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Spin echoes have been known since 1950. Although their formal description 
by use of the Bloch equations is straightforward, it does not lead to an 
intuitive understanding of their behavior except for the special cases of 180" 
or 90" pulses, especially when many pulses are applied before the 
magnetization has returned into thermal equilibrium. The extended-phase- 
graph algorithm, which takes into account that the total magnetization in 
spin-echo sequences is a superposition of many isochromats, allows the 
recognition of all possible echo signals in arbitrary pulse sequences. Its 
application to multi-echo sequences leads to a number of surprising results. 
It can be demonstrated that refocusing pulses with flip angles much lower 
than 180" generate an unexpectedly high signal intensity after a few echo 
periods. Apart from leading to a simple algorithm for the exact calculation 
of echo intensities in arbitrary multi-pulse sequences, the phase-graph 
algorithm leads to a simple understanding of the contrast behavior of 
different gradient echo sequences and gives a rational means for the design 
of MR-imaging sequences that are free from spurious echoes. 

INTRODUCTION 

The concept of spin echoes was presented in 1950 by E. L. Hahn in a remarkable paper that 
contains almost everything there is to know about the behavior of uncoupled spin-% nuclei (I). 
Since then, the ability to  realign incoherent magnetization vectors by a 180" refocusing pulse has 
been one of the textbook basics of NMR. Innumerable students have seen their teachers wave 
their arms and turn around their (vertical) axis to illustrate this phenomenon. It is interesting 
that the very simplicity and clarity of the vector model for the explanation of this primary spin 
echo seems to preclude our understanding of other echoes, such as those generated by 90" 

125 



Hennig 

refocusing pulses. Two diverging vectors just do not seem to converge after only a half-turn. 
As a consequence, irrational spirits of magnetic resonance often are invoked to explain the 
existence of such echoes or their even more esoteric relatives, the stimulated echoes. 

Before continuing, it is necessary to state that nothing but rotations of vectors in space will 
be necessary to understand this article. Not even an understanding of relatively benign effects 
like J-coupling will be required; I will deal exclusively with uncoupled spin-% particles (which 
about covers my expertise). 

In Part I, I present a comprehensive explanation of the echo phenomenon and introduce a 
simple and illustrative model that can be used to trace and calculate the amplitude of all 
possible echoes generated by any sequence of radio-frequency (rf)  pulses. Then I will 
demonstrate how easy it is to calculate the amplitudes of practical multi-echo sequences, where 
the refocusing flip angle never is exactly 180: Because multi-echo sequences with constant echo 
spacing are the simplest multi-pulse sequences, I will use them to illustrate some features of 
echo formation beyond the mere practical aspects of the design and optimization of such an 
experiment. Here the reader must expect to be confronted with strange things like echo 
sequences with increasing echo amplitudes or even echo solitons, which seem to roll on forever. 

More practical aspects of MR-imaging experiments are described in Part 11. After the 
consequences of echo formation for a multi-echo imaging experiment are discussed, I will 
demonstrate how easy it is to describe the contrast behavior of gradient echo sequences if they 
are regarded as multi-echo sequences (which they indeed are). Finally, some basic traps in any 
periodic NMR experiment, such as an MR-imaging experiment, are given. 

THEORY OF ECHOES 

Echo Fonnation 

Transverse magnetization is generated by a hard 90" pulse, which rotates all z magnetbation 
into the transverse plane. If the B, field of the pulse is aligned along t h e y  axis of the rotating 
frame, then the transverse magnetization after the pulse will be directed into the x direction 
according to the generally accepted right-hand rule. Due to magnetic-field inhomogeneities over 
the probe, nuclei at different locations will see a slightly different B, field and will therefore 
precess with a slightly different Larmor frequency. If two such spins are chosen at random, the 
dephasing can be visualized by vectors lagging behind or advancing in the rotating frame given 
by the reference frequency. The observed signal that is the sum of all vcctors will consequently 
be reduced on a time scale given by this loss of coherence. If a 180" pulse with phase x is 
applied after a certain interval, both vectors will be rotated by 180" around the x axis. It is now 
easy to see that both vectors will coincide on the x axis after the same time interval: A spin 
echo has been formed (Fig. 1). 

