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Sensitivity and Power Deposition in a High-Field
Imaging Experiment

David I. Hoult, MA, D Phil*

Image signal-to-noise ratio and power dissipation are in-
vestigated theoretically up to 400 MHz. While the text is
mathematical, the figures give insights into predictions.
Hertz potential is introduced for probe modeling where
charge separation cannot be ignored. Using a spherical
geometry, the potential from current loops that would pro-
duce a homogeneous static B1 field is calculated; at high
frequency it is shown to create an unnecessarily inhomo-
geneous field. However, a totally homogeneous field is
shown to be unattainable. Boundary conditions are solved
for circularly polarized fields, and strategies for limited
shimming of the sample B1 field are then presented. A
distinction is drawn between dielectric resonance and spa-
tial field focusing. At high frequency, the region of maxi-
mum specific absorption is shown to move inside the sam-
ple and decrease. From the fields in both rotating frames,
the signal-to-noise ratio is derived and compared with the
traditional, low-frequency formulation. On average, it is
mostly found to be slightly larger at high frequency. Nev-
ertheless, the free induction decay is sometimes found to
be annulled. J. Magn. Reson. Imaging 2000;12:46–67.
© 2000 Wiley-Liss, Inc.

Index terms: imaging, high field; signal-to-noise ratio; power;
SAR; dielectric resonance; field focusing

SINCE THE EARLY DAYS of human imaging, it has
been known that the electrical characteristics of tissue
could adversely affect the fidelity of its image. Thus,
Bottomley and Andrew (1) surmised that B1 field “pen-
etration effects” could set an effective limit to the Lar-
mor frequency of roughly 20 MHz, while independently
but for the same reasons, Hoult and Lauterbur (2), in
their paper on the signal-to-noise ratio (S/N) of the
imaging experiment, suggested 10 MHz (;0.25 T for
protons) as a limit. Mansfield and Morris (3) adopted
the same stance. This pessimism stemmed from the
fact that early images were obtained from the amplitude
Fourier transform of the free induction decay (FID) in
the presence of a “read” gradient. The phase of the
transform had to be carefully selected to obtain the

absorption mode, for the dispersion mode is not a rep-
resentation of sample concentration versus distance.
Thus if the phase were to vary over the sample, it would
be impossible to obtain a good image. Bottomley and
Andrew (1) suggested employing a power spectrum,
which uses the sum of the squares of the absorption
and dispersion spectra, but this suggestion was gener-
ally not well received (3), as it degrades resolution and
fidelity.

An additional factor that compounded the impression
of a 10-MHz barrier was the difficulty of making suit-
able radiofrequency (RF) coils (4). Nowadays, this “bar-
rier” seems laughable, and with the benefit of hindsight,
two developments seem to the author to have laid the
foundations for breaking it. The first was the use of
distributed capacitors in probe fabrication by Alderman
and Grant (5), which ameliorated the coil problems. The
second was the introduction by Bydder et al (6) of the
Fourier transform of a symmetric echo, which contains
no dispersive component. Thereafter, fields were in-
creased to the point where we have recently seen hu-
man imaging performed at 8 T by Robitaille et al (7,8).

At such high fields, to gain insight into the manner in
which B1 fields (and hence power deposition and S/N)
behave in the human body, it is essential to solve Max-
well’s equations therein. There is no reason to believe,
as Robitaille has posited, that some unknown physical
phenomenon is at work. However, this is no easy mat-
ter, as a person is a heterogeneous mix of tissues with
various conductivities and dielectric constants. At the
present time, the only way to tackle a problem of this
complexity is by the burgeoning discipline of electro-
magnetic field computational simulation (9), and while
beautiful results have been obtained (10), it is all too
easy for mistakes to be made in the programming and
very difficult for other researchers to verify results.
Thus analytical solutions to simpler models still have a
considerable role to play, not only as a means of check-
ing simulations but also in providing insights and dem-
onstrating trends. As long ago as 1976, the author
attempted to execute a full solution of Maxwell’s equa-
tions for the simplest of head phantoms—a conducting
sphere of high dielectric constant—and failed. The con-
solation prize was the realization that at the frequencies
that then seemed viable (ie, ,10 MHz), a pseudo-static
solution was all that was needed, and thus was born
the theory presented in ref. 2, which has endured as a
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model for S/N and power dissipation because of its
simplicity and because of surprising robustness up to
frequencies as high as 80 MHz.

Others were more successful in their pursuit of ana-
lytical solutions of Maxwell’s equations for simple mod-
els, commencing with Bottomley and Andrew in the
paper already mentioned (1), who worked with cylindri-
cal tissue samples. They showed that one could expect
a lessening of the power dependence on frequency at
higher frequencies (.100 MHz), as observed by Robi-
taille (7,8). This work was expanded by Mansfield and
Morris (2) and others while Edelstein et al (11) showed
that if coil losses were negligible, the sample tended to
dictate its own “intrinsic” S/N. The impetus for field
analysis was increased when Glover et al (12) showed in
1985 experimental images obtained at 64 MHz contain-
ing artifacts clearly attributable to penetration effects.
Obtained with a linear field probe, these artifacts ap-
peared to violate the symmetries expected when using
magnetic fields and vanished when a quadrature probe,
giving a circularly polarized B1 field, was used. As a
result of this work, and the increased S/N ratio and
efficient use of power expected with a circularly polar-
ized field (13), use of the latter has ever since been de
rigueur when imaging with volume coils at fields greater
than roughly 1 T, and should also be in any theoretical
calculation of S/N. The authors were able to explain
their results on the basis of a cylindrical analytical
model by calculating the B1 field in the rotating frame,
and Chen and Hoult (14) also explained the results with
a spherical analytical model, using a low-order expan-
sion in zonal spherical Bessel harmonics inside the
sample and a homogeneous field outside. The z axis
became the direction of their linear B1 field, and a cir-
cularly polarized field was described by a rotation of the
lowest order fields by 90°. Further experimental evi-
dence was provided in 1988 by Bomsdorf et al (15), who
showed substantial field focusing effects in 4-T images
of water. However, they found no sign of such effects in
images of the human head. They can, however, be seen
in Robitaille’s work.

Theoretical advances were made by Carlson (16), who
was mainly interested in power deposition and noise
correlation, and by Keltner and Carlson and their col-
leagues (17). While the latter paper introduces a formal-
ism that may be used with quadrature coils, it was then
restricted to an analysis with a surface coil in zonal
harmonics, ie, there was symmetry about the z axis.
Furthermore, there was no attempt to describe fields in
the rotating frame, which is essential if a full under-
standing of image artifacts and S/N is to be obtained.
However, the paper is notable in that for the first time,
to the best of the author’s knowledge, it was not as-
sumed that the driving field from the probe was quasi-
static, ie, expressible as an expansion in spherical har-
monics. The latter is acceptable when the diameter of
the sample is much less than a wavelength in free
space, but at 340 MHz (8 T), we are no longer in that
situation, and this fact must be recognized from the
outset in calculations. We shall see that even in vacuo,
higher order terms are always present with a probe that
ostensibly delivers a homogeneous field.

In a separate development using a plane wave ap-

proach, Ocali and Atalar (18) have shown how to calcu-
late at any frequency the fields that give in a model the
best S/N ratio at some position of interest. Although
this is innovative and novel work, their method does not
allow one to calculate analytically the power deposition
and S/N when using a known quadrature probe. It
should also be pointed out that all studies to date make
assumptions as to the nature of the driving field and the
manner in which it is derived. First, some workers have
only specified the driving B1 field, rather than the cur-
rent that creates it. Thus a multipole field expansion
ignores the fact that various orders are coupled, and
there is then the danger, as mentioned above, of omit-
ting higher order terms. Second, the problem that made
early researchers feel that probes could not be fabri-
cated at high frequency is typically ignored—the sepa-
ration of charge that occurs when the length of conduc-
tors is not very much less than a wavelength.

Ultimately, the present discussion will also work
around this problem, which requires that scalar as well
as vector potential be used in a mathematical descrip-
tion. However, it will introduce for future use a formal-
ism needed to cope with this difficulty—the Hertz po-
tential. Thus the purpose of the present work is to fill a
gap in the literature and give insight into the manner in
which power deposition and S/N vary spatially and
with frequency in the quadrature imaging experiment
with a volume coil. To this end, the model we shall use
is that of a conducting sphere of high dielectric con-
stant surrounded by a spherical probe. It is stressed
that this model is poor both in its absence of sample
heterogeneity and its use of currents on the surface of a
sphere rather than on that of a cylinder. However, it is
analytically soluble! Of necessity, the mathematics in
this paper is compressed, but not so much that only a
handful of experts can follow it and reproduce the con-
clusions. Furthermore, once the mathematics is fully in
place, it should be possible to stay with its philosophy
while transferring the probe to the surface of a cylinder
(19). For those readers who do not wish to trudge
through the equations, the article has a number of
helpful figures (with fuller legends than usual) that
should convey the progression of the analysis.

Finally, a word of explanation as to the structure of
some of the figures. In covering the frequency range up
to 400 MHz, there is a large dynamic range (up to 105)
in some of the variables to be displayed; showing the
full range obscures points of interest—they become
negligible in the grand scheme. Thus in Figs. 10b, 11,
and 12, which display power and S/N, these quantities
have been shown in comparison with the values pre-
dicted by the low-frequency “traditional” formulae (2).
The latter have the huge advantage of being easily cal-
culable—at a stretch by hand. Thus the figures essen-
tially show how much the traditional approach is in
error and by what factor. In the case of power (Fig. 10b),
the ratio is shown in dB, as power is set on many
consoles in these units and they should therefore be
familiar. However, in Fig. 12, notwithstanding the use
of a ratio, a meaningful display of signal strength could
only be obtained if a logarithmic scale was used. Thus a
dB scale was again employed, and it is hoped that this
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will not cause confusion for readers who are not that
familiar with these engineering units.

THEORY

Basic Electromagnetism

We shall consider at frequencies up to 400 MHz a
spherical “head,” or, more specifically, a conducting
sphere whose dielectric constant e is 80 and whose
conductivity s ranges from 0 to 1 Sm21—roughly the
range of values found in human tissue. We have not
allowed the dielectric constant to vary. Under the con-
ditions prescribed in this paper, for most relative results
such as images which do not have a fixed brightness
scale, such variation can be taken into account simply
by changing the frequency and the conductivity—see
the legend to Fig. 4 and Eq. [30] et seq. The path we
shall take is as follows:

1. Introduce for future use the Hertz potential as a
means of dealing with both scalar and vector po-
tential in a single variable.

