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ABSTRACT: The mathematical aspects of diffusion tensor magnetic resonance imaging
(DTMRI, or DTI), the measurement of the diffusion tensor by magnetic resonance imaging
(MRI), are discussed in this three-part series. In part I, some general features of diffusion
imaging are presented briefly, including the relationship between the diffusion ellipsoid
and the diffusion tensor. Rotations of vectors and tensors are explained for both two and
three dimensions. Rotationally invariant properties of the diffusion tensor are discussed.
Calculation of the eigenvectors and eigenvalues of the diffusion tensor, which correspond
to the directions of the diffusion ellipsoid axes and the squares of the hemiaxis lengths, is
explained. © 2006 Wiley Periodicals, Inc. Concepts Magn Reson Part A 28A: 101–122, 2006
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INTRODUCTION

Diffusion refers to the random (Brownian) motion of
molecules in a fluid (liquid or gas). The relative
amount of diffusion is expressed in terms of a param-
eter called the diffusion coefficient, D. In a homoge-
neous liquid such as water, the diffusion coefficient is
the same in every direction, or isotropic. In some

biological tissues the diffusion coefficient is different
in different directions, or anisotropic. Diffusion tensor
magnetic resonance imaging (DTMRI, or DTI), a
method for measuring the relative diffusion coeffi-
cients of water molecules in different directions in
each pixel of an MR image, involves diffusion-
weighted imaging (DWI) measurements in at least six
noncollinear directions (1–13). Measurements of dif-
fusion anisotropy have been used to measure the
structural integrity of brain white matter at different
ages (14) and in several diseases (15, 16). The direc-
tion of greatest diffusion has been used to follow
white matter nerve fiber tracts, a process called trac-
tography (3, 17–25). Because DTI uses formulas that
are not widely used elsewhere in NMR and MRI, the
mathematics of DTI may not be familiar to MRI
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physicists, chemists, programmers, neuroscientists,
students, and other researchers.

This series of three articles has several purposes:

1. To assemble in one place a large number of
formulas that may be encountered in DTI.

2. To show how some formulas that may appear
different are actually equivalent.

3. To point out and correct some published mis-
takes.

4. To explain the relationship between the diffu-
sion ellipsoid and the diffusion tensor.

5. To show how to calculate diffusion-weighting
factors (b factors).

6. To explain how to calculate tensor elements,
eigenvalues, and eigenvectors from experimen-
tal data (MRI signal intensities).

7. To discuss the effects of noise on DTI measure-
ments and calculations.

8. To explain how to simulate DTI measurements.
9. To discuss how to optimize DTI acquisition

parameters by propagation-of-error calculations
and by simulations.

These articles will not discuss fiber tract mapping
(tractography), correction of image artifacts (induced
by eddy currents or by magnetic susceptibility differ-
ences), or the reasons that DWI signal decay should
be monoexponential (26) or biexponential (27–33).

This series of articles assumes that the reader 1)
knows something about DTI theory or applications
and wants to learn more; 2) is familiar with vectors; 3)
understands basic matrix mathematics, including mul-
tiplication, transposition, and inversion; and 4) is fa-
miliar with basic MRI concepts such as spin echoes
and echo planar imaging (EPI). These articles do not
assume familiarity with tensors, eigenvalues, eigen-
vectors, or anisotropy. Although this series focuses on
diffusion tensor imaging, the concepts are equally
applicable to nonimaging NMR measurements of dif-
fusion.

Diffusion tensor imaging mathematics assumes
monoexponential signal decay as the diffusion-
weighting factor, b, increases. The diffusion process
can be described by Fick’s laws of diffusion (18, 34).
An excellent derivation of the expected monoexpo-
nential signal decay from Fick’s laws of diffusion has
appeared in this journal (26) and will not be repeated
here. Monoexponential signal decay requires that dif-
fusion is uniform in each direction, without sudden
restrictions or hindrances. Furthermore, there is a
single fiber type and orientation in each pixel. Al-
though biexponential signal decay has been detected
at high b factors in biological systems (27–33), DTI is

still useful at low to moderate b factors for anisotropy
measurements and tractography.

Some DTI concepts and formulas are easier to
visualize and understand in two dimensions than in
three dimensions (35). Therefore, some things will be
explained in two dimensions, and then the corre-
sponding three-dimensional (3D) formulas will be
presented. This involves the use of 2 � 2 tensors that
describe ellipses and 3 � 3 tensors that describe
ellipsoids.

In this first part of this series, vectors and tensors
are introduced in two dimensions (2D) and three
dimensions, and their rotations are discussed. Rota-
tionally invariant properties of the tensor are de-
scribed. The calculation of eigenvectors and eigenval-
ues from the tensor is explained. A list of errors in
DTI-related publications is included as an appendix.
Part II discusses diffusion anisotropy indices (DAIs),
explains how the diffusion-weighting b factor is cal-
culated, and explores different gradient sampling
schemes for DWI and DTI. Part III explains how the
tensor is calculated from DWI data in six or more
directions, discusses computer simulations and the
effects of noise on DTI measurements, and explores
the optimization of DTI data acquisition and process-
ing.

Introductory material on DWI and DTI is available
in many journal articles (1–3, 36, 37) and book chap-
ters (18, 34). Entire journal issues devoted to diffu-
sion imaging include the November/December issues
(no. 7/8) of volumes 8 (1995) and 15 (2002) of NMR
in Biomedicine, and the March issue (no. 3) of volume
45 (2003) of European Journal of Radiology.

DIFFUSION SPHERES, ELLIPSOIDS,
AND PEANUTS

The purposes of this section are to explain 1) a little
bit about the diffusion process and 2) how we visu-
alize the diffusion process by an ellipsoid that shows
the root mean squared displacement in each direction,
and by a “peanut” that shows the apparent diffusion
coefficient that would be measured in each direction.