a b C d 

Figure 1. Principle of Refocusing by a 180" Pulse. (a) After excitation by a y pulse, 
all z magnetization is converted intox magnetization. (b) After an interval ce, two vectors 
corresponding to isochromats with different Larmor frequencies are somewhat dephased. 
(c) A 180" pulse (x) negates the y components of the two vectors. (d) After another 
interval, both vectors will be realigned on the x axis. 
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This was the easy part. Now what about echo formation by a 90" pulse? To understand 
this, we should look at the transverse magnetization after a time t, when all spins are totally 
dephased in the transverse plane such that the tips of all vectors are equally distributed over a 
circle (Fig. 2b). If now a 90" pulse is applied, the whole circle will be rotated into the zy plane 

goo I b 
Q 

Figure 2. Principle of Refocusing by a 90" Pulse. (b) The Y magnetization created by the 
excitation pulse dephases totally in the xy plane. (c) The dephased spin ensemble is 
rotated by a 90" pulse into the xz plane. (d) After another time ie, all vectors will be 
located on the same side of the yz plane. (e) Only the z components of all vectors remain 
after T2 relaxation, which can then be converted intoy magnetization by another 90" pulse. 
( f )  After a further interval te, all vectors will again be located on the same side of the yz 
plane. 

(Fig. 2c). Let us now select eight isochromats represented by eight vectors spaced at  45" along 
this circle as representative of this equal distribution. To  follow their path for the next interval 
t,, it must be kept in mind that the phase angle by which each vector will rotate in the 
transverse plane is the same as before the pulse (we neglect such time-variable processes as 
diffusion, motion, or magnetic-field variations for the moment). That means vector 1 will stay 
in place, vector 2 will travel 45; and so on. The result shows that the vectors are not aligned 
on t h e y  axis, as they are with a 180" refocusing pulse, but that they lie all on the same side of 
the xz plane (Fig. 2d). Their sum will therefore produce a non-zero contribution in the x 
direction. The symmetry of the pattern that results from filling the gaps between the eight 
vectors shows that the resultant will be located exactly on thex  axis. For all of those who have 
difficulty visualizing the curve in Fig. 2d, it can be described as a soft "figure 8 that rests on the 
surface of a sphere. Salvador Dali would have loved it! 

Because the effort already has been made to prepare the spin system in the described 
manner, we might as well ask what happens with the z components of the magnetization vectors. 
These will stay on the z axis until TI relaxation has brought them back to equilibrium. It should 
be noted that the size of these z components depends on the phase of each vector at the time 
of the refocusing pulse. Vectors 1 and 5 represented pure transverse magnetization after the 
refocusing pulse. Because the different phase angles of the vectors are a consequence of 
magnetic-field inhomogeneity, a spatial variation of z magnetization is thus created. If another 
90" pulse is applied after a time t,,, long after T, relaxation has annihilated all signal from the 
first echo, this z magnetization will be awakened to form transverse magnetization (Fig. 2e). 
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After another interval t,, each vector will have traveled the same phase angle as in the interval 
before the refocusing pulse. Figure 2f demonstrates that again all vectors will be on the same 
side of the xz plane: A stimulated echo has been formed. 

If multiple refocusing pulses are applied at times 2 - (n - 1) - t ,  after excitation, then the 
pattern generated by the tips of all magnetization vectors looks more and more complex (Fig. 3). 

I 11 1 12 I 1 4  

I 5  I 7  I 3  I 10 

I 2  1 3  1 4  I 5  

Figure 3. Evolution of a spin system undergoing a multi-echo experiment with 90" 
refocusing pulses. The tips of all magnetization vectors are shown at the times of echo 
generation in each refocusing period. 

The fact that at each echo time 2 * n - f, all magnetization still lies on the same side of the xy  
plane tells us that these echoes will have non-zero intensities. The calculation of these 
intensities appears to be quite a formidable task, which we will not undertake now. 

A comparison of a 90-90 echo with a 90- 180 echo reveals an important difference: Every 
vector starting on the x axis after excitation will be brought back to the x axis if a spin echo is 
formed by a 180" pulse. This means that any distribution of spins with different Larmor 
frequencies will lead to echo formation. This is not true for the formation of the 90-90 echo 
and the stimulated echo. Here it is essential that the vectors are evenly distributed over the 
transverse plane at the time of the refocusing pulse. Taking only two vectors (for example, 3 
and 7) would not lead us to expect echo formation, which is the reason the explanation of the 
refocusing mechanism using two arms fails miserably. An octopus would have less trouble 
understanding a 90-90 echo. This requirement of an equal distribution of spins for the 
formation of 90-90 echoes or stimulated echoes is the reason the art of forming echoes has 
practically fallen into oblivion during the 40 years since Hahn's article: State-of-the-art NMR 
spectrometers have such excellent magnetic-field homogeneities that this condition for the 
formation of more interesting echoes just is not met. This is very different in MR-imaging 
systems where the magnetic-field gradients used for encoding spatial information generate quite 
some dephasing of the spins over the observed volume. To give an idea of the  amount of 
dephasing encountered under practical MR-imaging conditions, let us take a 256 x 256 data 
acquisition matrix. Each projection step will contain 256 complex data points under the read 
gradient. Using the sampling theorem, this means that the difference in phase angle between 
the spins located in the outermost voxels covered by the acquisition band-width will be 256 x 
WOO, or 128 full turns. That means that at the time of the refocusing pulse, the minimum 
dephasing will be just these 128 turns if no negative gradient lobes are used for prcfocusing. It 
is no overstatement to talk about the loss of coherence in this context. The fact that the phases 
of the spins are so hopelessly scrambled at the time of rf  pulses also sheds some doubt whether 
the vector model that uses pure magnetization vectors really is an appropriate tool for tracing 
the observed signals. 
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In the following section, the standard algorithm for the calculation of echo amplitudes will 
be shown, and then a much simpler method will be given. 

