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Generative Adversarial Networks: 
A Primer for Radiologists

Artificial intelligence techniques involving the use of artificial neural 
networks—that is, deep learning techniques—are expected to have 
a major effect on radiology. Some of the most exciting applications 
of deep learning in radiology make use of generative adversarial 
networks (GANs). GANs consist of two artificial neural networks 
that are jointly optimized but with opposing goals. One neural 
network, the generator, aims to synthesize images that cannot be 
distinguished from real images. The second neural network, the dis-
criminator, aims to distinguish these synthetic images from real im-
ages. These deep learning models allow, among other applications, 
the synthesis of new images, acceleration of image acquisitions, 
reduction of imaging artifacts, efficient and accurate conversion be-
tween medical images acquired with different modalities, and iden-
tification of abnormalities depicted on images. The authors provide 
an introduction to GANs and adversarial deep learning methods. 
In addition, the different ways in which GANs can be used for 
image synthesis and image-to-image translation tasks, as well as 
the principles underlying conditional GANs and cycle-consistent 
GANs, are described. Illustrated examples of GAN applications in 
radiologic image analysis for different imaging modalities and dif-
ferent tasks are provided. The clinical potential of GANs, future 
clinical GAN applications, and potential pitfalls and caveats that 
radiologists should be aware of also are discussed in this review.

The online slide presentation from the RSNA Annual Meeting is avail-
able for this article.
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After completing this journal-based SA-CME 
activity, participants will be able to:

	�Describe how GANs work and can be 
used for image synthesis.

	�Recognize potential applications of 
GANs in the radiologic workflow.

	�Discuss the pitfalls and caveats of us-
ing GANs for image-to-image translation 
with unpaired training data.

See rsna.org/learning-center-rg.

SA-CME LEARNING OBJECTIVES

Introduction
In recent years, there has been a tremendous increase in the number 
of publications describing the application of artificial intelligence 
(AI) to problems in radiology. This has resulted in the formation 
of new conferences, journals, and companies that are focused on 
bringing AI into the clinical workflow, and the first randomized clini-
cal trials demonstrating the potential of such methods (1). These 
developments have been largely driven by the use of deep learning 
techniques that involve the application of artificial neural networks. 
Among the most successful of such networks are convolutional neu-
ral networks (CNNs), which are applied to medical images.

Successful applications of CNNs include the detection, segmen-
tation, and quantification of pathologic conditions (2). These tasks 
require discriminative models that can distinguish among different 
classes or categories of images. Recently, AI-based applications have 
started to include those involving the use of generative models. These 
are models that can be used to synthesize new data. The most widely 
used generative models are generative adversarial networks (GANs) 
(Fig 1) (3). A lot of interest in GANs has been generated owing to 
the highly realistic images that they can synthesize. Similar to the 
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to synthesize images that resemble real images. 
The second CNN is called the discriminator, 
and its goal is to differentiate the synthetic im-
ages from the real images. These two networks 
are trained together so that the generator CNN 
learns to synthesize visually convincing images.

A GAN is an example of a generative model. 
Such a model learns a distribution of images, 
thereby allowing a user to generate new images 
from this distribution (Fig 2). In the case of 
radiologic images, this means that the generative 
model can replicate the images that it is trained 
with, but it can also synthesize new images that 
share characteristics with the images in the train-
ing dataset. While the actual image synthesis 
happens in the generator, we consider the GAN 
as a whole—that is, the combination of genera-
tor and discriminator—to be a generative model. 
The discriminator is an inseparable part of this 
generative model, as the generator would not be 
able to learn the data distribution without it.

Being a generative model sets GANs apart from 
purely discriminative models, which are much 
more commonly used in radiologic applications. 
Discriminative models are trained to distinguish 
between two or more classes, such as radiographs 
showing pneumonia and radiographs without signs 
of pneumonia. A trained discriminative model can 
be used to classify new and unseen images, but a 
discriminative model cannot synthesize new images.

The use of GANs has led to tremendous 
advances in image synthesis. Figure 3 shows 
the basic setup of a GAN for image synthesis, 
in this case for the synthesis of natural images. 
We indicate the generator CNN with G and the 
discriminator CNN with D. Both of these CNNs 
are an essential part of the GAN, but the actual 
synthesis happens in the generator. To synthesize 
an image, the generator requires some input. This 
input, z, is a vector that is randomly drawn from 
a probability distribution that describes the so-
called latent space. The example in Figure 3 uses a 
two-dimensional normal distribution as the latent 
space; however, in practice, a latent space can 
be of much higher dimensionality. Nevertheless, 
the dimensionality of the latent space is always 
significantly lower than the number of pixels in the 
output image of the generator, which we indicate 
by G(z). Hence, the generator requires a way to 
introduce new information. A typical CNN ar-
chitecture progressively reduces the image size by 
using downsampling and convolution layers, but 
a generator CNN architecture does the opposite: 
it increases the image size. To do this, the genera-
tor CNN architecture includes upsampling layers 
(14). A typical upsampling layer doubles the image 
size along each axis. There are multiple ways to 
achieve this. With the most basic approach, one 

application of CNNs, the application of GANs to 
medical images has much potential for operations 
in radiology. For example, GANs have led to 
visually convincing results in applications such as 
imaging artifact reduction (4) and cross-modality 
image synthesis (5).

Future clinical AI applications will likely 
involve the use of GANs. Hence, it is important 
that end users—specifically, radiologists and 
other medical experts who rely on images—have 
an understanding of the underlying mechanisms 
and potential pitfalls and caveats of these models. 
Herein, we provide a primer on GANs for radi-
ologists. The aim of this article is not to provide 
a full technical introduction (6) or review (7–9) 
of GANs in medical image analysis but rather to 
provide a practical introduction to this topic for 
radiologists. We assume that the reader is familiar 
with several key concepts related to deep learn-
ing; most important among these concepts are 
CNNs and the training of these networks.

The uninitiated reader is referred to primers 
on deep learning aimed at radiologists (10,11) 
or more seminal works on deep learning (12,13). 
The structure of this review is as follows: In the 
next section, the concept of adversarial training 
in GANs and how GANs can be used in image 
analysis is introduced. A section in which we 
review the most important groups of clinical ap-
plications in which GANs can play a role follows. 
The final section summarizes the key concepts of 
this review and addresses future applications as 
well as some of the pitfalls and caveats of GANs.