Over time, a molecule that begins at a certain point
in a homogeneous fluid will move randomly so that at
a later time, t, it will, on the average, be some distance
away from where it started. If we measured the prob-
ability of finding the molecule at various distances in
each direction, we could choose the point in each
direction that represents the root mean squared dis-
placement in that direction (5, 18). These points
would form a sphere with radius �2Dt, where D is
the diffusion coefficient. The units of D are dis-
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tance2/time (e.g., �m2/s), and the units of Dt are
distance2(e.g., �m2). A smaller diffusion coeffi-
cient or time results in a smaller sphere, and a
larger diffusion coefficient or time results in a
larger sphere (5 ).

In biological systems the measured diffusion coef-
ficient is influenced by proteins, membranes, and
other biological molecules. In addition, there may be
multiple nonexchanging or slowly exchanging com-
partments. The measured value of the diffusion coef-
ficient generally depends on the diffusion time and on
the amount of diffusion weighting factor, b. There-
fore, no single value of D fully characterizes the
diffusion process. In such cases diffusion is expressed
as the apparent diffusion coefficient (ADC), which is
also represented by the letter D. Furthermore, diffu-
sion is often anisotropic, so the measured ADC de-
pends on the measurement direction. Anisotropic dif-
fusion is modeled as a diffusion ellipsoid, with
possibly different hemiaxis lengths (which are pro-
portional to the square roots of the tensor eigenvalues,
�1 � �2 � �3) along three orthogonal axes (which
correspond to the tensor eigenvectors �1, �2, �3).
Good pictures of diffusion ellipsoids are available
from several sources (3–5, 18, 19, 38–40). In the (x�,
y�, z�) reference frame whose axes are parallel to the
principal axes (eigenvectors) of the ellipsoid, which
has been called the “principal frame” or the “principal
axis system,” the ellipsoid equation is (3–5)

x�2

2�x�t
�

y�2

2�y�t
�

z�2

2�z�t
� 1 [1]

Some previous work has used the (x, y, z) reference
frame to represent the laboratory reference frame,
where the ellipsoid has some arbitrary orientation, and
the (x�, y�, z�) reference frame to represent the prin-
cipal axis system of the ellipsoid. In the present work
the (x�, y�, z�) reference frame sometimes refers to an
arbitrary ellipsoid orientation.

As with the isotropic diffusion sphere, the aniso-
tropic diffusion ellipsoid represents the root mean
squared displacement in each direction. Plotting the
ADC in each direction generally results in a peanut-
shaped curve rather than an ellipse. In each direction
the measured D is determined by the projections of
the three eigenvectors onto a unit vector, v, in the
chosen direction (38, 41). Each projection is given by
the dot product between the eigenvector and v (an
example of a dot product will be shown in Eq. [3]).

D � vTDv � �1�v � ε1�
2 � �2�v � ε2�

2 � �3�v � ε3�
2

[2]

If v is one of the eigenvectors, only one of the v � �
terms is nonzero, and the measured D is the corre-
sponding eigenvalue �. Some 2D examples are shown
in Fig. 1. In each example the dotted ellipse shows the
root mean squared displacement (�2Dt) in each di-
rection, while the solid peanut-shaped curve shows
the D that would be measured in each direction (35,
38, 42). Because of the different units in D and the
ellipse, the ellipse has been scaled to fit onto the same
plots as D.

The diffusion ellipsoid is represented mathemati-
cally by a tensor. The tensor is most commonly rep-
resented by a symmetric 3 � 3 matrix. For some
mathematical formulas it is more convenient to rep-
resent the tensor elements as a vector. Although a
discussion of general tensor properties is beyond the
scope of this introductory series, it is worth mention-
ing that the transformation of the diffusion tensor
between two reference frames can be calculated with
the same rotation matrices that describe vector trans-
formations. Therefore, knowledge of vector rotation
matrices will be useful in understanding tensor rota-
tions.

After learning how ellipses and ellipsoids are de-
scribed by tensors, we investigate some of the prop-
erties of the tensor. More information on the relation-
ship between the diffusion tensor and the diffusion
ellipse is available in (5, 18).

VECTORS AND VECTOR ROTATIONS

The purpose of this section is to derive the formulas
that describe the rotation of an object, represented by
a vector, in a fixed reference frame (coordinate sys-
tem), or that express a fixed vector in reference frames
that are rotated with respect to each other.

Vectors

A vector has magnitude (length) and direction. Vec-
tors are usually assumed to be column vectors, and
may be written as the transpose of a row vector. For
example, if (x, y, z ) is a row vector, its transpose, (x,
y, z)T, is a column vector. If V is the column vector (x,
y, z )T, then VT is the row vector (x, y, z ). Thus, the
superscript T always indicates “transpose,” but the
transposed vector may be a column vector or a row
vector, depending on the context. Sometimes the
uppercase ‘T’ is typeset as a lowercase ‘t’ or as a
dagger, †.

Movement in a given direction can be represented
by a vector from the origin to the final point, for
example from (0, 0)T to (5, 0)T (Fig. 2). Movement in
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the opposite direction can be represented by a vector
pointing in the opposite direction, for example from
(0, 0)T to (	5, 0)T (see Fig. 2) or from (5, 0)T to (0,
0)T. A vector can be moved around in the xy plane as
long as the magnitude and direction remain the same.