2. Indicate the solutions of the full Maxwell equa-
tions for the sample and in free space.

3. Find the Hertz potential of an elementary current
loop on the surface of a sphere surrounding our
sample.

4. Use a distribution of such loops to create in the xy
plane, not along the z axis, an alternating, linearly
polarized B1 driving field that at low frequencies
would be totally homogeneous.

5. Solve the boundary value problem to obtain the
electric and magnetic fields inside the sample.

6. Find the equivalent fields for a circularly polarized
B1 driving field.

7. Calculate the power deposited and its dependen-
cies.

8. Find the S/N with the aid of the Principle of Reci-
procity.

We shall also take a diversion to show how to obtain
the current distribution needed to generate homoge-
neous B1 fields in the sample rotating frame, in the
limited circumstances in which it is possible to do so.

Maxwell’s equations in the Lorentz gauge in a con-
ducting medium yield a damped wave equation for in-
duction field B, electric field E, vector potential A, and
scalar potential F, of the form (20):

¹2J 5 mm0s
]J

]t
1 mm0ee0

]2J

]t2 , (1)

Here, J is a general variable, m0 and e0 are respectively
the permeability and permittivity of free space, m and e
are respectively the relative permeability and permittiv-
ity of the medium, s is the medium’s conductivity, and
t is time. S.I. units are assumed. Eq. [1] also applies to
the Cartesian components of the fields and potentials.
However, if there is a particular region in which there is
a current source of density J, but outside that region
the conductivity s is zero, then J 5 sE, and the equa-
tion for the vector potential becomes:

¹2A 2 mm0ee0

]2A
]t2 5 2mm0J. (2)

Thus the current J “drives” the differential equation.
These equations may be found in any good electro-

magnetics text (20–22), but we now turn to a less well-
trodden path and following Hertz (22,23), define a new
vector potential PP where:

A 5 mm0sPP 1 mm0ee0

]PP

]t
, (3)

F 5 2¹ z PP. (4)

By direct substitution, it may be shown that this Hertz
potential can only satisfy Eq. [1] in A and F if:

¹2PP 5 mm0s
]PP

]t
1 mm0ee0

]2PP

]t2 . (5)

Thus PP and its Cartesian components also obey Eq. [1].
By using this potential, we incorporate both scalar and
vector potential in one variable and in so doing, antic-
ipate future calculations and numerical simulations
that accommodate charge separation in the probe and
sample. For example, a probe comprising individually
driven dipole antennae in an array might conceivably
be employed for some reason! The use of a single vari-
able would then effect a major simplification, as it
would for probes comprising clusters of loops of signif-
icant (.l/20) length.

Continuing, let it be tacitly understood that all vari-
ables fluctuate as exp(iv0t) where i is the square root of
minus one and v0 is the frequency of interest—usually
the Larmor frequency. A positive exponent is used for
compatibility with the transition later to a positively
rotating frame. Then Eq. [1] reduces to the Helmholtz
equation:

¹2J 1 k2J 5 0; k2 5 v0
2mm0ee0 2 iv0mm0s, (6)

where k is the complex wavenumber, and it is worth
noting that for a saline sphere with s 5 0.5 Sm21, the
real part of the expression for k2 predominates above
132 MHz. We are now in a position to define the terms
“low” and “high” frequency. For the rest of the article,
“low frequency” implies that |ka| ,, 1 and “high fre-
quency” implies that |ka| ; 1 or greater, where a is the
radius of the sample. Continuing, from Eq. [3] it follows
that:

A 5 ~mm0s 1 imm0ee0v0!PP 5
ik2PP

v0
, (7)

and hence, as B 5 curl A:

B 5
ik2

v0
¹ ` PP. (8)

48 Hoult



We further note that from Eqs. [4] and [7], as (20,21)

E 5 2
]A
]t

2 ¹F:

E 5 k2PP 1 ¹~¹ z PP! 5 ¹ ` ¹ ` PP. (9)

It follows that by invoking the Hertz vector, we have
simple access to both the magnetic and electric fields
even if there is charge separation on the conductor or in
the sample. Note that if ¹ z PP 5 0, and the charge sep-
aration can be neglected, then:

E 5 k2PP. (10)

Hertz Basis Vectors

Eigenfunction solutions of the Helmholtz equation [6],
in the spherical polar coordinates (r, u, f) appropriate to
our choice of sample, are well known (9,21,24). They
are spherical Bessel harmonics of the general form:

J 5 fn~kr!Pn,m~cos u!sinmf
cosmf, (11)

where Pn,m(cosu) is Ferrer’s associated Legendre poly-
nomial of order n and degree m, and fn(kr) stands for
one of the three kinds of spherical Bessel functions (22)
of order n:

jn~kr! 5 F p

2krG
1/2

Jn 1 1/2~kr!

yn~kr! 5 F p

2krG
1/2

Yn 1 1/2~kr! (12)

H hn
~1!~kr! 5 jn~kr! 1 iyn~kr!

hn
~2!~kr! 5 jn~kr! 2 iyn~kr!.

J and Y are the ordinary Bessel functions of the first
and second kinds, respectively, and h is sometimes
referred to as the spherical Hankel function. We shall
be particularly interested in the solutions:

Sn,m 5 hn
~2!~kr!Pn,m~cos u!cos mf;

Tn,m 5 hn
~2!~kr!Pn,m~cos u!sin mf;

Un,m 5 jn~kr!Pn,m~cos u!cos mf;
(13)

Vn,m 5 jn~kr!Pn,m~cos u!sin mf.

S and T are applicable away from the origin, for there
they are infinite, while U and V are applicable about the
origin where they are finite. Note that for jn (kr) when kr
,, 1 and for hn

(2)(kr) when kr .. 1,

j0~kr! < 1 2
k2r2

6
; j1~kr! <

kr
3

; j2~kr! <
k2r2

15
;

h1
~2!~kr! <

i
k2r2; h2

~2!~kr! <
3i

k3r3 . (14)

Hence as kr 3 0 (in other words, at low frequency), the
harmonic U0,03 1, and thus this solution for the mag-
netic field Bx represents a homogeneous B1 field. (Re-
member that solutions are valid for Cartesian field com-
ponents even though the coordinate system used is
polar.) However, as kr approaches unity and the wave-
length in the sample becomes comparable with the lat-
ter’s dimensions, U0,0 begins to have spatial depen-
dence.

Having solved Maxwell’s equations as an expansion
of terms such as Un,m having various orders and de-
grees, Fig. 1 shows, in vacuo, in pure water (dielectric
constant 80) and in water with a conductivity of
unity, the behavior of the lowest order B1 field, U0,0,
plotted as a function of radius and frequency. There
is not too much inhomogeneity in the field in vacuo,
at least up to 400 MHz, but the plot in water at high
frequency appears to exhibit “field focusing” wherein
the field is much larger at the origin (15); sample
conductivity appears to dampen the effect. (Note that
this effect is sometimes incorrectly termed “dielectric
resonance.” We shall see later an example of the latter
phenomenon.) However, we must not assume that the
field U0,0 is an adequate descriptor of field focusing,
for it is quite possible that at high frequency, addi-
tional, higher order terms are manifest in the B1 field
inside our sphere, even if it is driven with an osten-
sibly homogeneous field. Indeed, the experiments of
Glover et al (12) mentioned earlier emphasize this
point. They observed azimuthal asymmetry; U0,0 is, in
contrast, symmetric and somehow, symmetry is bro-
ken.

It follows that considerable care must be taken with
any derivation and so we now first calculate the fields
created in free space by an appropriate distribution of
alternating current on the surface of a larger sphere
surrounding our saline sphere—a convenient mathe-
matical construct for simulating a high-frequency
probe. We shall then find the fields inside the smaller
sample. Others may wish to use a distribution on a
cylinder or some other surface (19). However, a
change of surface will not affect the general conclu-
sions we shall come to, as these are determined by
the nature of Maxwell’s equations in space and in the
sample.

Consider a current element Ids at point Q on the
surface of a sphere, of radius b greater than that a of
our sample, at spherical coordinates (b,a,c), as shown
in Fig. 2. In the temporary absence of the sample, at
point P(r,u,f), a distance R away, it may be shown from
Eqs. [2] and [3] that the Hertz potential PP is given by
(21,24):

dPP 5 2i
v0m0I

4pke
2

ei~v0t 2 keR!

R
ds, (15)

where ke is the wavenumber k in free space and ke

5v0(e0m0)1/2 5 2p/l where l is the wavelength there.
Interestingly, the Hertz potential of Eq. [15] cannot be
split into “near” and “far” components; it contains only
a propagator that, if we were describing a field, would
be termed “far field.” The Green’s function exp(2ikeR)/R
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may be expanded in terms of spherical Bessel harmon-
ics (21,24). When r , b, it is:

exp~2ikeR!/R

5 2ike O
n 5 0

` O
m 5 0

n

em~2n 1 1!
~n 2 m!!
~n 1 m!!

jn~ker!

3 hn
~2!~keb!Pn,m~cos a!Pn,m~cos u!cos@m~f 2 c!#, (16)

where the Neumann function em is 1 if m 5 0 and
otherwise 2. In preparation for “constructing” a probe
made of a large array of individually driven current
loops, we now use Eqs. [15] and [16] to calculate the
Hertz potential of a small loop of current lying at some
arbitrary position on the surface of the sphere, as
shown in Fig. 2. (A different method of finding the fields
from such a ring placed at a pole of the sphere is given

by Jin (9) and Keltner et al (17). However, their method
of calculation in zonal (m 5 0) harmonics cannot easily
accommodate circularly polarized fields and was used
only with a surface coil.) It is at this point that the
author is perhaps “cheating,” for a small (,,l) loop has
negligible charge separation and therefore the scalar
potential will also be negligible. Thus the fields from an
array of such loops will not be exactly the same as those
from a bulk probe. However, such a loop is a physically
realizable current distribution, and it may well be that
an array thereof constitutes a good method of con-
structing a body coil at 8 T—precisely because the con-
servative electric fields of each loop are small. The the-
ory and practice ride hand in hand. At any rate, its use
should give a valid insight into field behavior. A sum-
mary of the calculation is given in the Appendix, where
it is shown that for an outwardly pointing current dipole
m at point Q(b,a,c), the Cartesian components [Px, Py,
Pz] of vector potential PP at point P are:

