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Purpose: Quantification of perfusion measurements using dynamic, susceptibility-weighted con-

trast-enhanced (DSC) MRI depends on estimating the size and shape of the tracer bolus. Typically,

the bolus is described as a gamma variate function (GV) fitted to the bolus portion of tracer concen-

tration time curve (CTC). However, the last point to fit is arbitrary which can lead to considerable

variation in the fitted curve in the presence of noise. In this technical note, we present a model

which takes into account recirculation explicitly and fits robustly to the entire CTC in the presence

of noise.

Methods: Signal data measurements from ten DSC MRI patients were fitted with our new model

and a GV function using four different methods of estimating the end of the bolus. Estimates of the

area under the curves (AUC) and first moments (FMs) of the bolus were compared at different noise

levels.

Results: The new model gave errors similar to or smaller than those of the most effective methods

for fitting a GV.

Conclusions: The single compartment recirculation (SCR) model is the most robust fitting tech-

nique with respect to noise both for bias and variability. VC 2011 American Association of Physicists
in Medicine. [DOI: 10.1118/1.3658570]
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I. INTRODUCTION

Dynamic, susceptibility-weighted contrast-enhanced (DSC)

MRI is a powerful imaging tool for estimation of perfusion

parameters such as cerebral blood volume (CBV) and cere-

bral blood flow (CBF).

When calculating perfusion parameters it is normal to

model the concentration time curve (CTC) by an analytic

function. Usually, this is a gamma variate function fitted to

the first pass portion of the CTC

g tð Þ ¼ A t� t0ð Þa exp � t� t0ð Þ=bð Þ; t > t0; (1)

where A is a scaling factor, a and b determine the bolus

shape, and t0 is the bolus arrival time.

An alternative CTC model, that we will call the single

compartment recirculation (SCR), has also been proposed1

C tð Þ ¼ g tð Þ þ j
ðt

0

g sð Þds; (2)

where j is a unitless constant less than one (usually around

0.05 for a DSC MRI CTC). The integral term describes recir-

culating contrast. This fraction is composed of tracer

absorbed as the bolus passes through other tissue compart-

ments and released thereafter and of tracer dispersed through

the vasculature through mixing.

We believe that the SCR model is preferable to the alter-

native gamma variate (GV) model for a number of reasons.

First, with the exception of the short time-scale perturba-

tions caused by incomplete dispersion of bolus the SCR

model describes the data very well empirically. Second, the

gamma variate fit would only be correct if the recirculating

fraction of the tracer began only after the first pass of the

bolus. In reality, recirculation will contribute some tracer to

the circulation during the first pass.2,3 A simple gamma vari-

ate fit then overestimates the size of the bolus. In contrast,

the SCR model provides a more realistic account of the con-

tribution of recirculating tracer in the absence of tracer leak-

age, and there is some theoretical justification for describing

recirculating contrast in this way.4 Finally, fitting the SCR

model does not involve determining a last point to fit since

it fits the entire CTC. This is particularly important since

the choice of the last point is somewhat arbitrary and sus-

ceptible to noise but can nonetheless cause substantial errors

in the fit.

In this study, we use computer simulation to investigate

the effect on estimates of bolus area and first moment of fit-

ting with the SCR and GV models with different methods of

choosing the last fitting point.

II. METHODS

This retrospective study was approved by the Institutional

Review Board of this institution. DSC data were acquired

from 10 healthy subjects (six females and four males; age

range 29–71, age mean and standard deviation 55.8 6 13.9)

at 3T using a gradient echo EPI sequence (60 images; TR 1s;

TE 32 ms; FA 30�; matrix 128� 128; FOV 230� 230 mm2;

10� 5 mm slices) during injection of 0.1 mmol=kg Gd-

DTPA at a rate of 5 ml=s. All simulations were performed in

MATLAB R2009b (Mathworks, Newton, MA).
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A “noise free” signal time curve was first obtained from

each subject by averaging brain signals over a single axial

slice inferior to the ventricles. Vascular signals were excluded

to eliminate distortions due to the nonlinearities in the relax-

ivity in pure blood. This was achieved by excluding pixels

from the average where the signal drop was over 40% larger

than the average signal drop over the entire brain. Fifteen dif-

ferent levels of Gaussian noise giving signal to noise ratios,

SNRs, (defined as Spre=r where r is the standard deviation of

the prebolus signal, Spre) from approximately 20–130 were

applied to this “noise free” data. This process was repeated

200 times giving a total of 30,000 different simulated signals.