Generative Adversarial Networks
The key idea behind a GAN is that there are two 
CNNs that are adversaries in a game (3). The 
first CNN is called the generator, and its goal is 

TEACHING POINTS
	� The key idea behind a GAN is that there are two CNNs that 
are adversaries in a game. The first CNN is called the genera-
tor, and its goal is to synthesize images that resemble real im-
ages. The second CNN is called the discriminator, and its goal 
is to differentiate the synthetic images from the real images.

	� A GAN is an example of a generative model. Such a model 
learns a distribution of images, thereby allowing a user to 
generate new images from this distribution.

	� Conditional GANs allow the synthesis of images based on a 
condition, which could be the disease that should be visible 
on the images or outlines of structures that should be shown.

	� One limitation of GANs is the concern about introducing 
false disease.

	� Future applications of GANs in imaging are likely to include 
cross-modality image synthesis, improved detection of 
abnormalities, and synthesis of newly obtained images for 
training radiologists.
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Figure 1. Graph shows the number of articles with “CNN” or “GAN” in the title, as 
indexed in PubMed and updated in April 2020. The number of articles with titles featur-
ing “GAN” follows the number featuring “CNN,” indicating the increasing relevance of 
GANs in radiologic applications.

Figure 2. Diagram illustrates the conceptual difference between discriminative and 
generative models in deep learning. The two models use training data (the four frontal 
chest radiographs) in a different way. Discriminative models are trained to distinguish be-
tween two or more image classes. In this example, this means finding a decision bound-
ary (dashed line) between chest radiographs showing pneumonia and radiographs not 
showing pneumonia. Generative models learn the distribution of images from each class. 
In this example, this would mean the distribution of chest radiographs. After training, a 
generative model can be used to synthesize new images from these distributions.

for a real image, x, as D(x). A discriminator that 
can perfectly distinguish synthetic from real im-
ages predicts that D[G(z)] = 0 and D(x) = 1.

Training a GAN
The stages in GAN development and use are iden-
tical to those in other deep learning models. First, 
there is a training stage in which a training dataset 
is used to optimize the parameters of the model. 
Then, there is a testing stage, in which the trained 
model is validated and eventually deployed. In the 
training stage, the generator and discriminator are 
jointly trained by using a single training set con-
sisting of real images and the probability distribu-
tion from which input vectors to the generator are 
drawn. This means that the thousands or millions 
of parameters in both CNNs are modified at the 
same time to optimize an objective function. This 
is done iteratively, in thousands of small steps or 
iterations. To understand the training process of a 

can simply replace each pixel with 4 (2 3 2) pixels 
with the same value. With a more complex but also 
more powerful approach, learned upsampling is 
used with so-called transposed convolutions (Fig 
4). To synthesize a new image, the generator ap-
plies a sequence of such upsampling and convolu-
tion layers to its input vector, z.

The discriminator CNN, D, is also a CNN 
but one that performs classification. As input, 
the discriminator takes a real or synthetic image. 
The architecture of this CNN is more similar to 
that used in discriminative models that classify, 
for example, whether a radiograph shows or does 
not show pneumonia. That is, this architecture 
contains a sequence of downsampling and convo-
lution layers. The output of the discriminator is a 
value that describes the estimated probability that 
the input image is real. This probability value is 
between 0 and 1. We write the output for a syn-
thetic image, G(z), as D[G(z)] and the output 
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Figure 3. Diagram illustrates a GAN. A vector, z, is randomly sampled from a latent space, which in this case is a two-dimensional 
normal distribution. This vector is used as input to a generator CNN, G, which transforms the vector into an image, G(z), by using a 
sequence of upsampling and convolution layers (rectangular blocks). The discriminator CNN, D, uses a sequence of downsampling 
and convolution layers (rectangular blocks) to classify each image as either real or synthetic on the basis of a training data set of real 
images to which it has access and from which a real image, x, can be drawn. These networks are optimized jointly so that the genera-
tor CNN learns to synthesize increasingly realistic images.

GAN, it is important to consider how the training 
objectives of the generator CNN and discrimina-
tor CNN are intertwined.

We first consider the objective of the dis-
criminator CNN, D. This CNN tries to make a 
distinction between images by minimizing a loss 
function. For this, the value of the probability that 
the CNN outputs for each input image should 
be similar to the target label of that image. Recall 
that the target for a real image, x, is 1. For such 
an image, the discriminator maximizes logD(x). 
By predicting a probability value of 1 for a real 
image, x, the value of this term becomes 0: 
logD(x) = log(1) = 0. Conversely, a synthetic 
image, G(z), has a target label of 0, and for such 
an image, the discriminator maximizes log{1 − 
D[G(z)]}. By predicting a probability value of 0 
for a synthetic image, G(z), the value of this term 
also becomes 0: 

log{1 − D[G(z)]} = log(1 − 0) = log1 = 0. (1) 

Hence, a discriminator that predicts a probability 
value of 0 for all synthetic images and a probabil-
ity value of 1 for all real images incurs a loss of 0, 
which is optimal in this case.

At the same time, the generator tries to make 
sure that for synthetic images, the discriminator 
predicts a value higher than 0. Hence, it aims 
to minimize log{1 − D[G(z)]}. The higher the 
value for the probability that the discriminator 
outputs for a synthetic image, the lower the value 
of 1 − D[G(z)]. To achieve this, the genera-
tor should synthesize realistic images. A more 
realistic synthetic image, G(z), is more difficult 
for the discriminator to distinguish, and, thus the 
discriminator is less likely to predict a probability 
value of 0 for such an image.