Figure 1. Variation of the spherical Bessel harmonic U0,0 with radius and frequency. a: In vacuo. b: In pure water with a
dielectric constant of 80. c: In saline with a conductivity of 1 Sm21. At frequencies where the wavelength of radio waves in
the sample is comparable to the sample size, it no longer suffices to describe B1 magnetic fields by simple expansions such
as a Taylor series, rather, for a spherical sample one must use an expansion in spherical Bessel harmonics—a combination
of Bessel functions, associated Legendre polynomials, and trigonometric functions. With any expansion, one assumes that
as the arguments tend to zero, it is the lowest order terms that prevail and so the figure shows how the lowest order term
varies with radius and frequency. (In fact, it is shown later that it is impossible for the lowest order term to exist by itself,
but the next term in the expansion does not make a large difference to the plots.) In a, it is clear that in vacuo there is very
little variation in field strength with radius, even at 400 MHz, up to a radius of 10 cm. This is also so in water at low
frequencies, as seen in b. At high frequencies, however, there is great inhomogeneity in the field—so-called field-focusing
(not to be confused with dielectric resonance—see Fig. 6) that makes the field at the origin much stronger than further out
in the sample. The focusing effect is dampened in c by the conductivity of the saline, and the field at 400 MHz and 10 cm
has risen appreciably compared with that in b. With higher and higher conductivities (not shown), the field at the sample
edge rises further and further until (with, eg, a metal) it is much greater at the sample surface than at the center, the
so-called skin effect.
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PP 5 m O
n 5 0

` O
m 5 0

n

xn,m

3
~n 1 m!~n 2 m 1 1!§mUn,mTn,m 2 1

2 ~n 1 m!~n 2 m 1 1!Vn,mSn,m 2 1

1 hmUn,mTn,m 1 1 2 Vn,mSn,m 1 1,
~n 1 m!~n 2 m 1 1!§mUn,mSn,m 2 1

1 ~n 1 m!~n 2 m 1 1!Vn,mTn,m 2 1

2 hmUn,mSn,m 1 1 2 Vn,mTn,m 1 1,
22mUn,mTn,m 1 2mVn,mSn,m

4 (17)

where the brackets contain the Cartesian 3-vector, §m is
zero if m 5 0 and one otherwise, hm is two if m 5 0 and
one otherwise, and constants xn,m are given by:

xn,m 5
2v0m0

8pbke
em~2n 1 1!

~n 2 m!!
~n 1 m!!

. (18)

As r , b, U and V are functions of [r,u,f] while S and T
are functions of [b,a,c].

With this formula, we have a “building block” for the
construction of specific B1 magnetic fields. To proceed,
we must be able to take the potential’s curl (see Eqs. [8]

and [9]), and this implies that as we have obtained
Cartesian components of PP, we must be able to differ-
entiate the spherical Bessel harmonics, expressed in
polar coordinates, with respect to Cartesian coordi-
nates x, y, and z. The necessary formulae, as given in
Table 1, may be found without too much difficulty be-
cause we know that Cartesian derivatives must also be
sums of spherical Bessel harmonics. The derivation is
indicated in the Appendix. At first sight, this use of
mixed coordinates may appear strange, but in the au-
thor’s opinion, it is this approach that allows one to
enter the rotating frame with little difficulty without
the intrusion of projection terms such as sinu and
cosf that destroy the harmonic representation. Apply-
ing the formulae of Table 1 to find the divergence of PP,
it may be confirmed by the reader that this quantity is,
not surprisingly, zero, thanks to the use of the infini-
tesimal current loop, and thus the calculation could
employ from now on A rather than PP. However, the
presence of charge separation would merely change the
coefficients in Eq. [17] rather than necessitating the
introduction of an extra variable, and so it is hoped that
the usefulness of PP has been demonstrated. For con-
sistency we remain with PP and from Eq. [8] the B field is

Figure 2. The coordinate system. The B1 field in the sample is considered, for mathematical purposes, to be generated by many
tiny current loops on the surface of an outer sphere encompassing the sample. Later, we shall allow the loop currents to vary in
amplitude and phase with position on the sphere so as to generate desired field distributions. However, for the time being, a
single loop is shown at point Q at spherical polar coordinates (b, a, c), and the field at another point P(r, u, f), a distance R away,
can then be calculated. To aid in the calculation, the loop is considered to be a square of side ds, carrying current I, and the sides
of the square are parallel to lines of latitude and longitude. The loop’s magnetic moment is m 5 Ids2.
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found, while from Eq. [10] the E field may be seen to be
simply k2PP.

Let us now use Eq. [17] to construct a B1 field that is
homogenous at low frequency. For example, a common
textbook exercise is to show that for direct currents,
such a field may be produced in the x direction by
coaxial rings of current equally spaced down the x axis
and parallel to the yz plane that are on the surface of a
sphere (20). To generate such a current distribution, we
use a surface distribution of magnetic moments given
by:

dm5V1P1,1(cos a)cos cdLL (19)

where V1 is a constant and dLL is an elementary vector
surface area. Applying this expression for the elemen-
tary magnetic moment dm to Eq. [17], by the orthogo-
nality of surface harmonics, the integral over the sur-
face is only non-zero for Px and Py when n 5 1, m 5 0,
and for PPz when n 5 m 5 1. Hence, the Hertz vector
potential PPpx for a probe B1 field that is homogeneous at
low frequency and in the x direction, is given by:

PPpx 5 SV1

v0m0b
ke

h1
~2!~keb!D @0, U1,0, 2 V1,1# ; C1PP1x

~i!

(20)

and it should be noted that the “Hertz basis vector” of
order one PP1x

~i! 5 [0, U1,0, -V1,1] also has a divergence of
zero. The first-order distribution on the surface of the
probe sphere has resulted in a first-order Hertz vector,
a pleasing and useful correspondence that we shall see
also applies to higher orders.

Notation

The reader will doubtless have noticed that the notation
we are using is becoming involved, and while a major
effort has been made to keep it consistent and mean-
ingful, some clarification is required. Thus subscript
“p” is fairly obvious, standing for “probe” while numer-
ical subscripts are indicative of order n and degree m.
Subscript “e” denotes that the quantity, for example ke,
is defined exterior to the sample, while subscript “i” (not
yet used) will denote that a quantity is defined inside

the sample. On the other hand, superscript “(e)” will
denote an exterior function valid only outside the
sphere of radius a or b, as appropriate, while super-
script “(i)” will denote an interior function, valid only
inside the sphere of radius a or b, as appropriate. Su-
perscript “(o)” will denote that the function or quantity
is defined at the origin; subscript extensions x or y (for
example, PP1x) denote the primary direction of a B field
associated with a potential. Hopefully, the only region
where confusion could possibly arise is in the space
between the two spheres.

From Eq. [10], we immediately know the E field in free
space—it is simply ke

2 times Eq. [20]. To obtain the B1

field in the laboratory frame, albeit for the moment still
in free space, we take (ike

2/v0)¹ ` PPpx, see Eq. [8]. Even
in free space, we obtain an inhomogeneous field that
has higher order and degree components in all direc-
tions:

Bpx 5 C1S ike
2

v0
D¹ ` PP1x

~i!

5 C1

2 ike
3

6v0
@4U0,0 2 2U2,0 1 U2,2, 2 V2,2, 2U2,1#. (21)

It cannot be stressed too strongly that it is incorrect to
assume that a field that has a simple static spatial
variation described by, for example, a single spherical
harmonic has an equally simple description at high
frequency. This is clearly not so, and we shall examine
the possibility of creating a sole spherical Bessel har-
monic later. Meanwhile, in the low frequency limit as ke

3 0,only the term U0,0 contributes to the field, and the
latter becomes homogeneous. From Eq. [14], if V1 5 1:

Limit
ke3 0

@Bpx# 5
2m0

3b
x̂, (22)

where x̂ is the unit vector in the x direction. This result
is easily shown to be the answer that one would expect
from a simple application of the Biot-Savart formula
(20).

Table 1
Cartesian Differentiation of Spherical Bessel Harmonics Un,m and Vn,m

dUn,m

dx
5

k
2~2n 1 1!

$~n 1 m!~n 1 m 2 1!§mUn 2 1,m 2 1 2 §nhmUn 2 1,m 1 1 1 ~n 2 m 1 1!~n 2 m 1 2!§mUn 1 1,m 2 1 2 hmUn 1 1,m 1 1%

dUn,m

dy
5

2 k
2~2n 1 1!

$~n 1 m!~n 1 m 2 1!§mVn 2 1,m 2 1 1 §nhmVn 2 1,m 1 1 1 ~n 2 m 1 1!~n 2 m 1 2!§mVn 1 1,m 2 1 1 hmVn 1 1,m 1 1%

dUn,m

dz
5

k
~2n 1 1!

$~n 1 m!Un 2 1,m 2 ~n 2 m 1 1!Un 1 1,m%

dVn,m

dx
5

k§m

2~2n 1 1!
$~n 1 m!~n 1 m 2 1!Vn 2 1,m 2 1 2 §nhmVn 2 1,m 1 1 1 ~n 2 m 1 1!~n 2 m 1 2!Vn 1 1,m 2 1 2 hmVn 1 1,m 1 1%

dVn,m

dy
5

k§m

2~2n 1 1!
$~n 1 m!~n 1 m 2 1!Un 2 1,m 2 1 1 §nhmUn 2 1,m 1 1 1 ~n 2 m 1 1!~n 2 m 1 2!Un 1 1,m 2 1 1 hmUn 1 1,m 1 1%

dVn,m

dz
5

k§m

~2n 1 1!
$~n 1 m!Vn 2 1,m 2 ~n 2 m 1 1!Vn 1 1,m%

If n , m, Un,m 5 Vn,m 5 0. §q is 0 when integer q is 0; otherwise it is 1. hq is 2 when integer q is 0; otherwise it is 1.
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BOUNDARY CONDITIONS

So far, we have generated, by virtue of currents or
magnetic moments on the surface of our outer sphere,
a B1 field in vacuo in the laboratory frame that at low
frequency is homogeneous and in the x direction. We
have also shown, however, that not only does the func-
tion that describes that homogeneous field generate an
inhomogeneous field at high frequency, but that there
is at this point also a variety of extra, higher order terms
that take on significance, all resulting from a first-order
Hertz basis vector. They make the field even more in-
homogeneous and the higher the frequency, the more
these terms become significant.