A vector can be represented by giving its projec-
tions on the x and y axes. For example, the vector (5,
0)T has magnitude 5, its projection on the x axis is 5,
and its projection on the y axis is 0 (see Fig. 2). The

vector (3, 4)T has magnitude 5, its projection on the x
axis is 3, and its projection on the y axis is 4 (see Fig.
2). The vector (3, 	4)T has magnitude 5, its projec-
tion on the x axis is 3, and its projection on the y axis
is 	4 (see Fig. 2). The sum of the x and y components
changes as the vector is rotated in the xy plane, while
the sum x2 
 y2 remains the same. In other words, the
sum x2 
 y2 is rotationally invariant, whereas the sum
x 
 y, or even �x� 
 �y�, is rotationally variant.

The vector components depend only on the rela-
tionship between the vector and the coordinate sys-
tem. For example, the vectors in Figs. 3(a) and (c) are
both represented by (5, 0)T because the projections of
each vector on the x and y axes are 5 and 0, respec-
tively, even though the coordinate axes (and vectors)
in Fig. 3(c) are tilted with respect to Fig. 3(a).

Vector multiplication can produce two different
results. If u and v are column vectors, then the product
uTv is the dot product (inner product) of the vectors

Figure 1 Examples of 2D diffusion ellipses and ADC
“peanuts.” In each case the dotted shape shows the root
mean squared displacement (�2Dt) in each direction, and
the solid shape shows the ADC that would be measured in
that direction with t � 1/2. The trace of the tensor has the
same value in each of the three cases shown. Because �2Dt
and D have different units, the ellipse has been scaled to fit
onto the ADC plots. All ellipses are plotted with the same
scale, and all “peanuts” are plotted with the same scale. (a)
Isotropic diffusion, with ADC � 4 in each direction. The
ellipse and the ADC “peanut” have spherical shapes. (b)
Anisotropic diffusion, with ADC � 6 in the x direction and
2 in the y direction. (c) Unidirectional diffusion, with
ADC � 8 in the x direction and 0 in the y direction.
Although there is no diffusion in the y direction, a measure-
ment anywhere but along the y axis results in a nonzero
measured ADC given by the projection of diffusion in the x
direction onto the chosen direction (Eq. [2]).

Figure 2 Examples of several vectors, each with magni-
tude 5.
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uTv � vTu � u � v � v � u � �ux uy uz��vx

vy

vz

�
� �vx vy vz��ux

uy

uz

� � uxvx � uyvy � uzvz [3]

In contrast, uvT yields a 3 � 3 matrix:

uvT � �ux

uy

uz

��vx vy vz� � �uxvx uxvy uxvz

uyvx uyvy uyvz

uzvx uzvy uzvz

� [4]

If u � v, this matrix is called a dyadic tensor (41).

Vector Rotation in Two Dimensions

Physicists conventionally consider an object to be fixed
in space, while the observer can choose an arbitrary
reference frame (coordinate system). A rotation is de-
scribed as rotating a coordinate system relative to an

object (see Fig. 3[a]). However, a vector also may
change over time with respect to a fixed reference frame.
For example, MR physicists and spectroscopists are ac-
customed to visualizing vectors moving from the z axis
to the xy plane, and then precessing in the xy plane, of a
reference frame that is rotating near the Larmor fre-
quency. In this visualization the reference frame is fixed,
and the isochromat vectors move. For example, rotation
of a reference frame through an angle 	� (see Figs.
3[a] and [b]) can be visualized as rotating a vector
through an angle 
� (see Figs. 3[c] and [d]). Math-
ematically, the two methods produce the same result:
the vector (5, 0)T before the rotation becomes (3, 4)T

after the rotation. We begin by looking at 2D vectors,
and then progress to 3D vectors.

Consider the vectors (3, 	4)T and (5, 0)T in Figs.
4 and 5. An off-axis vector can be represented as the
sum of an x-axis vector plus a y-axis vector, for
example (see Figs. 4 and 5):

�3, 	4�T � �3, 0�T � �0, 	4�T [5]

Figure 3 Visualization of 2D vector rotation. (a) and (b) Visualization of the reference frame
rotating while the vector stays in place. The vector (5, 0)T along the x axis in (a) becomes the vector
(3, 4)T after the reference frame rotates through an angle 	�. (c) and (d) Visualization of the vector
rotating in a fixed reference frame. The vector (5, 0)T along the x axis in (c) rotates through an angle
� to the position (3, 4)T in a fixed xy reference frame.
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In general,

V � Vx � Vy � �Vx, 0�T � �0, Vy�
T [6]

The formula for the result of rotating the refer-
ence frame with respect to a vector V can be

derived by considering the effect on each individual
component of V (see Figs. 4 and 5). If the vector (3,
	4)T is the starting point and (0, 5 )T is the end
point, the angular difference between them is �,
where sin� � 0.8 and cos� � 0.6. Rotation of the
reference frame through an angle 	� (see Fig. 5)
can be represented by a rotation matrix, which is

Figure 4 Calculating a 2D vector rotation by calculating the effect on each individual component.
The rotation is visualized as the vector rotating in a fixed xy reference frame. The vector (3, 	4)T

in (a) can be decomposed into x and y components, (3, 0)T and (0, 	4)T in (b). In (c), each
component vector rotates through an angle �, resulting in new x and y components. (d) The resultant
x and y components are summed to yield the final result (5, 0)T.
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designated R(	�). When the object (in this case, a
vector) is visualized as being rotated through an
angle � (see Fig. 4), the rotation matrix is desig-
nated Ro(�), and clearly

R�	�� � Ro��� [7]

Consider the visualization of the vector rotating
through an angle � in a fixed reference frame (see Fig.
4[c]). Thus, Vx along the x axis becomes Vx cos� along
the x axis plus Vx sin� along the y axis. Similarly, Vy

along the y axis becomes Vy cos� along the y axis plus
	Vy sin� along the x axis.