Putting both these objectives into a single 
mathematical equation gives the standard objective 

Figure 4. Diagram illustrates a genera-
tor CNN architecture that uses transposed 
convolutions to synthesize a 64 3 64-pixel 
image on the basis of the popular deep 
convolutional GAN (DCGAN) architecture 
(14). The input to the generator is a vec-
tor, z, with 100 elements drawn from a 
latent space. This vector is projected into 
a 4 3 4-pixel image, and four transposed 
convolutional layers (CONV1–CONV4), 
each of which doubles the size of the im-
age, are used. Each kernel has a stride of 
2 pixels and a kernel size of 4 pixels. Inset 
(bottom left) shows the details for trans-
posed convolutional layer 1. The layer first 
adds spacings between the elements and 
spacing around the image, resulting in a 
10 3 10-pixel image. Consequently, a 4 3 
4-pixel kernel is moved over the image, re-
sulting in an 8 3 8-pixel image. In practice, 
these operations are highly optimized.
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Figure 5. The loss for the discriminator, D, and generator, 
G, based on the discriminator output, D[G(z)], for a synthetic 
image shows how the two networks are adversaries. 1, If D 
predicts a low-output value, its loss is low but that of G is high.  
2, If D predicts a high-output value, its loss is high but that of 
G is low. 3, 4, During training, both the discriminator and the 
generator iteratively get better at their respective tasks (3) until 
an equilibrium at which the discriminator cannot distinguish 
real from synthetic images is reached, thus predicting D[G(z)] = 
0.5 for synthetic images (4).

function of a GAN (3). This shared objective func-
tion V(D, G) is written as follows:

minmax V(D,G) = Ex~Pdata log[D(x)] + Ez~Pz log{1-D[G(z)]}. (2)
G D

The min and max terms at the beginning of the 
equation indicate that the generator, G, aims to 
minimize this objective function, while the dis-
criminator, D, aims to maximize it. The notation E 
indicates the expected value, which means that this 
objective is not based on a single data point but 
rather on an average of many sampled data points. 
On the right-hand side of the equation—that is, 
after the equal sign—there are two terms indicat-
ing such expected values. The first term, Ex~Pdata, 
corresponds to images drawn from the real image 
distribution, Pdata. The second term, Ez~Pz, cor-
responds to vectors drawn from the latent space 
distribution, Pz. This objective function forms the 
basis from which all GAN models are derived.

GANs are trained iteratively. In each train-
ing iteration, a minibatch of points in the latent 
space is randomly sampled. Each of these points 
is transformed into a synthetic image by the 
generator. The same number of real images is 
then randomly selected from the dataset of real 
images. The discriminator is shown the combined 
minibatch of synthetic and real images and makes 
a prediction for each image—for example, that it 
is or is not a real image. The output values of the 
discriminator are compared with the target labels 
of the images, and thus the loss for the discrimi-
nator is computed on the basis of the full mini-
batch of real and synthetic images. According to 
this loss, small changes are made to the param-
eters of the discriminator to take a step toward 
minimizing its loss function.

Similarly, we use the predictions of the dis-
criminator on only the synthetic images to 
determine the loss for the generator. On the 
basis of this loss, small changes are made to the 
parameters of the generator. In the next iteration, 
we repeat this process, but this time with a freshly 
picked set of random points in the latent space 
and newly sampled real images. This process is 
repeated for hundreds or thousands of iterations.

To get a better understanding of this training 
process, it is important to realize which informa-
tion each network has access to. The discrimina-
tor sees the synthetic images as well as the real 
training images, while the generator does not 
have access to the training images. Hence, the 
only information that the generator receives is 
the decision of the discriminator regarding the 
synthetic data that it generates.

We can visualize this process by looking at the 
loss for the discriminator and generator for a syn-
thetic output image of the generator. In Figure 5, 

we can see how the decision of the discriminator 
network on a synthetic image affects both the 
generator and the discriminator. During train-
ing, the generator initially synthesizes images 
that do not resemble the real data and that the 
discriminator can easily classify as synthetic (1). 
However, the generator gets feedback from the 
discriminator about the images that it synthe-
sizes and can adjust its weights accordingly so 
that new images are harder to distinguish (2). As 
the images synthesized by the generator become 
more realistic, the discriminator finds it more 
difficult to distinguish synthetic from real images 
and has to get better at making this distinction 
(3). Consequently, the generator has to synthe-
size better images, and this process repeats until, 
ideally, an equilibrium is reached in which the 
discriminator cannot differentiate between real 
and synthetic images (4).

During the training of a GAN, the image that 
the generator CNN synthesizes for a fixed point, 
z, in the latent space could change in each itera-
tion. However, once the training of a GAN has 
finished, all CNN parameters are frozen. The 
generator has learned a fixed mapping between 
the latent space and images, meaning that provid-
ing the same input vector, z, to the generator, G, 
will always result in the same image: G(z).

Different input vectors ideally correspond to 
different output images. Points that are close to 
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Figure 6. State-of-the-art GANs can generate high-resolution photograph-realistic portraits of people who do not exist. The five 
realistic photographs of nonexistent persons shown here were generated by a StyleGAN model (17).

each other in the latent space are more likely to 
lead to images that share certain characteristics 
(14). However, in some cases, many points in the 
latent space could correspond to the same image. 
This problem is called mode collapse and affects 
the diversity of the images that the generator can 
synthesize.

Alternative Objectives
Joint training of two CNNs in a GAN is, by 
definition, more difficult than training each CNN 
individually. Thus, in practice, GANs can be 
challenging to optimize, with problems like mode 
collapse occurring. To address this issue, variants 
of the objective function that provide a better 
metric to describe the difference between real 
and synthetic images have been proposed. Among 
the most popular criteria are those based on the 
Wasserstein distance. The Wasserstein distance 
describes the optimal transport solution between 
the distribution of real images and the distribu-
tion of synthetic images. As an analogy for this 
optimal transport solution, one could consider 
each distribution as a pile of dirt. The Wasser-
stein distance quantifies the amount of work that 
would be required to change one pile of dirt into 
the other pile, which is a product of the amount 
of dirt that would need to be displaced and the 
distance that this dirt would have to be displaced. 
Consequently, this distance is also referred to as 
the earth mover’s distance. GANs using a Was-
serstein distance are called Wasserstein GANs 
and are the current de facto standard for GAN 
training (15,16).