We now replace our sample, which we had tempo-
rarily removed, consider the boundary conditions at the
surface of the conducting sphere of high dielectric con-
stant, and calculate the fields within. Those fields cause
conduction and displacement currents to flow, which in
turn produce additional fields inside and outside. Out-
side the sample, the appropriate basis vectors PPn

(e) for
fields produced by currents within may be created by
substituting function S for U and function T for V in PPn

(i).
This is a consequence of the reciprocal nature of the
Green’s function and is discussed in detail in the text by
Morse and Feshbach (21). The applicable boundary
conditions are the Dirichlet conditions that the surface-
tangential component of E and all components of B (as
m 5 1) must be continuous across the boundary, and
the Neumann condition that dBx/dx must be continu-
ous at x 5 a. However, it is easily shown that PPnx have
no surface-normal components, as we would expect
given that there is symmetry about the x axis with zero
divergence. Thus, equating respectively inner and outer
tangential electric fields at the surface of the sphere,
from Eq. [10]:

O
n 5 1,3, . . .

`

ki
2FnPPnx

(i) 5 C1ke
2PP1x

(i) 1 O
n 5 1,3, . . .

`

ke
2GnPPnx

(e), (23)

where the wavenumber ki
2 5 v0

2mm0ee0 2 iv0mm0s, the Fn

on the left-hand side are constants pertaining to inside
the sphere and the Gn on the right-hand side are con-
stants pertaining to the exterior of the sphere. The ex-
terior first-order “driving” field, created by the current
loops on the outer sphere of radius b, has amplitude C1.
Note that there is no linkage between electric fields of
different orders in this equation, and so we may sepa-
rate the various orders.

Turning to the B fields, we may equate the various
Cartesian components at the surface. Furthermore, by
the orthogonality of surface harmonics, we may equate
not just Cartesian components, but within those com-
ponents, the various orders and degrees. Thus, with
reference to Eq. [20] and Table 1, if we choose to equate
zeroth order internal and external components at the
surface, these must arise only from first-order internal
and external Hertz vectors, and we have:

ki
3F1 j0~kia! 5 ke

3$C1 j0~kea! 1 G1h0
~2!~kea!% (24)

From Eqs. [23] and [24] we can obtain the values of
constants F1 and G1 in terms of the strength C1 of the
probe field, and in particular, inside the sample:

F1 5
ke

3~h0
~2!~kea!j1~kea! 2 h1

~2!~kea!j0~kea!!

ki
2~keh0

~2!~kea!j1~kia! 2 kih1
~2!~kea!j0~kia!!

C1

; b1C1. (25)

Moving now to the second-order magnetic fields, these
are associated with both PP1 and PP3. Equating at the
surface the various harmonics of second order, we
therefore obtain the expression:

ki
3$F1 j2~kia! 1 O3

~i!~kia!%

5 ke
3$C1 j2~kea! 1 G1h2

~2!~kea! 1 O3
~e!~kea!%, (26)

where the O3(kea) terms are the fields due to PP3 . Now
we know that (25):

fn 2 1~kr! 1 fn 1 1~kr! 5 ~2n 1 1!
fn~kr!

kr
(27)

Adding Eqs. [24] and [26] and applying Identity [27], we
obtain:

ki
3H3F1

kia
j1~kia! 1 O3

~i!~kia!J
5 ke

3H3C1

kea
j1~kea! 1

3G1

kea
h1

~2!~kea! 1 O3
~e!~kea!J . (28)

Comparison with the first order of Eq. [23] immediately
shows that we have linear dependency among the var-
ious boundary equations, leaving, from Eq. [28]:

ki
3O3

~i!~kia! 5 ke
3O3

~e!~kea!. (29)

Turning to Neumann boundary conditions, we must
equate the derivative of Bx with respect to x at x 5 a.
However, it may be shown that this condition also re-
veals no connection between the first- and third-order
Hertz basis vectors and is merely a repeat of an equa-
tion given by the Dirichlet conditions. We conclude that
a Hertz basis vector of order one fully describes the
magnetic and electric fields produced inside our sphere
by application of a Hertz basis vector of order one out-
side the sphere created in turn by RF magnetic mo-
ments (current loops) of distribution order n 5 1 and
degree m 5 1 on the surrounding probe sphere. In
general, it may be shown that the Hertz vector of any
order is homologous across the boundary—there is no
coupling of orders.

Linear and Circular Polarizations

From Eqs. [21] and [25], we may now determine, for our
probe, the strength of the B1 field inside the sample in
the positively rotating frame. As we have employed a
time variation as exp(iv0t), it is:
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B̃px
~ 1 ! 5

Bx 1 iBy

2
5 b1SV1

2 im0bki
3

3ke
h1

~2!~keb!D
3 SU0,0 2

U2,0

2
1

U2,2 2 iV2,2

4 D . (30)

Note that even though we have two different orders and
two different degrees of fields here, they all have a com-
mon multiplier determined by the boundary condi-
tions—they are linked. A change of frequency or size of
sample has no effect on the relative sizes of the different
harmonics. This subtle but important point is totally
missed if the starting point of the calculation is an
arbitrary set of driving fields rather than the currents in
the probe. The origin of the inhomogeneities observed
by Glover et al (12) is apparent in the second degree
(m 5 2) terms, as shown in Fig. 3a for our sample at 64
MHz—the frequency Glover used. At low frequency, let-
ting ke 3 0 and ki

2 3 2iv0m0s, while kib ,, 1, and
setting u 5 90° so that we are in a transverse plane, we
obtain, if V1 5 1:

B̃1
~ 1 !

linear
3

m0

3b S1 2
v0sm0r

2 sin 2f

20 D , (31)

which is the same result obtained by Chen and Hoult
(14) after correcting the numerical error in their expan-
sions of the spherical Bessel functions. (The factors of
1/4 in their Eqs. [4.66] through [4.68] should be 1/10.)

If we add a second B1 field along the laboratory y axis
and with quadrature phase lag relative to the field along
the x axis, it is obvious by symmetry that whereas the
original Hertz basis vector (Eq. [20]) was:

PP1x
~i!

cosine
5 @0, U1,0, 2 V1,1#

the additional Hertz basis vector is:

PP1y
(i)

sine
5 @iU1,0, 0, 2 iU1,1# (32)

Thus the total Hertz basis vector for a quadrature probe
generating, at low frequency, a homogeneous, circu-
larly polarized field is:

PP1
(i) 5 i@U1,0, 2 iU1,0, 2 ~U1,1 2 iV1,1!# (33)

and the reader is urged to note the ease with which we
have produced the required vector, once we have the
vector for a linearly polarized magnetic field. When we
use Table 1 and Eq. [8] to find the field, or alternatively
rotate the elements of Eq. [21] and add the new to the
old, the second-degree (m 5 2) terms in Eq. [21] vanish,
as found experimentally by Glover et al (12), and we are
left with:

B̃p
~ 1 ! 5 b1SV1

2 i2m0bki
3

3ke
h1

~2!~keb!DSU0,0 2
U2,0

2 D , (34)

which, in the limit as the frequency tends to zero, once
again goes to 2m0/3b (cf. Eq. [24]), as it should. The sec-

ond-degree terms are now in the counter-rotating B1 field
B̃p

(2) but a second-order term is still present. Figure 3b
shows a simulated image in the xy plane of the rotating
frame B1 field of Eq. [34] at 64 MHz; it has total azimuthal
symmetry and is quite homogeneous, although not per-
fectly so. However, Figs. 4 and 5 show the variation at
higher frequencies for various conductivities, and it is
clear that the field is now inherently inhomogeneous, al-
beit with azimuthal symmetry. From Fig. 1 it is also clear
that the phase varies over the sample—a point of some
importance to which we shall return later. Finally, from
Eq. [34], Fig. 6 shows the variation with frequency of the
rotating frame B1 field strength at the origin for constant
current in the probe. It is very clear that there is a reso-
nance phenomenon in the temporal sense that is damped
by the sample’s conductivity and to high accuracy
(,1025) the resonance occurs when the diameter is an
integral number of wavelengths. The relationship be-
tween the resonant frequency and sample diameter has
been verified experimentally by the author. In the author’s
opinion, this phenomenon of “dielectric resonance”
should be carefully distinguished from field focusing (Fig.
1). Resonance occurs at specific frequencies related to the
size of the sample and its dielectric constant; field focus-
ing occurs at all frequencies, becoming more pronounced
and structured as frequency and/or dielectric constant
increase(s). Both effects are diminished as conductivity
increases.

RF Shimming

We are now in a position to evaluate power deposition and
S/N, for we know the fields produced in the laboratory
and rotating frames by unit current in a probe that is
designed, at least at low frequency, to produce a homoge-
neous, circularly polarized B1 field. Furthermore, the
mathematical techniques developed are capable of de-
scribing in spherical Bessel harmonics the fields pro-
duced at high frequency by any distribution of magnetic
moments and therefore current, on the surface of a spher-
ical probe. The analysis could also be extended to probes
on cylinders in analogy with the design of shim coils (19).
However, the interesting question arises as to whether the
inverse problem can be solved where, with appropriate
probe design, it is possible to “shim out” the inhomogene-
ity in the B1 field at high frequency, or to create a specific
field profile. Unfortunately, we shall see that it is only
possible to create a homogenous field (the “target field” in
the following calculation) over certain surfaces within the
sample and even then, the needed current distribution
will be frequency and sample dependent. To proceed, we
generalize our earlier procedure and first find the fields
produced in the rotating frame by any order of surface
harmonic distribution of magnetic moments on the sur-
face of the probe sphere of radius b. We shall then specify
an expansion of the field inside the sample, up to the
order required to give a satisfactory fit to the target field.
Finally, working in reverse, we shall find the amplitudes of
the surface harmonics that produce these fields. In gen-
eral, if we specify the field in the sample to order n, an
extra field of order n12 will be generated, but if n is
sufficiently large, this extra term will have negligible im-
pact.
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We begin by noting that an azimuthal distribution of
elementary magnetic moments dm as exp(-ic) on the
surface of the sphere of radius b will always eradicate
tesseral (m Þ 0) harmonics in the rotating frame field, a
case in point being the quadrature arrangement de-
scribed in the previous section. If we therefore assume
that the distribution of elementary current loops over
the surface of the sphere is given by a sum of surface
harmonics of degree m 5 1:

dm 5 O
q 5 1

nmax

VqPq,1~cos a!exp~2ic!b2 sin a dcda, (35)

where q is an integer and the Vq are constants, then
from Eq. [17], the Hertz potential of the probe becomes:

PPp 5 O
n 5 1

nmax

CnF iUn,0, Un,0, 2 2i
~n 2 1!!
~n 1 1!!

~Un,1 2 iVn,1!G

1 O
n 5 2

`

Cn

~n 2 1!!
~n 1 1!!