Exten ded-Ph ase- Graph Algorithm 

The calculation below closely follows the formalism given by Woessner (2). The effect of 
an rf pulse with phase x applied to the pure magnetizations M,, My, and M, can be treated as 
a simple rotation around the x axis with the flip angle a. The magnetizations M:, Mf, and 
Mt immediately after the pulse will then be given by 

M i  = M, PI 
M: = M; cosa - M,sina 

M l  = M y -  sina t M,COSO 
and 

Now the complex magnetization F and its complex conjugate F' are introduced, given by 

F = M , + i M y  

F' = M , - i M y  
and 

[41 

[51 

Substitution into Eq. [l] through Eq. [3] leads to 

F+ = F * cos'(a/2) t F' * sin2(a/2) - i * M, - sin(a) 

M, * cosa - 35 * i - (F - F') * sina 

[61 

t71 
and 

M: = 

It should be noted that Eqs. [6] and [7] follow directly from Eqs. [l], [2], and [3] without 
anything other than formal substitution and the application of some formulas for the conversion 
of sums of trigonometric terms. The x and y components of each isochromat and its time 
evolution after the pulse must be calculated to calculate the amplitude. Vector addition at the 
echo time 2 t, will then yield the echo amplitude. Carrying out this calculation can be quite 
tedious depending on the distribution of Larmor frequencies for a given sample in a given space- 
dependent magnetic field. To trace all of these vectors is especially annoying in view of the fact 
that all of these millions of calculation steps must be performed to get one single number that 
describes the echo amplitude. Although the calculation by itself constitutes no tremendous 
problem for a moderately fast computer - the graphs shown in Fig. 3 took only a few seconds 
of computation time - such a brute force attempt does not give any significant insight about the 
behavior of a spin system exposed to multiple rf pulses. A method that reduces the amount of 
number crunching and gives us some understanding of what is going on would therefore be 
extremely welcome. 

Under the condition that all transverse magnetization vectors before each pulse shall be 
totally defocused, such an algorithm can easily be found (3). Let us call the particular 
configuration of magnetization vectors immediately before an rf pulse F,. The actual x and y 
components of each vector are unknown. A pictorial representation of F, is the circle described 
by the tips of vectors in Fig. 2b. Although the transverse magnetization given by the sum of all 
vectors is zero because of total dephasing, all transverse magnetization at the time of the pulse 
has entered this configuration, whose population is therefore set to 1 - or to sin (a) for an 
arbitrary flip angle a of the excitation pulse. 

As a pendant to F,, we can define a second configuration F;, which can be created from F, 
by inversion of the y components of each vector. In other words, F; is the mirror image of F, 
with the xz plane as the mirror. Because all transverse magnetization before the pulse is 
contained in F,, the population of Fr before the pulse will be zero. It can be seen immediately 
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from Fig. 1 that all magnetization will be transferred from F, to F; by a 180" refocusing pulse. 
The echo intensity after the pulse is consequently given by the population of F; after the pulse. 

Because F, is the configuration of the dephased transverse magnetization before the pulse, 
every magnetization contained in F, after the pulse will dephase further into a configuration F, 
before the next pulse. Appropriate configurations Z,, and Zi can be, defined to describe the 
spatial variable distribution of z magnetization leading to the formation of the stimulated echo. 
Equations [I] through [5] can now be used as parameter equations for the different 
configurations F,, Fi, Z,, and Zi, which are given by 

w + A w  

w-Ao 

w + A w  

Z ,  = i - J(M, - cosw - ten + M, - sinw - t,,,)dw 
0 - A W  

w t Aw 

= i - J(M, - cosw - ten - M, - sinw - te,,>dw 
w - A w  

2 * Aw * ten must be at least 360" to ensure full dephasing. For a multi-echo experiment with 
equally spaced refocusing pulses, a pictorial representation for the states F,,, Fi, Z,,, and Z i  is 
given by Fig. 4. Because z magnetization is always located on the z axis, it is advisable to regard 

Y Y 

z 7. 

k 
*lfZl 

Figure 4. The Configurations F,, Fi, F3, F;, and Z ,  + Z;. The arrows indicate the sense 
of rotation with increasing frequency offset to the rotating reference frame. The circular 
polarized configurations Z, and 2; always occur in pairs to represent the linear polarized 
configurations of z magnetization. 
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the combination of the two Z terms rather than each term alone. This is equivalent to the 
description of a linearly polarized wave as the sum of two counter-rotating, circular polarized 
waves. 