CTCs were modeled by both SCR and GV, converted to

signal and fitted to the noisy signal data. Signal, S, was cal-

culated using the standard expression

S ¼ Spre exp �rCTEð Þ; (3)

where Spre is the prebolus signal, TE is the echo time, r is the

relaxivity, and C is concentration. Fitting to the signal is

preferable because the weighting for each data point is equal

for all signal intensities and because Spre can be included as

a fitting parameter, making optimum use of the available

data in finding this parameter.

The last fitting point for the GV was determined using

four methods (Fig. 1): (i) third time point after the bolus

minimum,5 (ii) time point at half the bolus depth after the

peak,6 (iii) an adaptive method using first time point after

the bolus peak within one standard deviation of the post

bolus signal, and (iv) visual determination.7 Figure 2 shows

the noise free CTC (crosses), the bolus (solid line) and recir-

culation (dotted line) determined by the SCR fit and the

bolus (dashed line) determined by a GV fit.

The different models were fitted using the alternate form

of the gamma variate developed by Madsen.8 This form

decouples gamma variate amplitude from the shape parame-

ters and so gives more stable fits.

Next, for each fit the area under the curve (AUC) and the

normalized first moment (FM) of the bolus (i.e., the gamma

variate portion of both SCR and GV models) were calculated

using the following equations:

AUC ¼ A � Cbþ1 � C bþ 1ð Þ; (4)

FM ¼ C � bþ 1ð Þ þ t0; (5)

where C is the gamma function. CBV is proportional to

AUC and CBF is a function of FM so these two parameters

determine the errors that poor fits will introduce into perfu-

sion estimates.

Finally, the percent error [Eq. (6)] and percent deviation

[Eq. (7)] relative to values for the “noiseless” fit, respec-

tively, were calculated

P:E:SNR¼i ¼ 100� �x� xSNR¼1j j
xSNR¼1

(6)

P:D:SNR¼i ¼ 100�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

P
x� �xð Þ2

q
�x

(7)

where N is the number of trials.

III. RESULTS

Fitting proved to be extremely robust for both SCR and

GV fits, even at low SNR. All 30,000 fits converged within

the maximum allowed value of 200 iterations and most con-

verged in less than 15. We did not observe any fits that

appeared to have settled in false minima. The maximum,

minimum, and median R2 values were 0.99, 0.80, and 0.98,

respectively.

Figure 3 shows typical fits for the SCR model [Figs. 3(a)

and 3(b)] and for each GV method (i–iv) [Fig. 3(c)–3(j)] for

the “noiseless” data and with noise added to reduce the SNR

to 25.

FIG. 1. Diagram of a typical signal time curve illustrating how the last fitted

point for the gamma variate was selected for each method: (i) third point af-

ter the bolus minimum, (ii) point of the half drop of the bolus after the bolus

minimum, (iii) the point after the minimum at which the signal exceeds the

post bolus signal minus the standard deviation of the pre bolus signal (r)

and (iv) by visual determination.

FIG. 2. Example of the bolus (solid line) and recirculation (dotted line) por-

tions of the SCR model and bolus (dashed line) of a GV fitted to a typical

concentration time curve (crosses).
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The percent error and percent deviation of AUC [Figs.

4(a) and 4(b)] and FM [Figs. 4(c) and 4(d)] for the different

models are plotted against SNR in Fig. 4. In general, GVi

(third point) performs poorly for both error and deviation.

The SCR model, GVii (half depth) and GViv (visual inspec-

tion) give similar errors while GViii (adaptive) performs

acceptably for AUC but poorly for FM. The SCR model per-

forms as well as the best GV methods for AUC and rather

better for FM.

Mean values of AUC and FM were smaller for the SCR

model than values for all gamma variate fitting procedures

as one would expect from Fig. 2. There were only small dif-

ferences between mean values for the different GV methods.