3 @i~Un,2 2 iVn,2!, 2 ~Un,2 2 iVn,2!, 0#, (36)

Figure 3. Simulated equatorial, transverse (xy plane) images of the rotating frame B1 field (and therefore, neglecting symmetry
considerations discussed in the text, approximately signal) strength in a spherical saline sample in a field of 1.5 T (64 MHz). The
sample had a radius of 10 cm, with conductivity 1 Sm21. In a, the applied B1 field was homogeneous and linearly polarized (ordinary
probe), and we can see quite clearly that there are intensity variations from quadrant to quadrant. (The field amplitude plots are along
the image diagonals.) Thus even at this relatively low frequency, the plot of Fig. 1 cannot be correct as it has only a radial
variation—additional higher order terms (U2,2 and V2,2) are needed to describe the field correctly. This effect was first seen by Glover
et al. (12). It can be understood by realizing that as the sample is mainly resistive at low frequency, the RF eddy currents, which flow
in a polar orbit, as shown in c, have a phase that is toward being 90° different from that of the applied B1 field. Now the eddy currents
generate fields of their own. However, unlike the applied field, these eddy current fields are inhomogeneous and, in the midst of each
quadrant, are almost perpendicular to the applied field. The combination of partial orthogonality of direction and partial orthogonality
of phase in two fields (cf. a quadrature probe) is a recipe for major changes of field strength in the rotating frame. Thus, at points D,
the field in the counterrotating frame is enhanced and the corotating frame field is diminished, while at points E, the opposite is true.
It is interesting to note that the handedness of the NMR system destroys the mirror symmetry inherent in the physics of the laboratory
frame fields. The higher order terms that describe the asymmetry are annulled when a circularly polarized field (quadrature probe)
is applied, as seen in b, but the field is still radially slightly inhomogeneous, as we would expect from Fig. 1.
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where:

Cn 5
v0m0b
4ke

~2n 1 1!hn
~2!~keb!

3 ~E
0

p O
q 5 1

nmax

VqPq,1~cos a!Pn,1~cos a!sin a da!

5
v0m0b
2ke

n~n 1 1!hn
~2!~keb!Vn. (37)

Note that a surface distribution of order n creates a
potential of order n and that the second part of Eq. [36],
with degree m 5 2, produces a magnetic field in the z
direction that does not contribute to the rotating frame
B1 field. Once again equating tangential electric and all
magnetic fields at the surface of the saline sphere, we
find that each order of Hertz basis vector is homologous

across the boundary and that their internal amplitudes
Fn are related to the driving amplitudes Cn by:

Fn 5
ke

3~hn 1 1
~2! ~kea!jn~kea! 2 hn

~2!~kea!jn 1 1~kea!!

ki
2~kehn 1 1

~2! ~kea!jn~kia! 2 kihn
~2!~kea!jn 1 1~kia!!

Cn

; bnCn. (38)

Note that for n 5 1, Eq. [38] can be shown to be identical
to Eq. [25] by application of Identity [27]. It follows from
Eqs. [8] and [36] that the positively rotating frame field
in the sample is:

B̃p
~ 1 ! 5 O

n 5 1

nmax

Ln~~n 1 1!Un 2 1,0 2 nUn 1 1,0!, (39)

where constant Ln is given by:

Figure 4. Simulated quadrature probe images of the B1 field (and therefore approximately signal) strength in an equatorial,
transverse (xy plane) section of a spherical saline sample, dielectric constant 80, at several conductivities and frequencies. The
sample radius was 10 cm and all images are normalized to the same intensity at the center (see Fig. 6). The applied B1 field in
vacuo was as homogeneous as possible and was also circularly polarized. Thus there is no left-right asymmetry to be seen. In
the first row, which is for pure water, there is very strong field-focusing, and at 400 MHz it is quite clear that there is almost a
standing wave, as two black rings, indicating nodes in the field, can be seen. However, as the conductivity increases, this effect
is clearly dampened, in accord with the plot of Fig. 1. The plots beneath each image are of field strength versus radius. To obtain
an impression of how the B1 field varies in a 10-cm radius sphere with a dielectric constant e and conductivity s Sm21 at a
frequency n MHz, calculate frequency n9 5 0.11n=e and conductivity s9 5 8.9s/=e. In this and all other figures, finding values,
plots, or images that most closely correspond in frequency and conductivity to these new values gives the desired information.
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Ln 5 S 2 iki
3

~2n 1 1!v0
DFn 5 2

im0bki
3n~n 1 1!

2~2n 1 1!ke

hn
~2!~keb!bnVn. (40)

Thus, taking liberties with the index n and introducing
yet another constant for brevity, from Eq. [39] the coef-
ficient Kn of the rotating frame field harmonic Un,0 is Kn

5 (n 1 2)Ln11 2 §n(n-1)Ln-1 where §n is zero if n 5 0 and
one otherwise. We may now write a simple matrix equa-
tion, having in general two non-zero elements per row,
linking the coefficients Kn with the amplitudes Vn of the
magnetic moment surface harmonics. If we know the
former, then the latter are easily obtained by matrix
inversion. Alternatively, working from the lowest order
up, a ladder procedure may be used to find the ampli-
tudes.

Turning to the expansion of the target rotating frame
magnetic field in spherical Bessel harmonics, as the

functions Un,0 are orthogonal over the surface of the
sphere of radius a and form a basis set for the B1 field,
we may find the coefficients Kn of any desired field by
finding its projection on that field basis set. However, it
is immediately apparent that when the desired field is
homogeneous, ie, constant, the only basis function that
has a non-zero projection of a constant is U0,0, and this
function is, unfortunately, inhomogeneous. (Remember
that the projection of a constant on the surface har-
monic portion of the spherical Bessel harmonics is zero
apart from n 5 m 5 0.) It therefore would appear to be
impossible at high frequencies to generate a homoge-
neous rotating frame field over the entire sphere—such
a field is not a viable solution of Maxwell’s equations,
regardless of the coordinate system used. This state-
ment may be verified by reference to the Helmholtz
equation [6], which can only be satisfied for constant J
when k 5 0, ie, at zero frequency. That having been
said, it is possible, to high accuracy, either to remove

Figure 5. Simulated quadrature probe polar, coronal (xz plane) images of the B1 field strength in a spherical saline sample at
several conductivities and frequencies for the conditions given in Fig. 4. The influence of a second-order harmonic that is
negligible in vacuo, but not so in the sample, causes the field strength to have a component that varies with declination as cos
2u (see Fig. 2), and this can be clearly seen in the slightly elliptical nature of the image brightness. This effect is not seen in Fig.
4 because u is constant at 90° for all images there. The plots beneath each image are of field strengths on the x (solid line) and
z (broken line) axes (u 5 90° and 0°, respectively) and clearly show the range of the second-order field. The effect can again be
understood by considering the eddy currents induced in the sample, although this time (eg, at 200 MHz for pure water), the
displacement current may be dominant. With a circularly polarized applied B1 field, the eddy currents cross paths at the
sample’s north and south poles, and the concentration of current there changes the field more markedly than at other
declinations having the same radius. What the change actually is depends, of course, on sample composition and frequency.
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U2,0 from the quadrature probe field of Eq. [34] or to
generate a homogeneous field over certain surfaces and
planes. For the first situation, we simply solve the ma-
trix equation for as many values of Kn 5 0 (apart from
K0 5 1) as is deemed necessary. We will be left with a
field that is zeroth order plus a spurious and small
final, high-order term. The required distribution of
magnetic moments on the surface of the sphere of ra-
dius b is shown in Fig. 7 for various conductivities and
frequencies, and the ensuing probe may be considered
to be a phased array of Hertzian loops distributed over
the surface of the sphere. Note the extreme behavior
about a dielectric resonance.

An example for the second situation concerns the
field in the transverse plane. It is clear from Eq. [13]
that the field in the rotating frame x̃ỹ plane may be
expressed as:

B̃1
~ 1 !

sample
5 O

n 5 0

nmax

KnPn~0!jn~kir!. (41)

Thus a simple computer fitting procedure can give the
values of the Kn needed to create a field that is the best
fit to a constant value. Figure 8 shows, for a saline
sphere of unit conductivity at a frequency of 400 MHz,
a plot of B1 field versus declination and radius. The field
in the transverse plane (u 5 90°) has been rendered
constant (,1% error) by a fit to sixth order, but it is
clear that outside that plane, the field is highly inho-

mogeneous. Of course, for different frequency, conduc-
tivity, and permittivity, the plot will be different. The
required distribution of magnetic moments or current
loops on the surface of the outer sphere is also shown
for an azimuth of c 5 0°. (Remember, however, that the
phase of the current loops also changes with azimuth
as 2c). Lest the reader think that the author is advo-
cating the construction of probes on a sphere sur-
rounding the patient, let me emphasize that this is not
so; the above is only a mathematical exercise designed
to demonstrate that it is possible to counteract, to a
limited extent, field inhomogeneities caused by the elec-
trical characteristics of the sample and the finite speed
of light therein. Similar mathematics can be con-
structed for currents on the surface of a cylinder—it is
just more complicated and this article is sufficiently
difficult already! Thus the author envisages the day
when ultra-high-frequency probes are optimized for the
desired view within a volume.