Figure 5 Calculating a 2D vector rotation by calculating the effect on each individual component.
The rotation is visualized as the vector staying in place while the xy reference frame rotates. The
vector (3, 	4)T in (a) can be decomposed into x and y components, (3, 0)T and (0, 	4)T in (b). In
(c), the reference frame of each component vector rotates through an angle 	�, resulting in new x
and y components. (d) The resultant x and y components are summed to yield the final result (5, 0)T.
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Vxı̂ � 3ı̂ 3 Vxcos �ı̂ � Vxsin �ĵ � 1.8ı̂ � 2.4ĵ [8]

Vyĵ � 	4ĵ 3 Vycos �ĵ � Vysin �ı̂ � 	2.4ĵ � 3.2ı̂

[9]

where ı̂ and ĵ are unit vectors along the x and y axes,
respectively. The new vector coordinates (V�x, V�y) are
found by summing the components on each axis, ı̂ for
V�x and ĵ for V�y (see Fig. 4[d]):

V�x � Vxcos� � Vysin� � 1.8 � 3.2 � 5 [10]

V�y � Vxsin� � Vycos� � 2.4 � 2.4 � 0 [11]

We can represent this rotation by a rotation matrix
Ro(�), so that V� � Ro(�)V:

V� � �V�x
V�y
� � �cos� 	sin�

sin� cos� ��Vx

Vy
� � Ro���V [12]

We can derive the same equation by visualizing the
reference frame as rotating through an angle 	� rel-
ative to the vector (Fig. 5). Thus, Ro(�) � R(	�),
consistent with Eq. [7].

The transpose of this rotation matrix is also its
inverse and corresponds to rotation in the opposite
direction:

R��� � Ro�	�� � � cos� sin�
	sin� cos�� [13]

R�	�� � Ro��� � �cos� 	sin�
sin� cos� � [14]

RT��� � R	1��� � R�	�� � Ro��� [15]

Because most people find it easier to visualize a fixed
reference frame and a moving vector, the examples
below use that convention. Keep in mind that, tech-
nically, it is the reference frame that moves, not the
vector. Phrases such as “after rotation through an
angle �” can be confusing, because it is not clear
whether the reference frame rotated through the angle
�, or the vector rotated through the angle �. To avoid
confusion, one can give the actual rotation matrices,
state the initial and final vector positions, or specify
whether the reference frame or vector rotated though
the angle �.

Vector Rotation in Three Dimensions

In three dimensions, a rotation axis must be specified.
In two dimensions, the rotation is implicitly about the

z axis. Rotation of a reference frame by an angle 	�
about the x, y, or z axis is given by the following
matrices:

R�x, 	�� � Ro�x, �� � �1 0 0
0 cos� 	sin�
0 sin� cos�

� [16]

R�y, 	�� � Ro�y, �� � � cos� 0 sin�
0 1 0

	sin� 0 cos�
� [17]

R�z, 	�� � Ro�z, �� � �cos� 	sin� 0
sin� cos� 0

0 0 1
� [18]

A few properties of rotation matrices are worth
mentioning. First, the transpose of a rotation matrix
equals the inverse of the matrix, RT � R	1 (Eq. [15]).
This is true because the column vectors of a rotation
matrix form an orthonormal set—each vector has a
magnitude � 1 (the dot product of each vector with
itself � 1), and the dot product with the other two
vectors equals 0—and the row vectors form a differ-
ent orthonormal set. Thus, the consecutive application
of a rotation and its transpose (its inverse) produces
no net effect:

RR	1 � R	1R � RRT � RTR � I [19]

where I is the identity matrix (1s along the diagonal,
0s elsewhere).

Second, the inverse of a multiple-rotation opera-
tion, for example R1 R2, is the inverse operations
performed in the reverse order:

�R1R2�
	1 � �R1R2�

T � R2
	1R1

	1 � R2
TR1

T [20]

because

R2
	1R1

	1R1R2 � R1R2R2
	1R1

	1 � I [21]

Third, when two or more rotations are performed
consecutively, a single overall rotation matrix can be
determined by multiplying the matrices together. The
matrix representing the first rotation is on the right,
and the subsequent rotation matrices are added on the
left. For example, if a rotation is visualized as the
vector rotating first about the y axis through an angle
�, then about the z axis through an angle , the overall
rotation matrix is Ro(z, ) Ro(y, �) � R(z, 	) R(y,
	�), and application of Eqs. [17] and [18] yields
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R�z, 	��R�y, 	��

� �cos� cos� 	sin� cos� sin�
sin� cos� cos� sin� sin�
	sin� 0 cos�

� [22]

Equation [20] shows that the transpose of this matrix
is

�R�z, 	�R�y, 	���T � R�y, ��R�z, � [23]

which represents the reverse rotations in reverse or-
der. Therefore, the matrix for the same rotations per-
formed in the reverse order is the transpose of the
original rotation matrix with the angles �,  replaced
by negative angles 	�, 	:

R�y, 	��R�z, 	� � �R�z, �R�y, ���T [24]

R�y, 	��R�z, 	��

� � cos� cos� 	cos� sin� sin�
sin� cos� 0

	sin� cos� sin� sin� cos�
� [25]

In general, R1 R2 is not equal to R2 R1 unless the
same rotation axis is used in both cases, or one rota-
tion is through an angle of 2n�, where n is an integer.

Fourth, after a rotation matrix is applied to a vector
aligned along one of the orthogonal axes (x, y, or z),
the resulting vector is parallel to the corresponding
column vector of the rotation matrix. In this example,
after the rotation operation R(z, 	) R(y, 	�) (Eq.
[22]), the vector (1, 0, 0)T becomes (coscos�,

sincos�, 	sin�)T; the vector (0, 1, 0)T becomes
(	sin, cos, 0)T; and the vector (0, 0, 1)T becomes
(cossin�, sinsin�, cos�)T.

