tested experimentally. The logarithmic extra-
polation of Stewart and Hamilton,14 which is
used as a basis of comparison in this study, is
itself an empirical one. Further work is needed
to define which, if any, of the presently avail-
able empirical methods for the mathematical
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handling of dilution curves give an adequate
description of the tail region of the curves.

After establishing that equation 1 can pro-
vide close fits to the initial portion of experi-
mental curves without the necessity for loga-
rithmic extrapolation, it is reasonable to seek
a simpler method than least squares to
accomplish this. For this purpose a method
may be used, which makes use of the relation-
ships between the appearance time, the time
at which the concentration attains half its
maximal value on the ascending slope of the
dilution curve, and the time of maximal con-
centration. From these times, a ratio, r, can
be formed, where,

r=(tp/2-AT)/(tp-AT) (15)

tv/., = time of half-maximum
concentration

tp = time of peak
concentration

For any given value of r, the appropriate value
of a can be obtained from the graph in figure
5. From the appearance time, the peak con-
centration, and the determined value for a,
corresponding values for /3 and K can be
easily found (see Appendix). Although in
theory and simplicity of application, this
method has much in its favor, it actually pro-
vides only rough approximations for the least
squares values of a and /3, primarily because
it is difficult to determine accurately the ap-
pearance time from experimental records.

APPLICATIONS

The conclusions that indicator transit time
may be considered equivalent to a modified
gamma variate and that C(t) may be expressed
as a specific function of time (equation 1
above) lead at once to a consideration of pos-
sible applications of these concepts.

Advantage can be taken of the convenient
mathematical properties of gamma variates.
Knowledge of the values for K, a, and /3 for
a given dye curve would allow use of any of
the following formulas:

ftC(t)dt

J C(t)dt

ft2C(t)dt

= mean transit time, MTT

(a

- (MTT)2

(17)

j C(t)dt

= s2 (Korner-Shillingford)21 . _.
= /3'2(a + l) ^°'

Cp = peak concentration = K (a/3/e)a (19)

tp = peak time = AT + a/3 (20)
If the method of moments is chosen to ob-

tain a and )3, there would be no need to make
use of the relations above (equations 16 to
20), since the quantities on the left would
have to be computed in the usual fashion and
used as input to obtain the distribution param-
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J
/—

l
/

C(t)dt= 1 r(a (16)
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r= (tp/2-AT)/(tp-AT)

FIGURE 5

Theoretical relationship between the distribution pa-
rameter, a, and the ratio, r (see text). Abscissa repre-
sents a linear plot of r between 0 and 1. Ordinate, a,
is graphed on a logarithmic scale, in order to facilitate
the estimation of values in the lower range for a.
Smaller values of a can be estimated with much great-
er accuracy from this graph, than higher values of a,
because small changes in r, when r is large, are asso-
ciated with large changes in a.
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eters. On the other hand, if a computer is used
to find values of a and )3 by the more elabo-
rate least squares procedure, the quantities on
the left of equations 16 to 18 and 20 are not
used in the solution, and can be estimated
using these relationships. In general, the
values for the quantities on the left, as com-
puted from the least squares parameters, will
differ somewhat from the values obtained
from curves extrapolated logarithmically in
the standard fashion, because the extrapola-
tions by the exponential and gamma curves
are not identical, as discussed above. It is
seen that the familiar integrals, used in many
analyses of indicator dilution curves, may be
dispensed with in computational work, if val-
ues for K, a, and /3 are obtained from a least
squares computer program. The expression,
r (a + 1), found in equation 16, can be easily
evaluated from tables of the gamma func-
tion.22

Recent discussions of die theory of indicator
dilution curves have proposed the use of con-
volution integrals in the analysis of indicator
curves, both with and without recirculation
present.1-3'4'«-n Zierler9'10 and others °-8'"
have reviewed these developments extensive-
ly. These treatments have produced valuable
expressions in which C(t) appears as an un-
known function for which data from experi-
mental curves must be substituted. When ap-
plied to dye curves with recirculation intact,
the computations are difficult and laborious.9

The availability of a relatively short mathe-
matical expression for C(t) offers promise of
facilitating the experimental evaluation of
these elegant mathematical models.