Evaluation
State-of-the-art models for image synthesis are 
based on a combination of advanced CNN archi-
tectures, smart training schemes, and discrimi-
nator objectives. Figure 6 shows an example of 
portraits synthesized with a state-of-the-art style-
based GAN (StyleGAN) model (17). This GAN 
is trained by using a large dataset of portraits of 
living people and thus learns the distribution of 
human faces. The trained model can be used to 
synthesize new portraits of people who do not 
exist. All portraits shown in Figure 6 are purely 

synthetic and do not correspond to any living 
person. Note how the faces look realistic; yet, on 
closer inspection, there are details on the images 
that reveal that these are artificial portraits. For 
example, the clothing on the fourth photograph 
(man wearing glasses) contains a small artifact. 
As a human observer, it may not be too difficult 
to pick up these small mistakes. However, quan-
tifying how realistic the images generated by a 
GAN are is not a trivial task. One way to estimate 
this quantification is to use a third CNN, in ad-
dition to the generator and discriminator, that 
has been trained to categorize images by using a 
large dataset of images. The assumption is that if 
this CNN can confidently classify the generated 
image, it is more likely to resemble a realistic im-
age. If the CNN cannot do this, then the image is 
less likely to look like a real image. This metric is 
called the inception score, named after the incep-
tion CNN architecture that is often used for the 
third CNN (18).

Alternatively, one can look at the features that 
are extracted in the intermediate layers of this 
pretrained inception CNN. If the distribution 
of features extracted for the synthetic images re-
sembles that of the features extracted for the real 
images, then the generated images are considered 
to be more realistic. This metric is called the 
Frèchet inception distance (19).

Conditional GANs
The standard definition of a GAN does not infer 
much control over the outputs. For example, it 
is not possible to ask a GAN for an image that 
shows a particular pathologic condition if the 
training set contains many different diseases. The 
GAN has only learned what a real image looks 
like and has no understanding of the different 
pathologic conditions shown on the images. To 
overcome this issue, both the generator and the 
discriminator can be conditioned, or trained, 
to include additional information (20). A GAN 
that follows this approach is called a conditional 
GAN. The training set of a conditional GAN 
not only includes real images but also has a label 
for each of these images—for example, a label 
describing the disease depicted on an image. The 
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Figure 7. Diagram illustrates a conditional GAN. In addition to the latent space vector, z, the generator uses conditional informa-
tion, y, as input—in this case, the desired object in the image. To synthesize a convincing image of a bus, it should synthesize an 
image that the discriminator considers to be a plausible image of a bus. The discriminator has access to a training dataset of images 
and labels that indicate the objects on the images—for example, “bus,” “cat,” “dog.” Thus, it learns the characteristics of real images, 
as well as the correspondence between images and labels. The synthetic image of a bus, shown here as G(z, y), was generated by 
using a conditional BigGAN model (21).

discriminator CNN, then, not only is trained to 
decide whether an image comes from the real 
dataset but also now has to determine for each 
combination of an image and a label whether it is 
a valid combination.

Thus, the question answered by the discrimina-
tor CNN is no longer “Is this a real image?” but 
rather “Is this a real image, and does it match what 
the label prescribes?” The discriminator CNN is 
trained to answer this question not only for real 
images but also for images synthesized by the 
generator. This also makes the task of the genera-
tor CNN more complex. The generator now has to 
synthesize an image that looks realistic and shows 
what is described in the image label.

Figure 7 shows an example of a conditional 
GAN model. Input to the generator, G, is still a 
point in the latent space, but now in combina-
tion with a label, which is “bus” in this example. 
Based on these two inputs, the generator has 
to synthesize an image (21). For all samples in 
the real dataset, there is now also a label such as 
“dog,” “cat,” or “bus” available. Both the image 
and its (desired) label are input to the discrimina-
tor, D, which decides whether this is a plausible 
image for the given label. To include this ad-
ditional input information, modifications to the 
CNN architectures of both the generator and the 
discriminator are required.

Conditional GANs are trained in much the 
same way that normal GANs are trained, with 
the exception that the loss function is modified to 
force the discriminator and generator to take the 
image labels into account. During each train-
ing iteration, the discriminator is presented with 
minibatches of randomly selected real images and 
synthetic images based on randomly drawn latent 

space points and random labels. State-of-the-art 
conditional GANs such as BigGANs (big GANs) 
(21) can synthesize images from more than a 
thousand different classes.

Conditioning on Images
While the GAN in Figure 7 is conditioned on 
image labels, a GAN could be conditioned on 
anything, such as continuous values and image 
captions (22). A very valuable consequence of 
this for radiologic applications is that GANs can 
even be used to synthesize images conditioned 
on other images. In this case, we train the gen-
erator to synthesize a new image on the basis of 
an input image. Consequently, the discriminator 
determines for pairs of images whether they form 
a realistic combination. This makes it possible 
to use GANs for problems such as deblurring, 
colorization, and segmentation, all of which can 
be considered image-to-image translation prob-
lems. Image-to-image translation is an umbrella 
term for tasks in which an image in a source 
domain—for example, the domain of gray-scale 
images—is translated into a corresponding image 
in a target domain—for example, the domain of 
color images. As we describe later in the “Clini-
cal Applications” section, many radiologic image 
analysis tasks can be considered image-to-image 
translation tasks.

Depending on the available training data, there 
are two main approaches to training GANs for 
image-to-image translation: with use of paired 
training data, or without use of paired training 
data. In paired training data problems, perfectly 
aligned pairs of images in both domains are 
available. A popular approach to such problems 
is the pix2pix framework (23). Figure 8 shows 
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Figure 8. Example of an image-to-image translation model. The generator transforms the input (gray-scale) image, y, into a color-
ized image, G(y). For this transformation, the generator uses an image-to-image CNN, such as encoder-decoder architecture (rectan-
gular blocks). The discriminator takes the combination of both images as input and determines whether this is a feasible combination. 
To do this, the discriminator has access to a training set with pairs of images.

an example of this framework applied to an 
image-to-image translation task—namely, image 
colorization. Given a gray-scale input image, the 
generator, G, transforms the image into a color-
ized image. The real dataset consists of paired 
gray-scale and color images, which align perfectly 
because the transformation of color images into 
gray-scale images is trivial. The generator learns 
how to transform a gray-scale image into a color 
image, and the discriminator determines for each 
combination of a gray-scale and a color image 
whether this is a realistic image pair. Moreover, 
there is always a reference colorized image for 
the input gray-scale image. This allows the use of 
an additional loss term to optimize the genera-
tor, G—namely, one that quantifies the difference 
between the output color image and the reference 
color image. This way, the generator learns to 
synthesize images that both resemble real color 
images and maintain the content of the input 
image.