For example at an SNR of 100, SCR AUC and FM were

7.6 6 1.73 AU and 8.8 6 2.40 s, respectively, whereas GV

values were 9.4 6 1.88 AU and 10.0 6 2.51 s.

IV. DISCUSSION

In this study, we compared the robustness with respect to

noise of fitting arterial data with SCR and GV models with

different methods of estimating the last point. Noise introdu-

ces both bias (i.e., systematic errors) and variability into

AUC and FM estimates that will propagate to measurements

of CBV, CBF, and mean transit time (MTT). CBV is propor-

tional to the ratio of the AUCs measured in tissue and artery

and it is typical to apply the model functions to both the arte-

rial input function (AIF) and tissue measurements. The var-

iance will be given by

rCBV

CBV
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rAT

AT

� �2

þ rAA

AA

� �2
s

; (8)

where T and AA are the AUCs in tissue and artery, respec-

tively, and rCBV is the variance in CBV.

The relationship between FM and MTT is complex and,

as far as we are aware cannot be expressed analytically.

Overestimates of the MTT of the AIF due to errors will

reduce estimated values of tissue MTT and hence increase

estimates of CBF. Conversely overestimates of tissue MTT

will lead to underestimates in CBF. Errors in CBV will also

propagate to CBF. A full analysis is beyond the scope of this

note.

Our results show that the SCR model is the most robust

fitting technique with respect to noise both for bias and vari-

ability. The best of the gamma variate methods, GViv, pro-

duced similar or slightly worse results to the SCR model;

however, the last point to fit in this method is determined

visually. In this study, this was estimated from the “noise

free” data since it is impractical to determine it in this way

for 30,000 different data sets. However, this is a major prac-

tical disadvantage of this method. It is only feasible to apply

this method on a pixel by pixel basis if it is assumed that the

length of the bolus is the same for all pixels. Clearly, this is

not the case and will result in significant errors.

The SCR model corrects for errors that are likely to be

smaller than others often associated with DSC MRI. How-

ever, many of these errors can also be addressed effectively

by improved processing and acquisition methods. For exam-

ple, partial volume effects due to inadequate spatial resolu-

tion can be reduced using reference signals acquired from the

sagittal sinus;9 signal “clipping” (saturation) can be reduced

by reducing tracer dose or echo time; and the nonlinearity

between relaxation and concentration can be addressed by

using empirically derived calibration curves.10

FIG. 3. Fits (line) to concentration time curves (crosses). The left column gives the “noiseless” concentration time curves and the right has added noise to give

an SNR of 25.
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There are a number of limitations of the SCR model and

of this study. First, the model is based on the assumption that

recirculation starts at the beginning of the bolus and increases

as a gamma function. Neither of these assumptions can be

fully justified. There may be a delay before recirculation con-

trast arrives and some other function may describe its arrival

more accurately. Nonetheless the form of the function must

be approximately sigmoidal similar to the form we suggest.

Second, we did not consider the possible effects of cardiac

output on our results. However, our subjects covered a wide

age range (29–71) suggesting that cardiac output has rela-

tively little effect. Third, the SCR model takes no account of

errors introduced by incomplete dispersion leading to second

or even third pass peaks. These errors might be particularly

severe if too few measurements are taken after the bolus so

that the steady-state portion of the curve is not reached. We

are currently investigating more sophisticated models that ex-

plicitly account for secondary peaks. Conversely, if too many

data points are acquired after the bolus, the steady-state por-

tion of the curve will start to decline because of tracer clear-

ance through the kidneys. However, this can be accounted for

by multiplying the SCR model by an exponential decay term.

The model introduces one additional fitting parameter, , giv-

ing the possibility of over-fitting and instability. However,

the effect of on the shape of the function is so different from

those of the other parameters that this is not a serious risk in

practice. Finally, the SCR model is subject to many of the

same errors as the GV model such as tracer leakage, T1 con-

tamination and partial volume effects.

In conclusion, we have demonstrated that the SCR model

gives a more robust fit in the presence of noise while giving

a more realistic representation of tracer boluses than the

gamma variate.
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