It is anticipated that the existence of the
fitted function (1) will be very useful in the
handling of experimental dye curves by digital
computers. Standard mathematical computa-
tions, usually applied to experimental curves,
may be performed by the computer, making
use only of the derived parameters, K, a, and
fi, according to equations 16 to 20 above. The
results in this study indicate that the cardiac
output may be computed using C(t) in (1)
from intact curves without the necessity of
logarithmic extrapolation to exclude recircu-
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lation. It should be noted that the fitted func-
tion acts as an excellent smoothing function,
so that arterial pulsations which are frequently
present in continuously-recorded dye curves,
will constitute no problem in the on-line
handling of experimental curves. In relation
to on-line handling of indicator curves, it is
possible to treat the appearance time in (1) as
an unknown and apply a three-parameter
least squares fitting procedure to the experi-
mental curves, so that the appearance time
(AT) emerges, along with a and /3, as a solu-
tion of the curve-fitting procedure. This possi-
bility is attractive, because it lessens the need
for a perfectly flat base line. Preliminary ob-
servations in this laboratory indicate that this
procedure is quite feasible and may, indeed,
turn out to be the most effective use of equa-
tion 1 in computer applications.

Conclusions

An analytical expression for indicator con-
centration as a function of time would facili-
tate 1) theoretical analysis of arterial indicator
dilution curves, 2) characterization of normal
and abnormal curves, and 3) handling of ex-
perimental curves using high-speed computers.
Indicator transit time has been shown to
exhibit the mathematical properties of a gen-
eral class of random variables, known as
"gamma variates." Curve-fitting techniques
were employed to show that the arterial in-
dicator curves are equivalent to frequency
distribution functions for this class of vari-
ables. The mathematical expression for these
distribution curves provides us, at the same
time, with an analytical representation for
indicator concentration as a function of time,

C(t) = K(t - AT)a e-('
Values of the two distribution parameters, a
and /3, determine the shape of the dilution
curves. High values of /? are consistent indi-
cators of abnormal curves, with marked smear-
ing of the downslope. Two equations for C(t),
which were previously derived analytically
for simplified mathematical models, have been
shown to be special cases of (1). One of these
two equations provides suggestive evidence
that cardiac chamber volume may be the
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major determinant of the distribution param-
eter, ft.

Excellent empirical curve fits may be ob-
tained by the application of equation 1 to
experimental curves. The known mathematical
properties of the function (1) may be used
as a convenient aid in the analysis of normal
and abnormal indicator curves.
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Appendix
1. ORIGIN OF EQUATION 1

R. L. Evans12 found that the family of

curves,
(21)

T — time after appearance
time

c ( T ) = indicator concentration
at time

a, n — arbitrary parameters

gave reasonable fits to indicator curves with-
out recirculation, when integral values of n
(n = 2,3,4) were tried. In order to fit a mem-
ber of the family of curves (21) to an experi-
mental curve, it is convenient to introduce a
scale factor, K, to allow for changes in cali-
bration factor (relating indicator concentra-
tion to amplitude of deflection in the recorded
indicator curve). If we substitute a and 1//3
for the parameters a and n respectively in
(21), the correspondence between the expres-
sion (21) and the probability density function
for a gamma variate (equation 2 above) be-
comes easily demonstrable. These changes
result in the equation,

^ (22)

Noting that r = t-AT, we see that (22) is
exactly equivalent to equation 1 above.

2. ESTIMATION OF THE DISTRIBUTION PARAMETERS,
EMPLOYING THE METHOD OF MOMENTS

The moment-generating function for a given
random variate, T, designated as M (6:T), is
defined by the relation:

where E signifies "the expected value of" and
6 is an arbitrary parameter.20 * From the math-
ematical definition of "expected value," 20 t
it can be shown that

(23)

If the variate, r, the indicator transit time
measured from the appearance time, has the
properties of a gamma variate, then its proba-
bility density function must be equivalent to

f(r)=-

= 0

_Tae-W/3 (0<T<00)

(-00<T<0)

Substitution of this function into (23) and
integration of the resulting expression leads
to the relation, valid for all gamma vari-
ates,20 *

It can be shown20 i that, if r - t - AT,

-i (24)

The moment-generating function derives its
usefulness from the fact that the nth moment
of a given variate (around the origin) is
exactly equal to the nHl derivative of the
moment-generating function with respect to 6,
evaluated at 9 = 0. If indicator transit time
(seconds following injection) has the postu-
lated frequency distribution function,

fc(t)dt

(25)

then we can find the first n moments of t
conveniently from the first n derivatives of
M(8:t) in equation 24, each evaluated at
6 = 0. Thus, if fi'n is used to indicate the nth

moment taken about the origin,20 \

= tf(t)dt = (26)

* Page 211.
t Page 186.
{ Page 213.
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i'2=jf2f(t)dt = (AT)- + 2(AT)p(a + 1) +

a + l) (27)

More complex expressions can be derived
for higher moments in similar fashion.