For the successful application of pix2pix-like 
models, perfectly aligned training images are 
required. However, in many cases, in radiologic 
applications in particular, no paired training 
data are available. For example, when MR and 
CT images obtained in patients are available, 
these images in two domains may originate from 
the same patient, but there is no pixel-perfect 
alignment between them because they were 
acquired in two separate acquisitions. This is 
an unpaired data setting in which a pix2pix-like 
model breaks down: The discriminator cannot 
inspect pairs of images, and no pixel-wise loss 
can be computed between the output of the 
generator, G, and a target image. Consequently, 

the discriminator can only determine whether 
the output image belongs to the second domain; 
however, there is no way to guarantee that the 
semantic content of the output image corre-
sponds to that of the input image. A risk of this 
is that the image in the second domain will show 
different content. In radiology, this means that 
disease could be accidentally introduced or re-
moved. To mitigate this risk, the GAN needs to 
be regularized during the training process; this 
means that additional loss terms are included 
during training. There are two ways to regularize 
a GAN and thus encourage the content of the 
images to stay the same even when no pairs of 
training images are available.

The first approach to unpaired training data is 
to enforce the pixel-wise correspondence between 
the input and output images to be strong. This 
can be achieved by minimizing the difference be-
tween these two images (24). However, this only 
works in cases in which the images are expected 
to be similar before and after translation, such as 
in image denoising or artifact removal.

The second, more generic and popular ap-
proach is to use multiple models in a cycle-con-
sistent GAN, or CycleGAN, setup (25). Instead 
of two CNNs, cycle-consistent GANs use CNN 
model cycles, whereby each cycle contains two 
generator models and a discriminator model 
(Fig 9). The first generator model, GB, trans-
lates data from the source domain, A, to the 
target domain, B. A discriminator model, DB, in 
domain B determines how well the synthesized 
data match real images in that domain. Note 
that this is similar to a GAN without additional 
regularization. The regularization is provided by 
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Figure 9. Diagram illustrates a cycle-consistent GAN, which combines a discriminator loss with a pixel-wise cycle-consistency loss. 
As in a conditional GAN, in a cycle-consistent GAN, an image is transformed from domain A to domain B. The synthetic image in 
domain B is then transformed back to domain A by a second generator. The difference between the initial image and the twice-
transformed image is minimized. Bottom right inset: A second, backward cycle is also optimized during training.

the second generator, GA, which translates the 
image back to domain A. The goal is to make 
the resulting image match the original image as 
closely as possible. If this can be achieved, it is 
assumed that the corresponding synthetic image 
in domain B at least contained the semantic 
content required to reconstruct the original 
image. To improve stability, a counterclockwise 
cycle is trained at the same time. This counter-
clockwise cycle uses the same generators and 
an additional discriminator, DA, in domain A to 
translate data from domain B to domain A and 
then back to domain B.

Note that when using GANs, there is a lot 
of flexibility to adapt, for example, the CNN 
architectures of the generator and discrimina-
tor models, the objective of the discriminator, 
and additional regularization loss terms such as 
cycle-consistency loss to the problem one aims 
to solve. The GANs described in this section 
form the basis of many of the applications in 
the next section; however, more often than not, 
domain-specific design choices are made to best 
tackle a clinical problem. Similarly, as for other 
deep learning models, the number of required 
training images and the amount of required 
computing time depend heavily on the problem 
that is being solved.

Clinical Applications
As with deep learning in general, GANs have been 
applied to a wide range of problems in the field of 
radiology. To give the reader an idea of the ap-
plicability of GANs in the radiologic workflow, we 
provide examples of applications in image synthe-
sis, image reconstruction, cross-domain synthesis, 
image analysis, and pseudohealthy synthesis (Fig 

10) (26). For systematic reviews of all GAN appli-
cations in radiology, the user is referred to various 
sources in the literature (7–9).

Image Synthesis
In supervised deep learning, the need for a suf-
ficiently large and well-annotated high-quality 
dataset remains a bottleneck, especially when 
tackling rare diseases and new applications for 
which such a dataset is not yet available. One 
common strategy for addressing this issue is to use 
data augmentation such as translation, rotation, 
scaling, and flipping of available samples to create 
“new” samples. In addition to these determinis-
tic transformations, GANs allow the synthesis of 
completely new images to enlarge datasets. Just 
as the images in Figure 6 show portraits of people 
who do not exist, GANs can be used to generate 
medical images that do not exist. A prerequisite 
for the effective use of synthetic images is that they 
visually resemble real images. In several studies, 
blinded observer studies have been performed 
to verify that synthetic medical images visually 
resemble real images. For example, in a random 
blinded comparison of GAN-generated synthetic 
brain MR images and real MRI series, a group of 
radiologists and nonspecialized readers were un-
able to reliably distinguish synthetic images from 
real images (27).

Synthetic samples for deep learning are more 
useful when a reference label along with an im-
age is provided—that is, when data are condi-
tioned on a label. Conditional GANs (Fig 7) 
allow the synthesis of images based on a condi-
tion, which could be the disease that should be 
visible on the images or outlines of structures 
that should be shown. An example of this is the 
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work by Frid-Adar et al (28), who used a deep 
convolutional GAN to synthesize additional CT 
images of cysts, metastases, and hemangiomas 
of the liver. A similar idea has been used to 
synthesize benign and malignant lung nodules at 
CT with a Wasserstein GAN (29).

Alternatively, image synthesis could be condi-
tioned on the output of a weaker image simula-
tor. In the nonmedical domain, this principle 
was used to improve the photograph realism of 
simulated images (24). In the medical domain, 
existing simulators for medical images include 
the XCAT model, which allows the synthesis 
of CT sections that are anatomically correct 
but lack the look and feel of “real” CT images. 
Hence, a cycle-consistent GAN (Fig 9) could 
be used to add a realistic representation to the 
XCAT phantom’s simplified anatomy (30).