Rotation of a Vector to a Desired Position
Specified by Angles

Consider the problem of finding the rotation matrix
such that a vector V originally aligned with the z axis
(Fig. 6[a]) will become the vector V�, so that V� will
form an angle � with the z� axis, and its projection in
the x�y� plane will form an angle  with the x� axis
(see Fig. 6). This rotation matrix is given in Eq. [22].
To calculate this result, one option is to visualize the
vector V rotating through an angle � about the y axis
so that V� lies in the x�z� plane (see Fig. 6[a]), Ro(y,
�), then rotating V� through an angle  about the z�
axis (see Fig. 4), Ro(z, ). This yields Ro(z, ) Ro(y,
�), and application of Eq. [7] shows that this equals
R(z, 	) R(y, 	�). There are other ways to visualize
this rotation, and they all give the same mathematical
result.

Rotation of a Vector to a Desired Position
Specified by Cartesian Coordinates

The discussion so far has focused on formulas for
rotation through a known angle about a specified axis
of an orthogonal coordinate system. A vector can be
rotated to any desired position by the application of
two properly selected rotations. To rotate a vector
from any given axis, say the z axis, to a desired
position, it is only necessary that the corresponding

Figure 6 Three-dimensional rotation visualized as a vector rotating in a fixed xy reference frame.
(a) From the z axis, the vector V rotates about y axis by angle �, becoming the vector V�. (b) The
vector V� rotates about z axis by angle  to the final position, V�.
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column (in this case, the third column) of the rotation
matrix be parallel to the desired ending position. The
other two columns must complete the orthonormal
set, resulting in an infinite set of rotation matrices that
will accomplish the desired rotation. It is also possible
to specify that a vector along another axis, say the x
axis, be simultaneously rotated to another specified
position, as long as it remains orthogonal to the vector
that began on the z axis. The third axis of the rotated
reference frame will be given by the proper cross
product of the first two axes (x � y�z, y � z�x, z �
x�y). For example, if a vector along the z axis is to
end up at (2/3, 2/3, 1/3)T, and a vector along the x axis
is to end up at (1/2)(	21/2, 21/2, 0)T, then a vector
along the y axis will end up at (21/2/6)(	1, 	1, 4)T,
and the rotation matrix is given by

R � �	
�2

2
	

�2

6
2/3

�2

2
	

�2

6
2/3

0
2�2

3
1/3

� [26]

The rotation matrix in Eq. [26] is one possible rotation
matrix that moves a vector from the z axis to the
desired position. Other possible rotation matrices
would correspond to an initial rotation about the z axis
by some angle �. This rotation would not affect the
vector along the z axis but would mix the x and y axes
so that vectors initially aligned with the x or y axis
would end up in different positions.

Important Points in “Vectors and Vector
Rotations”

The 2D rotation matrices are in Eqs. [13] and [14].
The 3D rotation matrices are in Eqs. [16–18]. The
transpose of a rotation matrix is its inverse (Eqs. [15],
[19], and [20]). Rotations about more than one axis
can be expressed as a series of individual rotations (as
in Eq. [22]), or by a rotation matrix whose columns
are the desired final position of a vector starting on the
x, y, or z axis (as in Eq. [26]). The inverse of a
multiple-rotation operation is the set of inverse oper-
ations performed in the reverse order (Eq. [20]).

TENSORS AND TENSOR ROTATIONS

The purposes of this section are 1) to explain how the
rotation matrices that were derived for vectors can be
used to describe the rotation of an object, represented

by a tensor, in a fixed reference frame (coordinate
system), or to express a fixed tensor in reference
frames that are rotated with respect to each other; and
2) to show formulas for some rotationally invariant
properties of the tensor that will be used to evaluate
and compare tensors, including the mean diffusivity
and the degree of anisotropy.

Tensors

As discussed above, the diffusion ellipsoid is repre-
sented by a tensor, which can be expressed as a
symmetric 3 � 3 matrix. Although the diffusion el-
lipsoid can be represented by the three tensor eigen-
vectors (ellipsoid axis directions) and their associated
eigenvalues (which are proportional to the squares of
the ellipsoid hemiaxis lengths), these are not mea-
sured directly. Instead, we measure the tensor and
then derive the eigenvalues and eigenvectors from the
tensor.

The three orthogonal axes of the ellipsoid could be
aligned with the x, y, and z axes of the reference
frame, or the ellipsoid could be tilted with respect to
two or three axes. Rotation of the ellipsoid by 180°
about any principal axis produces an equivalent ellip-
soid. In two dimensions, a diffusion ellipse can be
aligned with the x and y axes, or it can be tilted. The
mathematical representation of the ellipsoid (or el-
lipse) must include information about the lengths of
the axes and their spatial orientation.

When a diffusion ellipsoid (or ellipse) is aligned
with the reference frame axes (the principal axis sys-
tem), the tensor describing the ellipsoid (ellipse) is
diagonal. The diagonal elements, which are the eig-
envalues of the tensor, denoted by �, are proportional
to the squares of the lengths of the ellipsoid (ellipse)
axes. This was explained in the text around Eq. [2].
When the ellipsoid (ellipse) is rotated with respect to
the reference frame, off-diagonal elements appear.