Power Deposition

Having digressed to discuss inhomogeneity, let us re-
turn to Eq. [33], the Hertz basis vector for a circularly
polarized, magnetic field that is homogeneous at low
frequency in the rotating frame. The electric field cre-
ated in the sample is immediately accessible from this
equation via Eq. [10] but missing is the Hertz vector’s
amplitude. In practice, this is set experimentally by the
user, by the expedient of selecting the desired value of
magnetic field—for example, we may wish to generate a
90° pulse. Now at low frequency, we may assume a
homogeneous B1 field, but at high frequency, we have
seen that we can no longer make this assumption and
therefore there is a problem of definition. For example,
we could define the average B1 field over the sample
and use that as a basis for setting the 90° pulse ampli-
tude, or we could use the root mean square value, or the
field that gives the largest FID, etc. It is strongly em-
phasized that different assumptions will give different
results and in particular, it will be shown below that the
size of an FID can be a very unreliable guide. For math-
ematical convenience, therefore, we shall assume
throughout the rest of this article that the amplitude of
the B1 field in the rotating frame is defined at the origin
with an amplitude there of B̃1

(o). (However, we include a
factor z that allows for a different definition, if needed).
Hence the electric field in the sample is given by:

E1
(i) 5

3v0izB̃1
(o)

2ki
@U1,0, 2 iU1,0, 2 ~U1,1 2 iV1,1!#, (42)

and the power deposited in an elementary volume dV,
remembering that E1

(i) is an amplitude, is:

dW 5 E1
(i) z E1

(i)*
s

2
dV. (43)

Computed images of this function, which is a measure
of the specific absorption rate (SAR), are shown in Fig.
9 for various frequencies and conductivities; it may be
seen that, whereas at low frequencies, the maximum

Figure 6. Enhancement of B1 field strength at the origin with
a quadrature probe as a function of frequency and sample
conductivity. The radius of the sample is again 10 cm. So far,
all the simulated images in the figures have been normalized to
have the same intensity at the origin—the centers of the im-
ages. A sphere of water is essentially a cavity with standing
waves being made possible at specific frequencies by reflection
at the sphere’s surface. A high degree of reflection takes place
because of the disparity in dielectric constants within (;80)
and without (1.0), resonance occurring when the diameter is
an integral number of wavelengths in the sample. At a reso-
nant frequency, there is large enhancement of the field at the
origin—so-called dielectric resonance, but, as may be seen, it
is damped when the sample has appreciable conductivity.
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SAR is at the surface of the sphere, this is no longer true
at higher frequencies. Now the human head has good
heat removal mechanisms for its surface, apart from
the eyes, but not for its interior. Thus caution should be

exercised when imaging at high frequency, assuming
that a head behaves like a conducting, high-permittiv-
ity sphere. The images of Fig. 9 give, of course, no
indication of the absolute power absorbed, so Fig. 10a

Figure 7. The distribution, as a function of declination a in degrees and frequency n in MHz, of the radiofrequency magnetic
moments on the surface of the outer sphere of Fig. 2 (the “probe” sphere), needed to keep the field in the sample as homogeneous
as possible by generating only the lowest order term (U0,0 to the sixth order) in the expansion of the field. With reference to Fig.
1, however, the homogeneity at high frequency is still awful, and it is not possible to generate a homogeneous field—it is not a
solution of Maxwell’s equations. The azimuthal distribution is not shown because it always multiplies the plots by the same
function exp(2ic) to create a circularly polarized field. Plots for three different sample conductivities are shown; the first plot (a)
is a detail from the second plot (b), both for pure water, showing the great swings in the distribution function (note the vertical
scales) in the region of a dielectric resonance. When we look at plots c and d, while a third-order variation is still just visible about
resonance, the wild excursions in these regions have been greatly dampened by the conductivity of the sample, and the plots are
seen to ride on a first-order base—a real variation as sin a, which is what is required with a spherical probe at low frequencies
to create a truly homogeneous field. This can best be seen in the real parts of plots c and d at 0 Hz.
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shows the SAR (s 5 1 Sm21), for a constant B1 field at
the origin, plotted as a function of frequency and dis-
tance along the z axis. The latter variable was chosen
because, as may be seen in Fig. 9, the power deposition
is greatest there. It is perhaps surprising that the max-
imum SAR decreases a little with increasing frequency
(follow the ridge in the figure) once the “hot” region
moves into the sample’s interior.

Integrating over the sphere to find the total power
deposited, we have that:

W 5 E
0

a 6ps

kik*i
~zB̃1

(o)v0r!2j1~kir!j*1~kir! dr, (44)

and at low frequency, setting z 5 1, as j1(kir) ' kir/3:

W 5
2pv0

2B̃0
2a5s

15
, (45)

which, as it should be, is twice the formula for a linear
probe given by Hoult and Lauterbur (2). Figure 10b shows
how the RF power required for a 90° pulse at the origin
deviates at high frequency from the value presented by
the “traditional” formula, Eq. [45], as the radius a of the
sample increases. In other words, when the sample is
sufficiently large, the power required is less than one
would predict from near-field formulae with their qua-
dratic dependence, as is well known (1,7). (The conduc-
tivity of the sample is unity.) We plot the ratio of Eqs. [44]
and [45], as it is independent of the pulse length and type,
and the “traditional” formula is often used to obtain a
rough assessment of required power. Furthermore, the
dynamic range of the plot is greatly reduced, resulting in
a clearer display. An intuitive understanding of this phe-
nomenon may be obtained by realizing that the voltage
induced in a ring of conductor in the sample is dependent
on the flux linkage through the ring. However, at high
frequency, the phase of the B1 field changes with radius
and so the total flux linkage does not increase as rapidly
as one might expect. Thus the total power deposited is
lowered.

Signal-to-Noise Ratio

We are now finally in a position to assess the intrinsic
S/N of the sample (11). We shall not attempt to assess
degradations of S/N from radiative or resistive losses in
the probe, nor from radiative loss into regions of the
sample remote from the probe and from the sample into
space. Radiative losses into space should be rendered
negligible by good engineering practices—from the
probe by appropriate shielding and from the patient or
sample by appropriate probe electrical balancing and
shielding. The resistive losses in probes are usually
negligible in comparison with those in the sample. To
calculate the voltage induced, by a rotating nuclear
magnetic moment at point P(r,u,f) in the sample, in
elementary conducting loops on the surface of the
sphere of radius b, we use the Principle of Reciprocity
(2,26,27). Doubt has been cast (8) on the validity of the
Principle of Reciprocity for the calculation of magnetic
resonance signal strength and noise. However, the
Principle is a fundamental consequence of causality
(21,24) and can be shown to apply rigorously, the usual
expression thereof being a corollary of Green’s theorem.
It is, however, a principle that is valid in the laboratory
frame and may not be expected to hold in a rotating
frame where the symmetries inherent in its derivation
have been violated by the imposition of handedness. A

Figure 8. a: The rotating frame B1 field variation in the sample
with declination u and radius r is shown for a distribution of
magnetic moments on the outer sphere that aims, to the sixth
order, to create within the sample a homogeneous field in the
xy plane (u 5 90°). Any attempt to obtain perfect homogeneity
at high frequency over the entire sample is doomed to failure
because a homogeneous field is not a solution of Maxwell’s
equations. However, it is possible to create a field that is
homogeneous over certain surfaces, and it may be seen that
for u 5 90°, there is negligible change in amplitude with radius.
b: How the distribution of magnetic moments on the surface of
the probe sphere varies in amplitude and phase with declina-
tion a at azimuth c 5 0. Of course, it only needs the sample
conductivity or size to change, let alone the Larmor frequency,
and a new distribution is needed. Nevertheless, a probe for the
“average” patient could be designed for a specific B0 field. If the
quadrature hybrid, or other device used for ensuring excel-
lence of field orthonormality in transmission and reception, is
tampered with, and the pulse flip angle is adjusted, it is pos-
sible, at least in simulations, to improve apparent image ho-
mogeneity at the expense of signal-to-noise ratio. While inter-
esting, this digression is not pursued here.
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full description of the high-frequency use of the Princi-
ple is given in ref. 28. There it is shown that if magne-
tization is described in a positively rotating frame as
resulting from the transmitter B̃1T

(1) field in that frame,
then the received signal is proportional to the complex
conjugate of the field in the negatively rotating frame
B̂1R

(2)* due to unit currents, provided that field is calcu-
lated for those currents with the phase shifts appropri-
ate for signal reception. The derivation of such a field
follows from Eq. [20] in a manner similar to that em-
ployed for Eq. [34], and it may be shown that for our
spherical sample, that field is also described by Eq. [34]
for unit current. However, the reader is cautioned that
in general, the two fields B̂1T

(1) and B̂1R
(2)* are not neces-

sarily equal.
In thinking about how the concept of unit current

melds with that of a probe comprising a nonlinear dis-
tribution of magnetic moments on the surface of a
sphere, it may be helpful to consider that the various

strengths of the elementary magnetic moments implicit
in Eq. [21] are determined by their elemental area
and/or number of turns so that the concept of unit
current can be retained. However, we shall see below,
as is well known, that the concept is not vital if we are
only calculating intrinsic S/N. Following Eq. [34], if M̃xy

(1)

is the component of nuclear magnetization in the pos-
itively rotating x̃ỹ plane, the initial amplitude of the
received free induction decay (FID) is given by:

dj~r, u! 5 M̃xy
~ 1 !~r, u!dVv0B̂1

(o)~U0,0~r, u! 2 0.5U2,0~r, u!!.

(46)

The spatial dependencies have been explicitly indi-
cated, and a homogeneous main B0 field is assumed.
Note in particular that as the transmitting B1 field is
inhomogeneous, we have not assumed that M̃xy

(1) is equal
to the equilibrium magnetization M0. On the contrary,

Figure 9. Simulated quadrature probe polar, coronal (xz plane) images of the normalized specific absorption rate (SAR) in a
spherical saline sample at several conductivities and frequencies for the conditions given in Fig. 4. Plots are along the x (solid
line) and z (broken line) axes. Previous images have been of the rotating frame magnetic field generated in the sample; these are
of EE*, the square of the electric field E, as SAR is proportional to this quantity. Note how at low frequency, as is well known, the
power deposition is a maximum on the edge of the sample and is greatest at the poles where radiofrequency eddy currents,
associated with the two quadrature B1 fields, converge. The human body is adept at removing heat from the its exterior, apart
from the eyes, so in a normal individual at low frequency, SARs of the order of watts per kilogram are well tolerated. However,
as the frequency increases, the region of maximum SAR moves inside the saline sample. If this effect also occurs in the head,
caution is indicated as heat removal mechanisms are minimal in the brain. The spatially periodic nature of the power deposition
is clearly visible, particularly in the plot at 400 MHz and 1 Sm21.
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for a simple, nonadiabatic pulse, the flip angle across
the sample will vary greatly at high frequency both in
amplitude and phase, and for a small (,10°) flip angle
at the origin, the signal will be proportional to the
square of the term in parentheses—see below. At low
frequency, Eq. [46] reduces to the expression of Hoult
and Richards (26), albeit for a quadrature probe:

dj 5 M̃xy
~ 1 !dVv0B̂1

(o) (47)

Turning to the calculation of the noise, the Principle of
Reciprocity concerning electric fields must also apply to
the reception of electric dipole Brownian noise from the
sample and hence, from Eq. [44], if we set B̃1

(o) 5 B̂1
(o), we

may equate the power W with an effective resistance
rm/2. The noise is then given by Nyquist’s equation N 5
(4kTrmDn)1/2 and from Eq. [46], the intrinsic volume
element free induction decay S/N ratio dC is:

dC 5 M̃xy
~ 1 !dV~U0,0 2 0.5U2,0!