Despite their potential visual quality, de novo 
synthesized samples are of limited practical 
value if they do not enhance the performance of 
a downstream classifier model. Hence, the next 
step is to use the synthesized data to enlarge 
the training dataset for a deep learning–based 
method and thus improve its performance. The 
classification accuracy can then be easily tested in 
a comparative way between the enlarged dataset 
and a model trained only on the base dataset. 
Frid-Adar et al (28) showed how GAN-generated 
liver lesions could boost the classification sen-
sitivity of a CNN from 78.6% to 85.7% and 

boost the classification specificity from 88.4% 
to 92.4%. Similarly, a CNN was pretrained with 
60 000 synthetic lung nodule images and then 
trained on a relatively small dataset of 60 real 
images of lung nodules. This significantly en-
hanced the performance of the CNN classifier, 
from accuracies of 51.9% (benign nodules) and 
84.9% (malignant nodules) to 66.7% and 93.9%, 
respectively (29). Russ et al (30) showed how the 
addition of synthetic data to a real dataset could 
improve the accuracy of a deep learning–based 
segmentation method for blood vessels. In addi-
tion, Salehinejad et al (31) showed how a CNN 
that is trained with real as well as synthetic chest 
radiographs outperforms a CNN trained with 
only real images.

Image Reconstruction
Medical image acquisition and reconstruction 
often include a trade-off between diagnostic 
image quality and adverse factors such as in-
creased acquisition times and higher radiation 
dose. In practice, a compromise that puts realistic 
constraints on image acquisition parameters is 
chosen. However, this compromise could also 
lead to reduced image quality in the form of high 
noise levels, motion artifacts, and other artifacts. 
Moreover, in cases such as metal implant imaging 
at CT and patient motion, artifacts would persist 
regardless of the acquisition parameters used. 
In these scenarios, GANs could bridge the gap 

Figure 10. The applications of GANs for various syntheses in radiology are illustrated on axial CT images (top left and middle), sagit-
tal head MR (left) and CT (right) images (top right), axial prostate MR images (bottom left), and frontal chest radiographs (bottom 
right. (Frontal chest images reprinted, with permission, from reference 26.) GANs have been widely used in combination with radio-
logic images. Here, applications are grouped into those that synthesize completely new data (image synthesis), those that improve 
the reconstruction of images and remove artifacts (image reconstruction), those that translate a medical image from one modality 
into another (cross-modality synthesis), those that improve existing image analysis techniques such as segmentation (image analysis), 
and those that allow the removal of disease findings from images to highlight abnormalities (pseudohealthy synthesis).
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between technical limitations and desirable image 
quality while minimizing adverse imaging effects.

The dose levels used at CT have substantially 
decreased in the past decades owing to advances 
in hardware and reconstruction techniques. In re-
cent years, deep learning–based reconstruction of 
CT images with CNNs has contributed to these 
advances (32). One challenge in CNN-based CT 
denoising is the definition of an adequate loss 
function. Minimization with quantitative crite-
ria such as the mean squared error might lead 
to overly smoothed images with an unrealistic 
or “blotchy” appearance, similar to those often 
criticized in iterative reconstruction techniques 
(33). Instead, a discriminative loss could encour-
age the preservation of texture details so that the 
appearance and noise statistics of denoised CT 
images resemble those of real CT images. On 
cardiac CT images, denoising by a single genera-
tor network with discriminator feedback allowed 
coronary calcium scoring on CT images acquired 
with an 80% radiation dose reduction (Fig 11) 
(4). Alternatively, two generator and discrimina-
tor networks for the low-dose and routine-dose 
domains, respectively, could be used in a cycle-
consistent GAN to transform between these two 
domains (34).

Like CT images, MR images can be subject 
to deterioration by noise. Ran et al (35) simu-
lated paired samples of reconstructed noisy and 
noise-free brain MR images and used these to 
train a pix2pix-like model in which the genera-
tor outputs a denoised image for a noisy input 
image. For the acceleration of MRI acquisitions, 
the (under)sampling of k space exploited in 
compressed sensing techniques is a key manipu-
latable factor. Deep learning has further acceler-
ated compressed sensing, allowing even higher 
speed-ups with improved image quality (36). One 
of the first applications of GANs to compressed 
sensing involved the use of a discriminator loss 
in combination with a cyclic data-consistency 
loss to transform zero-filled MRI reconstructions 
based on undersampled k-space data into fully 
sampled images (37).

Some of the most exciting applications of 
GANs address limitations of image acquisition 
that would otherwise necessitate a hardware in-
novation such as detector resolution or motion 
tracking. For example, similar to applications for 
nonmedical images (38), a GAN could be trained 
for image super-resolution, increasing image 
matrix sizes above those originally acquired (39). 
Here, the input image of the generator network 
would be a low-resolution image, and the output 
image of that network would be a high-resolution 
image. Alternatively, motion artifacts could be 
removed from MR images by using a conditional 

GAN when it is trained with paired images (40) or 
by using a cycle-consistent GAN when it is trained 
with unpaired images (41). This approach has the 
potential to rescue otherwise impeded studies.

Cross-Modality Synthesis
With the large variety of imaging modalities avail-
able to radiologists, some images intentionally or 

Figure 11. Axial CT and coronary artery calcium (CAC) 
mask images. (a) Low-dose image (ILD ) acquired with 20% 
of the routine dose. (c) GAN-denoised (G/ ) low-dose image.  
(e) Low-dose image processed with conventional iDose it-
erative reconstruction (IR) technique. (g) Routine-dose image 
(IRD ). (b, d, f, h) Corresponding CAC mask images show a 
mask (>130 HU) for coronary calcium scoring (black) and cal-
cified lesions identified with manual scoring (red). The GAN-
based (c, d) and iterative reconstruction (e, f) techniques 
enabled calcium scoring on the low-dose image. (Reprinted, 
with permission, from reference 4.)
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unintentionally may not be acquired for a patient. 
To some extent, GANs allow the synthesis of miss-
ing image modalities on the basis of those images 
that are acquired. Possible benefits include time, 
radiation, and cost savings. A generator CNN can 
be trained to transform an image of one modality 
(the source domain) into an image of another mo-
dality (the target domain). Such a transformation 
is typically nonlinear, and a discriminator could 
be used to encourage characteristics of the target 
domain on the output image. An example of this 
is the synthesis of multiple MRI sequences from a 
single MR image acquisition, such as T2-weighted 
images from T1-weighted images, with use of a 
conditional GAN (5).