Tensor Rotation in Two Dimensions

Tensor rotation involves multiplication on the left by
a rotation matrix and on the right by the transpose
(inverse) of the rotation matrix:

�D�xx D�xy

D�yx D�yy
� � �a c

b d��Dxx Dxy

Dxy Dyy
��a b

c d� [27]

Expansion of Eq. [27] yields

D�xx � a2Dxx � c2Dyy � 2acDxy [28]
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D�xy � D�yx � �ad � bc�Dxy � abDxx � cdDyy

[29]

D�yy � d2Dyy � b2Dxx � 2bdDxy [30]

Consider a 2D diffusion ellipse aligned with the x and
y axes, with Dx � 6 and Dy � 2. This can be
represented by the tensor

�Dxx Dxy

Dxy Dyy
� � �6 0

0 2� [31]

The eigenvalues are 6 and 2, and the eigenvectors are
(1, 0)T and (0, 1)T. Rotation of a reference frame
through an angle 	�, which can be visualized as
rotating the ellipse through an angle �, is accom-
plished by multiplying the tensor by R(	�) on the left
and by RT(	�) on the right:

�D�xx D�xy

D�yx D�yy
� � R�	��DRT�	�� � �cos� 	sin�

sin� cos� �
� �Dxx Dxy

Dxy Dyy
�� cos� sin�
	sin� cos�� [32]

The result is

D�xx � Dxxcos2� � Dyysin2� � Dxy2 sin� cos�

[33]

D�xy � D�yx � Dxy�cos2� � sin2��

� �Dxx � Dyy�sin� cos� [34]

D�yy � Dyycos2� � Dxxsin2� � Dxy2 sin� cos�

[35]

The rotation angle required to convert a nondiagonal
tensor to a diagonal tensor, �diag, can be calculated by
setting D�xy � 0 in Eq. [34]. Remembering that Eqs.
[33–35] describe rotation of the reference frame
through an angle 	�,

Dxycos 2�diag � ��Dxx � Dyy�/2�sin 2�diag � 0 [36]

tan 2�diag � 2Dxy/�Dyy � Dxx� [37]

	�diag � �arctan�2Dxy/�Dxx � Dyy���/2 [38]

Thus, rotation of the reference frame through the
angle 	�diag, as defined in Eq. [38], will produce a
diagonal tensor. Clearly, the initial nondiagonal tensor

had been produced by rotation of the reference frame
through the angle 	 �rot, where

	�rot � �diag � �arctan�2Dxy/�Dyy � Dxx���/2 [39]

For example, rotating the reference frame of the ten-
sor in Eq. [31] by 	�rot � 	30°, which can be
visualized as rotating the ellipse by �rot � 30°, pro-
duces

�0.866 	0.5
0.5 0.866��6 0

0 2��0.866 0.5
	0.5 0.866�

� � 5 1.732
1.732 3 � [40]

The calculated rotation angle to produce a diagonal
tensor is

	�diag � �arctan�3.464/2��/2 � 30� [41]

The original rotation angle of the reference frame is
then calculated to be 	�rot � �diag � 	30°.

Consider what happens when a multiple of the
identity matrix, kI, is added to a tensor, D. Each
diagonal element increases by the same amount, k,
and the off-diagonal elements do not change. This
effect remains the same even when the tensor is
rotated, because

R�D � kI�RT � RDRT � kI [42]

Geometrically, this corresponds to changing the
length of each ellipsoid axis (which is proportional to
the square root of the corresponding eigenvalue) with-
out changing the axis directions (eigenvectors). Be-
cause all the eigenvalues change by the same amount,
the differences between the eigenvalues to not
change.

Rotation of a 2D tensor through any angle has
several noteworthy properties:

1. The rotated 2D tensor is symmetric, so the
off-diagonal elements are equal.

2. Rotation by �
180° is the same as rotation by
�.

3. Rotation by 90° results in the x and y diagonal
elements being exchanged, and Dxy becomes
	Dxy.

4. The maximum possible value of the off-diago-
nal element is (�1 	 �2)/2, where �1 � �2.

5. The off-diagonal element cannot be greater than
the smallest diagonal element.
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6. For any rotation angle, the diagonal elements
range from �2 to �1, never beyond these limits.

7. For a given pair of eigenvalues, as the magni-
tude of the off-diagonal element, �Dxy�, in-
creases, the magnitude of the difference be-
tween the two diagonal elements, �Dxx 	 Dyy�,
decreases, and vice versa.
For positive real eigenvalues, the following
properties also apply.

8. The diagonal elements are positive, Dxx � 0 and
Dyy � 0.

9. The determinant of D is positive, det(D) � 0, or
DxxDyy � Dxy

2.

Some 2D diffusion ellipses and their associated 2D
tensors are shown in Fig. 7.

Tensor Rotation in Three Dimensions

The general formula for rotation of a 3D tensor is

�D�xx D�xy D�xz

D�xy D�yy D�yz

D�xz D�yz D�zz

� � �a d g
b e h
c f i

��Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

�
� �a b c

d e f
g h i

� [43]

The result is

D�xx � a2Dxx � d2Dyy � g2Dzz � 2adDxy

� 2agDxz � 2dgDyz [44]

D�yy � b2Dxx � e2Dyy � h2Dzz � 2beDxy

� 2bhDxz � 2ehDyz [45]

D�zz � c2Dxx � f2Dyy � i2Dzz � 2cfDxy

� 2ciDxz � 2fiDyz [46]

D�xy � abDxx � deDyy � ghDzz � �ae � bd�Dxy

� �ah � bg�Dxz � �dh � eg�Dyz [47]

D�xz � acDxx � dfDyy � giDzz � �af � cd�Dxy

� �ai � cg�Dxz � �di � fg�Dyz [48]

D�yz � bcDxx � efDyy � hiDzz � �bf � ce�Dxy

� �bi � ch�Dxz � �ei � fh�Dyz [49]

For a diagonal tensor �, this becomes

Figure 7 Some examples of 2D tensors and their associ-
ated ellipses. The first tensor and the last two tensors were
shown in Fig. 1, along with their associated ADC “peanuts.”
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�D�xx D�xy D�xz

D�xy D�yy D�yz

D�xz D�yz D�zz

� � �a d g
b e h
c f i

���x 0 0
0 �y 0
0 0 �z

�
� �a b c

d e f
g h i

� [50]

where

D�xx � a2�x � d2�y � g2�z [51]

D�yy � b2�x � e2�y � h2�z [52]

D�zz � c2�x � f2�y � i2�z [53]

D�xy � ab�x � de�y � gh�z [54]

D�xz � ac�x � df�y � gi�z [55]

D�yz � bc�x � ef�y � hi�z [56]

Notice that the results of Eqs. [51–56], which apply
only to diagonal tensors, do not change when one or
more column of the rotation matrix (a, b, and c; or d,
e, and f; or g, h, and i ) are multiplied by 	1. This
property is not generally true for rotations of nondi-
agonal tensors.