All that is necessary for the calculation of the echo amplitudes in any arbitrary pulse 
sequence is to calculate the flow of magnetization between the different possible configurations. 
The echo amplitude will then be given by the population of the configuration leading to echo 
formation, which is FY for the spin-echo experiment. 

A simple way to keep track of all configurations involved is to use an extended-phase graph, 
which looks like Fig. 5 for a multi-echo experiment. Comparing Fig. 5 with Fig. 3, it is obvious 
that a tremendous amount of unnecessary detail has been removed. 

Figure 5 .  Extended-phase graph for a Carr-Purcell-Meiboom-Gill (CPMG) multi-echo 
sequence. Pulses are represented by two closely spaced vertical lines. The mixing between 
configurations F,,, F;, Z,, and Z; with identical n is shown by the lines that connect these 
states. Time evolution of transverse magnetization is shown by solid lines between pulses; 
the dotted horizontal lines represent configurations of I magnetization. 

If the phase of the rf pulses is such that echoes with different phases might arise, the 
number of configurations must be enlarged to include F,,, Fn:, F,,, F,,,, and the corresponding Z 
states as a basis. The echo amplitudes E,, will then be given by 

En = t 121 
If the phase of all refocusing pulses is the same, then the phase of all echoes will be the 

same, and the reduced set using F,,, Fi, Z,,, and Zi is sufficient. Negative echo amplitudes are 
treated by allowing negative values for the populations of the corresponding configurations. 

The identity of the echo amplitudes with the population of the configurations F,' is the 
reason that the magnetization vectors in each configuration must be totally dephased. In all 
other cases, En will be a more or less complicated function of F, and F,'. The exact computation 
of this function requires the knowledge of the distribution of the phase of the magnetization 
vectors, which means we are back to square one and might as well start computing the Bloch 
equations for millions of isochromats. 

Formally the time evolution and the effect of each pulse in the phase-graph algorithm can 
be described simply by transition matrices. The effect of the pulse is described by 
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T, = 

Mt = M . T p  

M 
where 

= (M, My M, F, F; Z,  Z ;  F, Ff ...) 

- - cosZa/2 sin2a/2 s ina  0 

sin2a/2 cosZa/2 0 sin a 

%sina  -%sina cos a 0 

-%sina %sins 0 cos a 

~ 5 1  

describes the total magnetization before the pulse, and Tp represents the transition matrix, given 
by 

Tp = 

It is useful to retain the usual rotation matrix for the description of the effect of the pulse on 
pure magnetizations. For an x pulse, this is given by 

1 o s ina cosa 1 

The evolution of magnetization between pulses can be described following the extended- 
phase graph for the particular pulse sequence. Relaxation or diffusion terms can be introduced 
in the time evolution as described in Reference 3 for a multi-echo experiment. 

Some Exercises Using the Extended-Phase-Graph Formalism 

The newly defined configurations constitute no orthonormal basis for the matrix calculations. 
Consequently, the condition of conserving the total amount of magnetization, which for a basis 
of pure magnetization vectors M,, My, and M, is given by 

M:+ MY" + MZ = const. = 1 [I61 

after normalization is substituted by 
m 

n = l  
C F + F,' + Zn + Z,' = const. = 1 

From Eq. [13] also follows 

zn + z; = 0 [I81 

as a consequence of the fact that to represent linear z magnetization, the populations of the two 
counter-rotating configurations Z ,  and Z,t must be equally opposite. 
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It should be noted that conservation of the total amount of magnetization does not imply 
that any subset of all configurations, such as CF,', is normalized. The sum of the amplitudes of 
all echoes occurring after the last pulse might very well be greater than 1, contrary to some of 
the fuzzy notions one encounters in discussions of this subject. As a trivial example, it is easy 
to calculate from Eq. [15] that the sum of all echoes generated by a three-pulse sequence with 
flip angles 9O(y) - 120(x) - 120(x) is 1.125. This does not mean that a signal is created from 
nothing but simply is a consequence of the fact that the same spins can contribute to more than 
one signal. 