From experimental logarithmically-extra-
polated dye curves, one can obtain estimates
for the first and second moments of t, using
the summation formulas familiar in many
previous analyses of indicator dilution curves,

, ltC(t) (28)

(29)

The known values for the moments given by
(28) and (29) can then be substituted for
the integral expressions in (26) and (27), to
obtain two simultaneous nonlinear equations
in a. and /3:

AT + p(a + l) = /i\ (30)

/J,\- + p2(a + 1) = (i'2 (31)
If appearance time is also considered an ob-
servable, these two equations are exactly
solvable for a and p.

(32)

Equations 32 and 33 give the values of the
distribution parameters, a and p, from experi-
mental data.

By setting—p-^- to zero in equation

1 above, it is easily shown that the peak
concentration is equal to K(ap/e)a. In this
investigation we required that the maximum
value of our fitted function be equal to Cp,
the peak concentration of our experimental
curves. From this and the solved values of a
and p, the values for K were found from the
equation,

K = Cp(e/apy (34)

From the method of obtaining the values
of the first and second moments from experi-
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mental curves, it can be seen that this method
of curve-fitting is not directly applicable to
nonextrapolated curves, for which a more
elaborate least squares curve-fitting procedure
was requ i red.'7 •1 s

3. GAMMA FUNCTION

The gamma function of n, designated as
r(n), is defined as

T(n) = f^x-1

Jo
-1erxdx (35)

Once n is specified, r ( n ) is equivalent to the
area under the curve,

from x = 0 to x = oo. Substitution of ( n + 1 )
for n in equation 35 leads, by means of in-
tegration by parts, to the very useful relation,

V(n + 1) = nT(n)

From this, one can easily show that for inte-
gral values of n,

n! = r(n + l) (36)

To derive the expression for the area under
the function, Taexp(—r/p), mentioned in the
text above, we can let a = n — 1, T = /3x,
dr — (P)dx, and proceed as follows:

Except for integer values of n, T(n) is not
exactly integrable, but its values have been
determined by numerical methods. Tables of
the values of T(n) are easily accessible.22

4. METHOD OF OBTAINING APPROXIMATE VALUES
FOR a AND 0 FROM EXPERIMENTAL CURVES
WITHOUT LOGARITHMIC EXTRAPOLATION

If we take the logarithms (base 10) of both
sides of equation 1 and evaluate the resulting
expression at the time of half-maximal concen-
tration on the ascending slope of the curve,
tp/2 and at the peak time tp we obtain:

\og(C(U)) =

(37)

+ alogft - AT)
-ltl-AT)/P]»[\oge]

(i = p,p/2)
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The two equations 37 may then be subtracted
from one another and the terms rearranged.
Noting that (Cp/2/Cp = 1/2, we obtain one
equation from which both C(tt) and K have
been eliminated:

log(l/2) = a • \og[(tp/2-AT)/(tp-AT))

-[(t,,2-AT)/p]*[]oge]

+ [(tp-AT)/fi)*\loge] (38)

Equation 20 above shows that,

P = (t,-AT)/a (20')

so that equation 38 may be expressed in terms
of a alone as,
- log (2) = alog [ (tp/2 - AT)/(tp -AT)]

-a[(tp/2 - AT)/(tp - AT)]» [log e]

+ a[loge] (39)

If we let T = (p/2-AT)/(tp-AT) and solve
for a, we obtain

a =
log(r)-r[loge] + [loge]

Hence, if we determine the value of r from
an experimental curve, we can solve for a.
Figure 5 is a graph, from which a can be
determined for any given experimental value
of r. From the value of a and the appearance
time, (3 can be found from equation 20'. The
scale factor, K, can then be determined from
equation 34.

The estimation of a, /3, and K from the use
of experimental values of r, AT, and Cp in
association with the graph in figure 5 and
equations 20' and 34, will usually provide
reasonable curve fits of equation 1 to nonex-
trapolated experimental curves. The errors
introduced in the measurement of AT, tp/2,
and tp, however, make this a much less pre-
cise method for curve-fitting than the more
elaborate method of least squares.
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