Rotation of a 3D tensor through any angle about
any axis or combination of axes has the following
properties:

1. The rotated tensor is symmetric, D�ij � D�ji for
i � (x, y, z ) and j � (x, y, z ).

2. Rotation by �
180° about any ellipsoid axis is
the same as rotation by �.

3. Rotation by 90° about the x, y, or z axis results
in the other two diagonal elements (e.g., Dyy

and Dzz for the x axis) being exchanged, and the
corresponding off-diagonal element (Dyz) being
multiplied by 	1.

4. The diagonal elements range from �min to �max,
never beyond these limits.
For positive real eigenvalues, the following
properties also apply.

5. The diagonal elements are positive: Dxx � 0,
Dyy � 0, and Dzz � 0.

6. The determinant of D is positive, det(D) � 0.
7. For all i and j, Dii 
 Djj � 2Dij.
8. The off-diagonal elements are all smaller than

the largest diagonal element.

The same rotation matrices that were derived for
vector rotations can be applied to tensor rotations.

This includes rotations by specific angles about spec-
ified axes, and rotations so that vectors initially along
the x, y, and z axes end up in specified other positions.
If the original tensor is diagonal, then the columns of
the rotation matrix are the three eigenvectors of the
rotated tensor.

In computer simulations it is common to begin
with a diagonal tensor whose diagonal elements are
the eigenvalues, representing a diffusion ellipsoid
aligned with the gradient x, y, z reference frame:

� � ��x 0 0
0 �y 0
0 0 �z

� [57]

This ellipsoid is then rotated to a desired orientation,
or to random orientations. Typically the ellipsoid is
rotated about its longest axis by an angle �, then the
long axis is rotated to a desired orientation with re-
spect to the x, y, and z axes. If the longest axis is
initially along the z axis, the resulting rotation matrix
can be represented as

R � R�z, 	�R�y, 	��R�z, 	�� [58]

R � �cos� 	sin� 0
sin� cos� 0

0 0 1
�� cos� 0 sin�

0 1 0
	sin� 0 cos�

�
� �cos � 	sin � 0

sin � cos � 0
0 0 1

� [59]

and the resulting tensor is given by

D � R�RT � R�z, 	�R�y, 	��R�z, 	��

� �R�z, ��R�y, ��R�z, � [60]

where the individual rotation matrices are shown in
Eqs. [16–18]. The final result is identical to published
rotation formulas, which reversed the definitions and
positions of R and RT (40, 43).

Rotational Invariants

Several properties of the diffusion tensor are rotation-
ally invariant (they do not change when the tensor is
rotated through any angle �). Therefore, these prop-
erties can be calculated for any tensor orientation,
without tensor diagonalization. Many of these rota-
tional invariants are useful in deriving quantitative
information from the diffusion tensor, including the
mean diffusivity and several measurements of anisot-
ropy, and in comparing different tensors and ellip-
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soids. These properties therefore deserve further dis-
cussion here.

The 3D invariants are expressed in terms of the
eigenvectors in Table 1, and in terms of the tensor
elements in Table 2. The 2D invariants are expressed
in terms of the eigenvectors in Table 3, and in terms
of the tensor elements in Table 4. Some of these
invariants, which include the trace (the sum of the
diagonal elements) and the determinant, are useful in
calculating eigenvalues and eigenvectors, and in de-
fining anisotropy indices. The three invariants I1, I2,
and I3 have been called the “scalar invariants” (4 ) and
the “principal invariants” (44, 45), and have also been
named J1, J2, and J3 (46). They have been defined in
terms of the eigenvalues (4, 44, 47) and in terms of
the tensor elements (18, 44, 46, 48).

Other invariants can be expressed in terms of these
three scalar or principal invariants. For example, the
tensor dot product is analogous to the vector dot
product:

D:D � �
i�1

3 �
j�1

3

Dij
2 � �1

2 � �2
2 � �3

2 [61]

D:D � Dxx
2 � Dyy

2 � Dzz
2 � 2�Dxy

2 � Dxz
2 � Dyz

2 � [62]

D:D is often considered another scalar or principal
invariant, I4 (or I3 in 2D), although it can be expressed
in terms of I1 and I2 (45, 48, 49):

D:D � I4 � I1
2 � 2I2 [63]

D:D � I3 � I1
2 � 2I2 �2D� [64]

D:D can also be expressed in terms of D2:

D2 � DD � �Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

��Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

�
[65]

Table 1 Rotationally Invariant Parameters of 3D Diffusion Tensors Expressed in Terms of Eigenvalues

Parameter Synonyms Eigenvalue Formula

I1 Trace �1 
 �2 
 �3

I2 �1�2 
 �2�3 
 �3�1

I3 Determinant �1�2�3

I4 I1
2 	 2I2 � D:D � Trace(D2) �1

2 
 �2
2 
 �3

2

Dav I1/3; “A” (�1 
 �2 
 �3)/3
Dsurf (I2/3)1/2; “J” [(�1�2 
 �2�3 
 �3�1)/3]1/2

Dvol I3
1/3; “G” (�1�2�3)1/3

Dmag (I4/3)1/2 � (3Dav
2 	 2Dsurf

2 )1/2 [(�1
2 
 �2

2 
 �3
2)/3]1/2

Dan:Dan 6Dav
2 	 2I2 (�1 	 Dav)2 
 (�2 	 Dav)2 
 (�3 	 Dav)2

“K” I2/I1 (�1�2 
 �2�3 
 �3�1)/Dav

“H” 3I3/I2 3�1�2�3/(�1�2 
 �2�3 
 �3�1)

Note: Dan is the anisotropic part of D (Eq. [67]).