It is of course trivial that no single population can be larger than 1, which is just another 
way to say that no configuration can contain more than all magnetization. The maximum 
number of signals that can be created by a given number of pulses can be calculated easily by 
induction: From Fig. 5, it is immediately apparent that the total numbers T,, and Z, of 
transverse and longitudinal configurations after the n'" pulse are given by 

This immediately leads to 

or 

with To and Z, equal to 0. 

Using the mirror symmetry of the number of states F, and F:, the number of echoes En is 
calculated as 

En = (3"-l - 1)/2 (211 

The maximum number of echoes can of course be generated only if no F,, F;, Z,, or Z,' is 
identical to another F,, F i ,  Z,, or Z z .  

A simple way to achieve this is to increase the time t,, between pulses such that Fi leads to 
a new state F,,,, before the next pulse, as shown in Fig. 6a. It is easy to see that for this case 
t, = T,, - to, where to is the basic time increment. With 100 pulses we can thus create a 
maximum number of 0,5 399 echoes. Using the sequence in Fig. 6a, this would take about 399 - to, 
which is rather long compared with the relaxation times T2 and TI for any practical value of to. 
The total universe including this paper will have vanished into oblivion long before the arrival 
of the last echo. We can of course turn the timing of pulses around by applying each pulse only 
(1 + n ) / n  - to after the preceding one, which leads to a somewhat nested appearance of the echo 
formation pathways (Fig. 6b). Then, however, we run into the problem that the time difference 
between the n'* and the (n t 1)"' pulse must be as short as 2 * 3-99 * to, which constitutes some 
practical problems. Wrapping this argument together, it can be seen that only a tiny fraction of 
the possible maximum number of echoes will be formed. This is a comforting thought, because 
even for the modest number of lozo echoes that could be generated by a sequence of only 44 
pulses, we would otherwise have to imagine a single spin to form an echo with itself because Ido 
is about the order of magnitude of the number of observable spins in a typical NMR experiment. 

The reason this point of no apparent practical significance is being stressed is to demonstrate 
that even for moderate regularity of the timing of a multi-pulse sequence, a vast redundancy of 
configurations must be expected. If the signal amplitudes are calculated using the conventional 
formalism of tracing each pathway leading to the formation, then all possible pathways must be 
calculated, and the results must be combined afterwards. This requires the computation of all 
399 pathways leading to echo formation for a sequence of 100 pulses. 
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F,*: Zn* 

Figure 6. (a) Pulse sequence for the generation of the maximum number of different 
configurations by increasing the pulse spacing. Pulses are represented by single vertical 
lines. (b) A possible timing sequence for a decreasing pulse spacing. 

Using the matrix formalism described above, and observing redundant configurations, the 
number of calculation steps can be reduced from 3" to n2 or even n, depending on the periodicity 
of the pulse sequence. As will be shown next, even multi-echo experiments with hundreds of 
pulses that would require astronomical effort to calculate with standard methods are possible. 
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MULTI-ECHO SEQUENCES 

A conventional multi-echo sequence uses a 90" excitation pulse followed by a series of 
equally spaced 180" pulses such that an echo occurs in the center of the time interval between 
two refocusing pulses. If such an experiment is performed using hard pulses with exact flip 
angles, then the signal decay will be governed by the relaxation time T2 and diffusion alone, 
where the diffusion term is significant only in samples with a large magnetic-field gradient. 
After the first proposal to measure the relaxation time with this method, several papers have 
been presented dealing with the problem, how nonperfect pulses affect the result of such an 
experiment, and how the expected errors can be minimized (4) .  These have led to the well- 
known CPMG sequence, where the phase of all the refocusing pulses is the same and orthogonal 
to the phase of the excitation pulse (5).  Figure 5 shows the extended-phase graph for this 
sequence. It demonstrates that due to the periodicity of the timing, the number of different 
configurations grows only linear with the number of pulses. The calculation of the 50th echo 
therefore requires only the computation of the populations of 200 configurations by iterative 
application of the above matrix formalism rather than the calculation of some different 
refocusing pathways. 