Relevant-use cases for cross-modality syn-
thesis can be found in radiation therapy treat-
ment planning, in which an MR image for tissue 
delineation and a CT image for electron density 
estimation are typically acquired. In MRI-only–
guided radiation therapy treatment planning, the 
CT image is replaced with a synthetic CT image 
derived from the MR image acquisition (42). Nie 
et al (43) proposed using a GAN approach for 
brain MR image–to–brain CT image synthesis, 
in which a discriminative loss is combined with a 
pixel-wise loss. Notably, their model is different 
from a pix2pix model in that the discriminator is 
not conditioned on the input image. Largent et al 
(44) performed a systematic comparison of con-
ditional GANs and standard CNNs with different 
loss functions for pelvic MR image–to–pelvic CT 
image synthesis. While conditional GANs such as 
pix2pix require pixel-perfect alignment between 
images in both domains, this is hardly ever the 
case with real medical images. Therefore, the use 
of cycle-consistent GANs has been popular for 
MR image–to–CT image synthesis (Fig 12) (45).

Conversely, Lei et al (46) used cycle-consis-
tent GANs for CT-only guided radiation therapy 
planning—namely, to omit MR image acquisition 
but obtain tissue delineations at CT. Given the 
poor visibility of the prostate at CT, in this work, 
CT images were first transformed into synthetic 
MR images by using a cycle-consistent GAN; 
then, a pretrained MRI prostate segmentation 
CNN was applied to these images. Similarly, im-
age conversion cycle-consistent GANs have been 
used to enlarge training sets for the segmentation 
of cardiac structures on MR and CT images (47).

Image Analysis
Deep learning has had a large effect on traditional 
postprocessing methods in image analysis such 
as image segmentation and image registration 
(2). In image segmentation, the performance of 
algorithms is typically evaluated by using overlap 
measures such as the Dice similarity coefficient. 

For a particular segmentation, these overlap 
measures can be high, but the anatomic plausibil-
ity of the segmentation, and thus its clinical value, 
could be low. The challenge is that criteria such 
as anatomic plausibility are hard to quantify in an 
objective function used to optimize a CNN (Fig 
13a). This is where GANs come in: The discrimi-
nator network can be used to determine what is a 
good segmentation and what is not on the basis of 
a reference dataset of real segmentations (50).

Moeskops et al (48) proposed one of the first 
applications of GAN-based segmentation on 
medical images. A discriminator was trained to 
differentiate between automatic and reference 
segmentation masks on brain MR images (48). 
As image segmentation is a paired training data 
problem, the discriminator loss could be com-
bined with a conventional pixel-wise segmentation 
loss (Fig 13b). The trained model made fewer 
small spurious segmentation errors, as these were 
penalized by the discriminator model, resulting 
in anatomically more plausible segmentations. 
Further applications of conditional pix2pix–like 
models for segmentation can be found in knee 
cartilage structure segmentation from MRI (51). 
A slightly different approach to GAN-based image 
segmentation is proposed in the popular SeGAN 
model (Fig 13c) (49). In this work, the discrimi-
nator is called a critic, as it does not provide a 
binary classification but rather aims to quantify the 
differences between predicted and reference seg-
mentations. Xue et al (49) found that this model 
achieved state-of-the-art performance in tumor 
segmentation at brain MRI.

Similar to image segmentation, image align-
ment, or registration, is currently undergoing 
a deep learning renaissance (52,53), including 
novel methods that involve the use of GANs. As in 
segmentation, deep learning–based registration is 
guided by a loss function based on a metric of the 
alignment between two images. The lower this loss, 
the better images are aligned. Several groups have 
proposed the use of a discriminator CNN to dis-
tinguish well-aligned images from poorly aligned 
images and thus provide a registration loss that is 
different from the ones typically used (54,55).

Pseudohealthy Synthesis
In pseudohealthy synthesis, a medical image ob-
tained in a patient with a disease is translated into 
a corresponding image that shows what the pa-
tient’s imaging findings would look like if the dis-
ease were not present. This allows the visualiza-
tion of disease on an image and the detection of 
abnormalities that could be related to the disease. 
Training data for such problems are by definition 
unpaired, as it is highly unlikely that aligned pairs 
containing normal-finding and disease-depicting 
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images obtained in the same patient are present 
to form training samples. Therefore, data from 
healthy subjects are combined with data on pa-
tients in whom the disease is present.

One example is the work by Baumgartner et 
al (56), who trained a Wasserstein GAN model 
to transform brain MR images in patients with 
Alzheimer disease into images that show the 

findings that would be seen in these patients if 
Alzheimer disease were not present. By subtract-
ing the resulting image from the original im-
age, the effect of disease on the brain could be 
visualized. Similarly, a pseudohealthy synthesis 
model was trained by using radiographs with 
and without congestive heart failure to visualize 
the effect of the disease. As expected, the model 

Figure 12. Diagram illustrates how a cycle-consistent GAN can be used to transform brain 
MR images (IMR) into brain CT images (ICT ), and vice versa. The generator models, SynCT and 
SynMR , perform the cross-domain synthesis, while the domain-specific discriminator models, 
DisMR and DisCT , aim to distinguish real from synthetic images. (Reprinted, with permission, 
from reference 45.)



RG • Volume 41 Number 3 Wolterink et al 853

Figure 13. Diagrams illustrate three deep learning–based segmentation approaches for pros-
tate segmentation in MRI. (a) With the conventional deep learning approach, a pixel-wise loss 
(eg, binary cross entropy) is computed between the predicted mask and the reference mask.  
(b) With the adversarial approach, a discriminator is additionally trained to distinguish real from synthetic 
segmentation masks (48). (c) With the SeGAN approach, the input image is multiplied by the predicted 
mask and reference mask. The discriminator is considered a critic that extracts features at multiple scales 
to compute a multiscale loss that converges to 0, as the masked images are identical (49).

shrank enlarged cardiac silhouettes on the syn-
thesized images (26).