3 S12pskTDn

kik*i E
0

a

r2j1~kir!j*1~kir!drD 2 1/2

(48)

where k is Boltzmann’s constant, T is the sample tem-
perature, and Dn is the bandwidth of the receiver. Note
that there is no dependence on B̂1

(o) the strength of the
B1 field at the origin, and hence unit current in the coils

is a conceptual convenience here. At low frequencies,
from Eqs. [45] and [47], this reduces to:

dC 5 M̃xy
~ 1 !dVS4pskTa5Dn

15 D 2 1/2

, (49)

which is root two times the formula quoted by Chen and
Hoult (14) for a linear probe. Readers may convince
themselves with two lines of algebra that the ratio of Eq.
[48] to [49] at the sample origin is just the inverted plot
of Fig. 10b, and as that plot is conveniently in decibels
(20 log10[ratio]), the desired ratio may be obtained from
it simply by negating the vertical scale. In other words,
the relative volume element S/N at the origin increases
as a function of frequency and sample radius a, com-
pared with the value expected from the traditional for-
mulation, Eq. [49], and if an adiabatic 90° pulse has
been employed so that M̃xy

(1) 5 M0 throughout the sam-
ple, then Figs. 4 and 5 may be used as a guide as to how
the S/N varies across the field of view. Because the
volume element S/N varies widely at high frequency
across the sample and is dependent on the method of
excitation, careful definition is essential. For example, if
an ordinary pulse were used, the spatial variation
would be more dramatic, but note that a large (.90°)
flip angle at the origin can smooth some of the variation,
as can missettings of the quadrature hybrid assumed to
be used with any probe. Figure 11 shows three repre-
sentative plots of the variation of the average S/N in

Figure 10. a: The absolute SAR, for an applied B1 field from a quadrature probe of 5.87 mT (n1 5 250 Hz) at the origin in the rotating
frame, as a function of frequency, and distance along the z axis where power deposition is greatest (Fig. 9). The sample has unit
conductivity and a radius of 10 cm. The plot shows clearly that at any particular value of z, the SAR passes though a maximum with
increasing frequency and then diminishes. This is entirely due to the fact that the wavelength in the sample becomes comparable to
or less than the sample radius. However, what is not quite so easily visualized is that the ridge in the plot gently diminishes in height
as we follow it from {200 MHz, 10 cm} to {400 MHz, 3 cm}. b: We are allowing the size of the spherical sample to vary (N.B.), and are
plotting the total power (ie, the required transmitter power) absorbed by a sample of unit conductivity as a function of frequency and
sample radius. This is the first plot where it is not directly the dependent variable that is plotted, but rather a ratio to reduce the
dynamic range. Thus the power needed is compared with the value predicted by the “traditional” low-frequency formula of Hoult and
Lauterbur (2), which has a quadratic dependence on frequency and a fifth-power dependence on sample radius. In the plot, it is quite
clear that at higher frequencies somewhat less power is needed than might be expected (up to 214 dB or a factor of 5). We see in Fig.
9 that there are nodal regions in the sample where the electric field is small and hence the power deposition there is small too. When
we integrate over the sphere to find the total power, these nodal regions reduce the sum. In turn, by reciprocity, Nyquist’s famous
formula predicts that the received noise will be lower than expected.
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imaging planes with frequency and sample size for unit
sample conductivity; the general form of such plots is
similar for lower conductivities.

Once again, the plots are relative to the “traditional”
formula to minimize dynamic range and to make more
obvious deviations from a linear frequency law. (M̃xy

(1) in
Eq. [49] is proportional to frequency.) Thus in Fig. 11a,
still using an adiabatic pulse, the root mean square
(RMS) relative S/N for a transverse (xy) plane is shown,
while Fig. 11b shows a similar plot for a coronal or
sagittal section. Figure 11c is the transverse plot when
using a simple monophasic rectangular or shaped
pulse. In all cases, even though the plotted S/N is an
average over the imaging plane, rather than being just
at the origin, the relative S/N ratio is greater than that
predicted by the traditional formula, apart from very
small regions in Fig. 11b and c.

Taking a small digression, a definition of sensitivity
more normally used in spectroscopy concerns the initial
S/N of the FID from the entire sample in the absence of
gradients; an interesting phenomenon occurs here that
reduces that S/N. To find the FID amplitude, we must
integrate Eq. [46] over the sample. However, to do so, we
must once again know how M̃xy

(1) varies with spatial posi-
tion. This depends on the details of the RF pulse. How-
ever, in all cases the pulse imparts to the magnetization at
a particular volume element the phase of the driving B1

field there. Now at low frequencies with a probe used for
both transmission and reception, any rotating frame
phase variation across the sample, caused by diverse di-
rections of the B1 field, is canceled at reception by an
opposite phase variation. Mathematically, the transmitter
field gives a positive rotating frame field that is (Bx 1

iBy)/2 where Bx and By are real quantities, and thus the
phase of the transverse magnetization M̃xy

(1) is determined
by the argument of this quantity minus 90°. However (28),
the received signal is proportional to M̃xy

(1)(B̂x 2 iB̂y) which
implies an overall dependency as B̂x

2 1 B̂y
2 and phase

variations with spatial position therefore vanish—the re-
ceived signals from the volume elements at different
places add coherently. However, at high frequencies, we
have both phase and directional changes caused by the
conductivity and high dielectric constant of the sample.
Thus B̂x and B̂y are in general complex and so is B̂x

2 1 B̂y
2.

If we now consider the effects of a pulse of small flip angle
q for mathematical simplicity, we may make the approx-
imation that the x̃ỹ magnetization is given by M̃xy

(1) 5
M0q(r,u). Thus, from Eq. [46], or by careful analysis from
Eq. [21] and its y counterpart, the signal from the entire
sample is:

j 5 v0M0q(o)B̂1
(o) E

sample

~U0,0 2 0.5U2,0!2dV

5 v0M0q(o)B̂1
(o) E

sample

~U0,0
2 1 0.25U2,0

2 !dV, (50)

where q(o) is the flip angle at the origin. The S/N of the
FID from the entire sample, compared with that ex-
pected from the traditional formula (again to reduce the
dynamic range associated with a large frequency span),
is plotted in Fig. 12 on a logarithmic scale as a function
of frequency and conductivity; there are two “holes” of
zero signal at frequencies of 178.05 and 355.82 MHz.

Figure 11. Plots of root mean square signal-to-noise ratio in an imaging plane versus frequency and sample radius a. Note that
the size of the sample is being varied. The S/N is averaged over the whole plane and again, it is a ratio that is plotted to reduce
dynamic range. The S/N is being compared with that predicted by the traditional formula of Hoult and Lauterbur (2). a: For a
transverse equatorial (xy plane) section. b: For a coronal polar section (xz plane). In both plots, an adiabatic 90° pulse was
presumed to have been used so that the flip angle was the same at all points in the sample. c: For a transverse equatorial (xy
plane) section; a simple rectangular or monophasic pulse was employed. In all three plots, the S/N averaged over the plane may
be seen to be greater, to various degrees, at high frequencies than the value that would be predicted by the traditional formula,
apart from in small regions in b and c at 400 MHz and a sample radius of 3 cm. Thanks to the spatial variation of B1 field strength
(see Fig. 1), the average absolute signal strength is lower than we might expect. However, the power deposition (see Fig. 10b) is
even lower, and so on average, the S/N ratio is increased. It follows that when comparing the performances of disparate
equipment, one must be very careful to specify the manner in which the S/N was measured and whether it was for a particular
location, over a particular region or plane, etc., and what type of excitation was used. Manifestations of “specmanship”—the
presentation of specifications in the best possible light while obscuring detail—are all too easy. No consideration has been given
to the influence of variables such as chemical shift range and relaxation times on image sensitivity.
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We might expect such phenomena to occur at specific
frequencies that are dependent on the size of the sam-
ple, but at first sight it seems odd that the needed
conductivities are so specific. However, when we re-
member that it is the conductivities that are responsi-
ble for the position-dependent phase changes (ki is real
for zero conductivity, whence Un,0

2 is always real and
positive), it is not surprising that a specific value is
implicated—the phase changes across the sample are
then such that signals cancel. (/ki 5 221.74° for a
primary “hole.”) The building of equipment to test this
conclusion is currently under way. In an image, one
does not see this behavior because one is not summing
the signal over the sample; on the contrary, the whole
point of the imaging experiment is to break the sample
down into volume elements. However, if a phase-sensi-
tive image were to be taken, the phase variations across
the sample would easily be seen.

CONCLUSIONS

The performance of the NMR imaging experiment at
high frequencies where the wavelength in the sample is

comparable to or less than the latter’s dimensions has
been assessed. To that end, a rigorous and full solution
of Maxwell’s equations for a conducting sphere of high
dielectric constant, subjected to an ostensibly homoge-
neous, B1 field created by currents on a spherical probe
outside the sphere, has been found. The effects of both
linearly and circularly polarized driving fields have been
calculated in both the laboratory and rotating frames.
As circularly polarized fields were used, the simplifying
technique of employing axial symmetry (B1 field in the z
direction) could not be employed, and tesseral harmon-
ics, with their attendant difficulties, were used. The
framework of the solution is in a format (the Hertz
vector) that can be expanded at a later date to accom-
modate the fields created by probes with appreciable
charge separation in their conductors.

From the electric field solutions in the laboratory frame,
the power deposited in the experiment has been calcu-
lated, and, employing the Principle of Reciprocity, the S/N
has also been found. The author is not so sanguine as to
believe that no errors, typographical or otherwise, have
crept into a complex paper that summarizes 50 pages of
mathematics and would appreciate notification of any

Figure 12. An intriguing prediction of the theory, applicable to spectroscopy. No gradients are being applied. The signal-to-noise
ratio of the free induction decay from an entire sample of radius 10 cm as a function of frequency and conductivity is shown
following a small flip angle pulse. Again, the S/N is compared with what one would expect from the theory of Hoult and Lauterbur
(2), but a logarithmic scale is used as this gives the clearest picture. (The dynamic range in the ratio is a factor of 300 or 250 dB.)
In general, the two values are comparable (0 dB), but at two places in the plot, there are deep “holes” in the response, and these
are shown from below in the smaller figures. The reason for the holes is destructive interference when the signal from the entire
sample is integrated. We have concentrated in most of the previous figures only on the amplitudes of variables, as it is these that
tend to influence quantities of interest such as image quality and SAR. However, when we consider an integrated response over
the entire sample, the phase of the signals from various regions becomes crucial (Fig. 1). These phase shifts add in a causal
manner; they do not cancel as do phase shifts associated at low frequency with diverse directions of the B1 field. Thus, for certain
combinations of frequency and conductivity, it is possible to obtain a zero integral—a global node is produced.
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errors readers may detect. However, the results seem to
be in accord with known phenomena such as dielectric
resonance and field focusing, and they make intuitive
sense. Unfortunately, the author, at the time of writing, is
not in a position to test the predictions of the theory fully.
Furthermore, it must be reiterated that the head is a
complex object with a variety of conductivities and dielec-
tric constants, and so exact correspondence with the re-
sults presented here is not to be expected (9,10). Never-
theless, the general trends revealed by the theory are
pertinent and in accord with previous work. Summariz-
ing, these are that at high frequency in a spherical sample
of conductivity and size roughly approximating that of the
human head:

1. The B1 field in the rotating frame is inherently
inhomogeneous, varying substantially with radius
in amplitude and phase, and is strongest at the
origin—the field focusing effect.