The reflow of magnetization into the echo via configurations with larger dephasing partially 
compensates or - as will be seen shortly - even overcompensates for the signal loss by sin2(a/2) 
when refocusing pulses with flip angles of less than 180" are applied. If the phase of the 
refocusing pulses and the excitation pulses is the same, then the sign of the primary echoes 
alternates from one refocusing pulse to  the next. This leads to a sign reversal in the transition 
matrices for the effect of the refocusing pulse. It is easy to  see that this sign reversal leads to 
some destructive interference of echoes generated via different pathways. The resulting echo 
amplitudes neglecting relaxation as a function of different refocusing flip angles are shown in 
Fig. 7 for both cases. It is immediately apparent that the CPMG sequence (Fig. 7b) yields more 

a )  

Figure 7. Fourteen echoes of a spin-echo sequence (a) with nominal 180" refocusing 
pulses and identical phases of the excitation pulse and the refocusing pulses and (b) with 
a CPMG sequence, where the phase of the excitation pulses is orthogonal to that of the 
refocusing pulses. Gaussian pulse-shapes were being used under a slice-selection gradient 
in the direction of the read gradient. The amplitude of the time domain signal is 
displayed. The pulse strength was adjusted to maximize the first echo. 

signal due to the constructive interference of all refocusing pathways (5). For T, calculations, 
it should be noted that some of the signal will have been generated via Z configurations. The 
echo amplitudes will then depend not only on T2, but also on T, and, most important, on the flip 
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angle. Figure 8 shows that - neglecting relaxation - a steady state of the echo amplitudes will 
be reached after a few refocusing periods. This means that even a flip angle as low as 30" will 
apparently refocus all magnetization observed in the preceding refocusing period, behavior that 
is commonly attributed exclusively to pure 180" pulses. Because this steady state appears to be 
quite remarkable, it will be discussed in more detail in the next section (the reading of which 
is not essential for the understanding of the more practical issues discussed in Part I1 of this 
paper). 

I a ( d e g )  a . u .  
s i n  W21 
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Figure 8. Calculated signal intensities of a multi-echo sequence for different values for 
the refocusing flip angle a. The open circles at the right side of each graph correspond 
to the steady-state value of sin ( 4 2 ) .  

The Steady State of Echoes 

Figure 8 is an illustration of the fact that the commonly used relationship between the 
intensities of subsequent echoes given by 

En = En- ,  sin2(a/2) P I  
is valid only for the refocusing of pure transverse magnetization. As soon as other 
configurations must be accounted for, Eq. [22] must be substituted with 

En = E,, - , - sin2(a/2) + b,  - cos'(a/2) - c1 - sin (a) ~ 3 1  

This follows from the phase diagram (Fig. 5), which demonstrates that every signal is being 
generated from magnetization contained in one of the three configurations F,, FY, and Z ;  before 
the refocusing pulse. The terms b,  and c1 are the populations of FI and Z,, respectively. 

When no Z configuraton is present, Eq. [23] is reduced to the trivial statement that 
whenever E,, - is larger than b,, En will be maximum for a 180" refocusing pulse; if b,  is larger 
than En, it is best to let this magnetization pass through without applying any pulse (a = 0). 
With non-zero c,, the situation becomes more interesting. Whereas Eq. [23] shows that for 
a = 180': E,, will always be equal to En-,, it is also easy to show that for any flip angle a, En 
can be made equal to That means any 
refocusing pulse can be made to generate something that looks like a fully refocused echo! 

by choosing appropriate values for b,  and cl. 
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A thorough discussion of the steady state is a little bit more demanding. I will therefore 
only sketch the argument for the special case of a = 90: Table 1 gives the time evolution of 
the coefficients of F,, F:, Z,, and Z,* for a = 90; where a, is identical to the echo amplitude 
E, - , in the previous refocusing period. 

TABLE 1 
Evolution of Populations Between Two Refocusing Pulses in the Steady State 

Configuration 

z2 

F3 

Before 
Pulse 

Populations 

After After 
Pulse Time Evolution 

a l / 2  t b , / 2  - c1 a ,  = a , / 2  + b , / 2  + c1 [24] 

a , / 2  t b , / 2  t c, b ,  = a 2 / 2  + b2/2 t c2 [25] 

-a1/2 + b , / 2  C, = - ~ , / 2  t b , / 2  [261 

a2/2  t b2/2  - c, a2 = a , / 2  t b , / 2  - c ,  [27] 

a , /2  + b2/2 t c2 b,  = a3/2  t bJ2 - c3 [28] 

-a,/2 t b2/2  c2 = -a2/2 + b 2 / 2  ~ 9 1  

a3/2  + b3/2  - c3 a3 = a, /2  + b, /2  - c, [30] 

It has already been pointed out that the population of all Z,* configurations is the inverse of that 
of the Z ,  configurations. If we combine Eq. [24] and Eq. [26],  it follows that the populations 
of F, t Z ;  remain constant even if no steady-state conditions exist. If we start with a 90" 
excitation pulse and normalize the initial transverse magnetization to 1, this leads to the 
additional equation 

c1 = a, - 1 [311 

Although half of the magnetization vanishes at every pulse into configurations with higher 
incoherence, there will always be a high population of the basic states F,, F;, Z,, and Z ;  available 
that can be used for subsequent signal generation. 