A third example of this is the work by Van 
Velzen et al (57), who used a cycle-consistent 
GAN to translate chest CT images obtained in 
patients with calcified atherosclerotic plaque into 
images without plaque, highlighting the location 
of calcified lesions. This selective image modifica-
tion by means of training on coarse disease labels 
is a previously unreachable feat that is now made 
possible by GANs. Using a GAN to first gener-
ate images with normal-appearing findings from 
images with abnormal findings enabled image 
segmentation, tumor classification, and tumor 

generation on datasets of healthy patients. This 
is the inverse process to pseudohealthy synthesis 
(58). This technique can be used to train for the 
detection of lesions that are otherwise rarely en-
countered. It also opens up a field of interactively 
manipulated imaging datasets that can convinc-
ingly substitute for their real counterparts.

Discussion
GANs are powerful deep learning models. In the 
past few years, it has been shown that training a 
generator CNN jointly with a discriminator CNN 
can lead to improvements in radiology tasks such as 
image synthesis, cross-modality image conversion, 
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and pseudohealthy synthesis. The synthesis of im-
ages from other images has the potential to directly 
affect patient care, as fewer images need to be 
acquired and the information present on acquired 
images could be better exploited. Improvements 
in image acquisition and reconstruction based on 
GANs could affect the imaging time in the set-
ting of MRI or the irradiation dose in the setting 
of CT. The use of GAN-based image analysis 
methods such as segmentation and registration 
could improve the accuracy and efficiency of many 
existing clinical tasks.

However, as with all deep learning models, sev-
eral factors influence the effectiveness of GANs. 
As with any deep learning model, predictions will 
be suboptimal if the input data that are provided 
are not from the same distribution as the input 
data used to train the model. Questions about the 
instability of deep learning methods for inverse 
problems such as image denoising also apply to 
GANs (59). For instance, in the case of MR image 
reconstruction from undersampled data, minor 
perturbations in the measured signal could lead to 
large changes in the reconstructed image. These 
effects might not be directly visible and could lead 
to medical images that do not correspond to a 
patient’s actual anatomy or pathologic condition. 
To detect the risk of such suboptimal predictions, 
efforts in uncertainty quantification for other 
deep learning techniques might also be applied to 
GANs. For example, studying the agreement of an 
ensemble of cycle-consistent GANs can aid in the 
detection of unsuitable input CT images (60).

Moreover, ethical and legal issues that underlie 
the use of deep learning in clinical applications 
are as relevant to GANs as they are to other deep 
learning approaches. Thus, for the foreseeable 
future, GAN-generated results should be checked 
by expert radiologists, and fully automatic appli-
cations will be limited to certain tasks. Like other 
applications, GAN-based applications should be 
well validated (61).

Perhaps the most relevant risk when using 
GANs for radiologic applications is that of hallu-
cination. The synthesis of new data by itself raises 
risks of unintentionally synthesizing content that 
does not exist, or conversely, of removing rel-
evant information from an image. GANs such 
as cycle-consistent GANs that are trained with 
unpaired data are particularly susceptible to these 
risks, as only an indirect check to verify that the 
synthesized image shows the same content is 
performed. There have been concerns about the 
use of cycle-consistent GANs for image-to-image 
translation, particularly when there is a mismatch 
between the distribution of disease in both do-
mains. This might result in the spurious sugges-
tion, or “hallucination,” of disease (62).

One limitation of GANs is the concern about 
introducing false disease. In a series of experi-
ments, Cohen et al (63) showed that a cycle-
consistent GAN will remove a brain tumor from 
images during fluid-attenuated inversion-recovery 
MR image to T1-weighted MR image synthesis if 
none of the T1-weighted training MR images show 
tumors. Conversely, tumors will always be inserted 
if the T1-weighted training set contains only images 
with tumors. To mitigate this, the location of such 
structures could be explicitly factored in (64).

When using GANs for image-to-image transla-
tion, the generator CNN captures information 
about the relationship between the two domains. 
For example, when using a GAN for MR im-
age–to–CT image synthesis, the generator CNN 
may locally make a direct mapping between MR 
image signal intensity values and CT attenuation 
values but also add nonlocal patterns that make 
the output image look like a CT image. Thus, a 
single MR image does not necessarily contain 
all of the information that a CT image contains, 
but the combination of that MR image with the 
information captured in the CNN can lead to 
realistic CT images.

Generator CNNs can also encode certain 
information into their output images. It has been 
found that cycle-consistent GAN generators hide 
information on images. This hidden information 
is subsequently used to transform the image back 
to its original domain in a process called stegan-
ography (62). This process could lead to visually 
unnoticeable differences between synthesized and 
real images in the target domain that could affect 
downstream image analysis.

An outstanding issue that arises when using 
GANs in medical image analysis is that of evalu-
ation. While quantitative metrics such as the peak 
signal-to-noise ratio or mean square error are 
often used as both training objective and evalua-
tion criteria, the downstream task should also be 
considered. For example, to use a CT denoising 
method, lesions must still be present on the de-
noised image. Scores based on pretrained CNNs 
for natural images such as the Frèchet inception 
distance (19) and inception (18) scores may not 
translate directly to medical images.

While this review is focused on GAN appli-
cations for medical images, other medical ap-
plications for using GANs for nonimaging data 
such as electrocardiographic signals (65) and 
electronic health records (66) have been found. 
Future applications of GANs in imaging are 
likely to include cross-modality image synthesis, 
improved detection of abnormalities, and synthe-
sis of newly obtained images for training radiolo-
gists. Improvements in computer vision tend to 
find their way into medical image analysis, and it 
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is not unlikely that computational challenges will 
be overcome and image synthesis models will be 
developed to synthesize high-resolution three-
dimensional medical images of patients who do 
not exist, akin to the portraits in Figure 6.

Moreover, advances in GANs for image 
analysis will go hand in hand with developments 
in CNN architectures. Finally, GANs are likely 
to be used to further accelerate and improve MR 
and CT image acquisitions, and the acquisition 
of other images such as US scans.

Conclusion
Deep learning has facilitated many incredible 
feats in the more tedious parts of radiologists’ 
tasks. In the past few years, it has been shown 
that GANs are powerful deep learning models 
and that training a generator CNN jointly with a 
discriminator model can lead to improvements in 
a broad range of radiology tasks. These include 
image synthesis, cross-domain image synthesis, 
and abnormality detection. While there are limi-
tations to what GANs can achieve reliably, when 
used with care, they could enable many exciting 
new applications of AI in radiology.
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