2. The current distribution in a probe that yields a
homogeneous field at low frequency does not yield
the most homogeneous field at high frequency.

3. A fully homogeneous field is not a solution of Max-
well’s equations at high frequency. Thus the B1

field cannot be rendered uniform over the entire
sample, merely over certain surfaces such as the
transverse plane. The distribution of RF current
required to create such a partly homogeneous field
is sample and frequency dependent.

4. Fields inside the sample are resonant when, to
considerable accuracy, the diameter of the sample
equals an integral number of wavelengths. Under
such conditions, the B1 field at the origin of a
sample of pure water can be greatly increased, and
such enhancement may have practical use for
boosting sensitivity in some specialized experi-
ments, in much the same way that ferrites can at
low field strengths. The greater the sample con-
ductivity, the more dampened is the resonance.

5. The power required for a 90° pulse at the origin is
less than that predicted by the traditional formula
of Hoult and Lauterbur (2). This result is in agree-
ment with the predictions of Bottomley and An-
drew and the observations of Robitaille et al.

6. The maximum SAR no longer occurs at the surface
of the sample, but rather moves inside as the fre-
quency increases and also thereafter decreases
slightly. Note that the head has its main heat-
removal mechanisms at the surface and thus cau-
tion should be exercised.

7. The intrinsic image volume-element SNR varies
considerably over the sample but on average is
usually slightly greater than the value predicted
by Hoult and Lauterbur. The factor depends on the
experimental details.

8. The bulk intrinsic SNR, as measured by the size of
the FID in the absence of gradients, can show
severe reduction, depending on frequency and
sample conductivity, due to destructive interfer-
ence caused by major changes of phase with ra-
dius in the sample. Thus the FID may not be a
good indicator of flip angle.
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APPENDIX

Identities

The following identities are used, taken from the book
by Abramowitz and Stegun (25), except for Identity [A6],
which is from Erdelyi et al (29). For the associated
Legendre polynomials, Ferrer’s function (30) was em-
ployed, and thus considerable care is needed in using
the identities in ref. 25. In general, their factor (z2 2
1)1/2 should be replaced by 2sinu, and there is also a
factor of (21)m difference.

For spherical Bessel functions of all types:

~2n 1 1!
d
dr

fn~r! 5 nfn 2 1~r! 2 ~n 1 1!fn 1 1~r!, (A1)

~2n 1 1!
fn~r!

r
5 fn 2 1~r! 1 fn 1 1~r!. (A2)

For the associated Legendre polynomials, where u 5
cosu:

Pn,m~0! 5 2
Sm2n

2 D

3 cosS ~n 2 m!
p

2D 1 z 3 z 5 z 7· · ·~n 1 m 2 1!

Sn 2 m
2 D !

(A3)

sin2u
]

]u
Pn,m~u! 5 ~n 1 m!Pn 2 1,m~u! 2 nuPn,m~u! (A4)

~2n 1 1!uPn,m~u!

5 ~n 2 m 1 1!Pn 1 1,m~u! 1 ~n 1 m!Pn 2 1,m~u! (A5)

~n 2 m 1 1!sin uPn,m 2 1~u! 5 uPn,m~u! 2 Pn 2 1,m~u! (A6)

2 sin uPn,m 1 1~u!

5 ~n 2 m!uPn,m~u! 2 ~n 1 m!Pn 2 1,m~u!. (A7)

Cartesian Differentiation of Spherical Bessel
Harmonics

The function to be differentiated is:

J 5 fn~kr!Pn,m~cos u!sin mf
cos mf. (A8)

The Cartesian differentials in spherical polar coordi-
nates are:
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dJ

dx
5 sin u cos f

]J

]r
2 sin u cos u cos f

1
r

]J

]u

2
sin f

r cos u

]J

]f

dJ

dy
5 sin u sin f

]J

]r
2 sin u cos u sin f

1
r

]J

]u

1
cos f

r cos u

]J

]f

dJ

dz
5 cos u

]J

]r
1 sin2u

1
r

]J

]u
, (A9)

where u 5 cosu, and, importantly, we know that the
resultants must be sums of spherical Bessel harmon-
ics, for the Helmholtz equation is obeyed by both a
scalar potential and its Cartesian fields. We consider
first, by way of example, the derivative in x of a cosmf
spherical Bessel harmonic and inspect the terms in f.
They are of the form cosf cosmf and sinf sinmf, and
we immediately see that the degrees of the component
harmonics are therefore m21 and m11. Thus the coef-
ficients of the terms cos[(m21)f] and cos[(m11)f] are,
in order plus, minus:

1
2 Fsin u

]

]r
fn~kr! 6

m
sin u

fn~kr!

r GPn,m~u!

2
cos u sin u

2
fn~kr!

r
]

]u
Pn,m~u!. (A10)

Turning to the radial terms in Eq. [A9], we know that
differentiation must reduce by one the order and that
the parity of any extra higher orders generated must be
the same as that of the base order. Thus we may expect
terms of order n21, n11, n13, etc. Applying Identities
[A1] and [A2] to expression [A10], we have:

dJ

dx
5

k
2~2n 1 1!

3

5 Fn sin u 6
m

sin uGPn,m~u!

2 cos u sin u
]

]u
Pn,m~u! 6 fn 2 1~kr!cos@~m 7 1!f#

1

k
2~2n 1 1! 3

5F2~n 1 1!sin u 6
m

sin uGPn,m~u!

2 cos u sin u
]

]u
Pn,m

~u!6fn 1 1~kr!cos@~m 7 1!f#,

(A11)

and two orders only are generated. The expressions in
braces are complicated, but we know that each must be a

sole associated Legendre polynomial whose order and de-
gree match those of the spherical Bessel and trigonomet-
ric functions, respectively. It therefore remains to find
their coefficients, and an easy way of doing this is to let
u 5 90°. Taking as an example the first brace, with the
plus sign and n1m even, and employing Identity [A3]:

~n 1 m!Pn,m~0!

Pn 2 1,m 2 1~0!
5 ~n 1 m!

1 z 3 z 5 z 7· · ·~n 1 m 2 1!

1 z 3 z 5 z 7· · ·~n 1 m 2 3!

5 ~n 1 m!~n 1 m 2 1!, (A12)

and we have the coefficient of Pn21,m21(u). Similarly,
taking the minus sign to obtain the coefficient of
Pn21,m11(u), we have:

~n 2 m!Pn,m~0!

Pn 2 1,m 1 1~0!
5

1
2

~n 2 m!
Sn 2 m

2
2 1D !

Sn 2 m
2 D !

5 1. (A13)

We proceed similarly for the remaining terms in Eq.
[A11] and in like vein for sinmf spherical Bessel har-
monics and the derivative in y. As the author was not
able to find common identities that simplify the expres-
sions in braces, the above results were initially ob-
tained by expansion using Rodrigues’ formula and were
also found to be valid when n1m was odd. However,
that method, although rigorous, is extremely tedious
and is not reproduced here.

By contrast, the derivative in z is easily found. The
derivative with respect to r is given in Identity [A1], and
Identity [A2] is also employed, as previously. We then
use Identity [A4] to perform the differentiation with re-
spect to u and Identity [A5] to convert the term involving
u. Finally, attention must be paid to the values of n and
m for which the formulae in Table 1 are valid; the func-
tions h and § perform this task.

Hertz Potential of an Elementary Loop

The Hertz potential PP of an elementary vector length ds
of current I is given in Eq. [17] by:

dPP 5 2i
v0m0I

4pke
2

ei~v0t 2 keR!

R
ds ; IG~R!ds. (A14)

With reference to Fig. 2, in spherical polar coordinates
(b, a, c), let the unit vectors in the directions of increas-
ing declination a and increasing azimuth c be ââ and ĉĉ
respectively. Let a magnetic moment be created by cur-
rent I flowing on the surface of the sphere round a small
square of side ds. The sides are parallel to the unit
vectors. Then in the limit as ds tends to zero and Ids2

tends to a constant magnetic moment m, the Hertz
potential is:

PP 5 2I~¹G z dsĉĉ!dsââ 1 I~¹G z dsââ!dsĉĉ

5
m
b H 2 1

sin a

]G
]c

ââ,
]G
]a

ĉĉJ . (A15)
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Now we know from Eq. [18] that the Green’s function G
can be expanded in terms of spherical Bessel harmon-
ics. Thus we need to look at the effect of Eq. [A15] on the
angular portions of those harmonics and to do so we
use a temporary function G9 5 Pn,m(n)cos[m(f 2 c)]
where n 5 cosa. Applying identity [A4], we have:

PP9 5
m

b sin a
$mPn,m~n!sin@m~f 2 c!#ââ,

2 ~n cos aPn,m~n! 1 ~n 1 m!Pn 2 1,m~n!!cos@m~f 2 c!#ĉĉ%.

(A16)

We may now find the Cartesian components, and we
choose the x component as an example. Thus:

PP9x 5
m

b sin a
$m cos aPn,m~n!sin@m~f 2 c!#cos c

1 ~n cos aPn,m~n! 1 ~n 1 m!Pn 2 1,m~n!!

3 cos@m~f 2 c!#sin c} (A17)

and once again, we see that terms in c in degrees (m61)
are created. The coefficients of the terms cos[mf 2
(m-1)c] and cos[mf 2 (m11)c] are, in order plus, minus:

m
2b sin a

$~m 6 n!cos aPn,m~n! 1 ~n 1 m!Pn 2 1,m~n!%.

(A18)

Applying Identity [A6], the coefficient of cos[mf 2
(m21)c] is m(n 1 m)(n 2 m 1 1)Pn,m11(n)/2b, while with
Identity [A7], we immediately know the coefficient of
cos[mf 2 (m11)c]. It is mPn,m11(n)/2b. Finally, to obtain
the format shown in Eq. [19], the trigonometric func-
tions in f and c are resolved into orthogonal variables.
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