Linear combination of Eqs. [24] through [31] leads to the following: 

b, = 3 . q - 2  

c, = a, - 1 

a, = b ,  = 3 .  a ,  - 2 

b,  = a3 

c2 = %(a3 - 3 ' 4 ,  + 2 )  [321 

An infinite number of possible solutions exists even for the condition that the population of all 
configurations (and not only that of F; after each pulse) is in a steady state. 
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The term a, describes the amount of magnetization that is exchanged between configurations 
with n I 2 and those with higher n. If this term is set to be zero, then the configurations with 
n 5 2 become self-consistent, and steady-state solutions can be found for those configurations 
alone. From Eq. [32] follows then 

b ,  = 3 . q - 2  

c, = a, - 1 

b,  = 0 

Because the absolute value of no single term is allowed to exceed 1, a, must lie between 1/3 
and 1. For a, = 213, all other terms except c, are zero. Consequently, a steady state can be 
generated by a, and c ,  alone. 

Naturally, one would like to see how such a steady-state solution looks in our usual 
framework of pure magnetizations M,, My, and M,. Transformation into Cartesian coordinates 
follows from Eqs. [S] through [ l l ] :  

- cos(2 - n - 1) - w - fe  t F,' - sin(2 - n - 1) - w - t,)]d(wt,) 
n = l  

0 

2n 
m 

My = n = l J  X [ ( - F , ~ s i n ( 2 - n - 1 ) - w - f e t F ~ ~ c o s ( 2 ~ n -  l)*w.t,)]d(wt,,) 
0 

and 

* sin(2 - n - 1) - w - f e d ( w f p )  
n = l  

0 

where 2 - re is the time between two refocusing pulses, and m is the highest order of 
configurations included in the calculation. M, can be calculated from Z, alone, because the 
population of Z,' is always equal to -Z,. Figure 9 displays some of the steady-state 
configurations. The solutions of the Bloch equations for thc echo time t, after the refocusing 
pulse show that the tips of all magnetization vectors for a, = 2/3, c ,  = -1/3 lie on a straight 
line in the xz plane (Fig. 9b). 

The above discussion merely gives solutions consistent with a steady state. It does not tell 
how such a steady state can be reached or even whether it can be reached at all from a starting 
point after a 90" excitation pulse where a, is 1 and all other configurations are empty. For 
a, = 2/3 and c ,  = -113, one refocusing pulse with a = 135" suffices to generate this particular 
steady state for all subsequent 90" pulses. 

I leave it to the reader to calculate a set of refocusing pulses with diffcrcnt flip angles a such 
that any of the other steady states described by Eq. [20] are being reached. What is the 
minimum number of pulses required? What is the maximum echo amplitude attainable in such 
a steady state? 

The numerical solution for a CPMG experiment strongly suggests that the steady-state echo 
intensity for any refocusing flip angle a is given by sin(a/2) (3) ,  when a is constant throughout 
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the sequence. For a = 90: an elegant proof can be given by observing invariances like the one 
given in Eq. (311. For other values of a, I have not found an elegant proof. Perhaps one of the 
readers can find one? I would welcome any suggestions. 

a1 

i x  IX I X  

Figure 9. Steady-state configuration before the refocusing pulse (left), at the echo time 
(middle), and before the next pulse (right) for values of (a) a,  = 0.5, (b) 2/3, and (c) 
1/2*fi. The configurations at left were created using the parameter equations given 
in the text; the time evolutions to the echo and to the next pulse were calculated with 
the Bloch equations. 

Figure 9c displays the configuration for a = 90" and a, = sin(a/2) = $5 * fi, which is very 
close to but not equal to the maximum possible intensity. A comparison with the description of 
M,, My, and M, given by the Bloch equations (Fig. 2) reveals that the latter description contains 
irrelevant detail. All important information is contained in the simple description given by Fig. 
9c. All the curls seen in Fig. 2 are caused by configurations with higher n, which do not 
contribute to the steady state itself. 

A good way to visualize the time evolution of all states is provided by a stacked plot of the 
populations of all states F,, and F,' for each refocusing period. Experimentally, such a diagram 
can be generated by terminating the series of refocusing pulses after the n"' pulse and watching 
the amplitudes of the multiple echoes for a time 2 re * n, which gives the populations of all F,' 
configurations. The populations of all F,, configurations can most easily be measured if the last 
refocusing pulse is followed by a 180" pulse, which converts all F,, configurations into F,' 
configurations. 

Figure 10 shows the results of multi-echo sequences with constant refocusing flip angle a 
with different boundary conditions and for different values of a. Figure 10a shows that the curls 
observed in Fig. 2 correspond to the "waves" traveling into configurations with higher n, which 
become more and more disconnectcd from the steady state. It is quite interesting to note that, 
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irrespective of the variation of a and the boundary condition, the flow of magnetization seems 
to have a strong tendency to evolve in a well-defined manner after a few pulses: a set of 
configurations remaining in a steady state (which need not necessarily lead to the formation of 
an echo) and two "magnetization waves" traveling into configurations with higher n .  The 
propagation velocity of these waves is higher for low flip angles than it is for large ones. 

The journey of these packages through configuration space strongly resembles the 
propagation of solitons, traveling waves with constant intensity that occur in dissipative systems. 
The behavior of magnetization in multi-echo sequences is in fact a very simple and highly 
informative example to study dissipative structures, as discussed in statistical thermodynamics. 

I I I : 8 I ' I !'---I I , I , I I 
60 50 40 3 0  20 10 0 10 2 0  3 0  40 50 60 7 0  

a n  n b n  
+ 4  f m  

1""""'1"""""""'1" 
60 50 40 3 0  20 10 0 10 20  3 0  40 50 6 0  7 0  
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Figure 10. Stacked plot of the evolution of the populations a, and b, of all F, and Fi  
for (a) a = 90"; (b) a = 90" and boundary condition u20 = 1, all other configurations 
empty; (c) a = 150"; and (d) a = 30: The open circles represent the populations 
leading to echo formation. The stack was shifted one uni t  to the right for every echo 
period rn. A practical experiment leading to (b) could use the pulse sequence 
90" - (39 * r e )  - (90" - 2 * te)". 

Minor deviations from the periodicity of the multi-echo sequences can be shown to exhibit 
periodic fluctuations of signal intensities resembling fluctuating chemical reactions (6). To my 
knowledge, no one has investigated the above observations of magnetic resonance far away from 
thermal equilibrium in the context of statistical thermodynamics, and such a discussion certainly 
would be far outside the scope of this paper. I would like to  point out, however, that the 
possibly fascinating but apparently totally useless occupation with such echo sequences has found 
at least one practical application, namely the DOPE (double phase encoding) sequence for the 
measurement of extremely slow flow (7). 
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Before ending this section and returning to practical applications of echoes in gradient echo 
sequences, I would like to point out another connection of multi-echo NMR with an apparently 
totally unconnected field, namely the theory of cellular automatons (8). Cellular automatons 
have been used widely but not exclusively in recreational mathematics - most notably in the 
game, "Life," by A. Conley- to keep students and scientists away from work. A cellular 
automaton is an entity consisting of discrete cells, whose state is fully defined by the previous 
history of the states of cells in a defined neighborhood, a definition that fully applies to the 
evolution of magnetization in configuration space. Traveling "particles" called gliders and steady- 
state configurations after a few cycles of a more chaotic life are common properties of most 
nontrivial cellular automatons. 

It is a nice exercise on a moderately fast personal computer to create and watch patterns of 
configurations if more than one or two configurations, as shown in Fig. 10, are "born" with 
non-zero intensity. The most pleasant presentation is achieved by color-coding the populations 
on a matrix display. 

Please allow me one final thought before going back to more practical matters. Complicated 
patterns like those in Fig. 10 are created using apparently trivial rotations of vectors. If we 
were to have no knowledge about the physics of NMR except the results of multi-echo 
experiments in the form of diagrams like Fig. 10, would we be able to recognize the simplicity 
of the basic law leading to such intricate patterns? Is there maybe a "truth" much simpler than 
expected behind other apparently complicated physical phenomcna? 

SUMMARY 

We have reached the end of Part I of this article about echo formation. What looked at 
first glance like an easy process has turned out to be much more complicated than expected. 
Still, with the help of the extended-phase-graph algorithm, any multi-pulse experiment can be 
understood. For most purposes, sketching a diagram like that in  Fig. 5 reveals enough relevant 
information about the occurrence of different kinds of echoes without having to resort to the 
actual signal calculations using the transition matrix formalism given above. 

The examples discussed in this part were chosen to illustrate the large diversity in the 
behavior of simple spin ensembles and to demonstrate the power of the extended-phase-graph 
algorithm to deal with such strange phenomena as signal steady states or echo solitons. I hope 
that in the future, readers will not shy away from the occasionally encountered stimulated echo, 
but rather regard it as a more basic creature from a much more colorful zoo. 

Part I1 of this article will be dedicated to applying this knowledge about echoes to more 
practical issues, such as the design of a practical, multi-echo imaging experiment and the 
understanding of the contrast behavior of gradient-echo imaging sequences, and it will give some 
advice about the design of multi-pulse sequences in general. 
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