Table 2 Rotationally Invariant Parameters of 3D Diffusion Tensors Expressed in Terms of Tensor Elements

Parameter Tensor Element Formula

I1 Dxx 
 Dyy 
 Dzz

I2 DxxDyy 
 DyyDzz 
 DzzDxx 	 (Dxy
2 
 Dxz

2 
 Dyz
2 )

I3 DxxDyyDzz 
 2DxyDxzDyz 	 (DzzDxy
2 
 DyyDxz

2 
 DxxDyz
2 )

I4 Dxx
2 
 Dyy

2 
 Dzz
2 
 2(Dxy

2 
 Dxz
2 
 Dyz

2 )
Dav (Dxx 
 Dyy 
 Dzz)/3
Dsurf {[DxxDyy 
 DyyDzz 
 DzzDxx 	 (Dxy

2 
 Dxz
2 
 Dyz

2 )]/3}1/2

Dvol [DxxDyyDzz 
 2DxyDxzDyz 	 (DzzDxy
2 
 DyyDxz

2 
 DxxDyz
2 )]1/3

Dmag {[Dxx
2 
 Dyy

2 
 Dzz
2 
 2(Dxy

2 
 Dxz
2 
 Dyz

2 )]/3}1/2

Dan:Dan (Dxx 	 Dav)2 
 (Dyy 	 Dav)2 
 (Dzz 	 Dav)2 
 2Dxy
2 
 2Dxz

2 
 2Dyz
2

“K” [(DxxDyy 
 DyyDzz 
 DzzDxx) 	 (Dxy
2 
 Dxz

2 
 Dyz
2 )]/(Dxx 
 Dyy 
 Dzz)

“H” 3[DxxDyyDzz 
 2DxyDxzDyz 	 (DzzDxy
2 
 DyyDxz

2 
 DxxDyz
2 )]/[(DxxDyy 


DyyDzz 
 DzzDxx) 	 (Dxy
2 
 Dxz

2 
 Dyz
2 )]

Note: Dan is the anisotropic part of D (Eq. [67]).
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D:D � Trace�D2� [66]

When the isotropic part of the tensor, Dav I, is
subtracted from the whole tensor, D, the remainder is
considered to be the anisotropic part of the tensor. The
anisotropic part of D has been indicated by italics, D,
which can lead to confusion when formulas are incor-
rectly typeset (50), and by the letter A (51), which
could be confused with the cylindrical symmetry an-
isotropy index A, which will be defined in Part II. An
alternative is the notation Dan (44), so that

Dan � D � DavI [67]

Dan � �Dxx � Dav Dxy Dxz

Dxy Dyy � Dav Dyz

Dxz Dyz Dzz � Dav

� [68]

The discussion around Eq. [42] shows that D and Dan

have the same eigenvectors, and this has also been
shown by Basser and Pierpaoli (52). In addition, the
tensor dot product of Dan, Dan:Dan, is rotationally
invariant (52). It can be shown (50) that in 3D,

Dan:Dan � D:D � 3Dav
2 � D:D � I1

2/3 [69]

Dan:Dan � 6Dav
2 � 2I2 [70]

Dan:Dan � �2/3��Dxx
2 � Dyy

2 � Dzz
2 � DxxDyy � DxxDzz

� DyyDzz� � 2�Dxy
2 � Dxz

2 � Dyz
2 � [71]

Eq. [70] follows from Eqs. [63] and [69] and the
definition of I1. Dan:Danmay be considered to be pro-
portional to the variance of the eigenvalues in 3D or
2D (52):

��
2 � Dan:Dan/3 � ���1 � �av�

2 � ��2 � �av�
2

� ��3 � �av�
2�/3 [72]

��
2 � Dan:Dan/2 � ���1 � �av�

2

� ��2 � �av�
2�/2 �2D� [73]

Tensor dot products can be calculated between two
different tensors, similar to the vector dot product.
These are also rotationally invariant, in the sense that
the result does not change if the same rotation is
applied to both tensors:

D:D� � DxxD�xx � DyyD�yy � DzzD�zz

� 2�DxyD�xy � DxzD�xz � DyzD�yz� [74]

Dan:D�an � �Dxx � Dav��D�xx � D�av�

� �Dyy � Dav��D�yy � D�av� � �Dzz � Dav��D�zz � D�av�

� 2�DxyD�xy � DxzD�xz � DyzD�yz� [75]

Several formulas involving rotational invariants have
been published, including Eqs. [76] (13, 50) and [77]
(18).

Dan:D�an � D:D� � 3DavD�av � D:D� � I1I�1/3 [76]

Table 3 Rotationally Invariant Parameters of 2D Diffusion Tensors Expressed in Terms of Eigenvalues

Index Synonyms Eigenvalue Formula

I1 Trace �1 
 �2

I2 Determinant �1�2

I3 I1
2 	 2I2 � D:D � Trace(D2) �1

2 
 �2
2

Dav I1/2 � “A” (�1 
 �2)/2
Darea I2

1/2 � “J”, “G” (�1�2)1/2

Dmag (I3/2)1/2 � (2Dav
2 	 Darea

2 )1/2 [(�1
2 
 �2

2)/2]1/2

Dan:Dan (�1 	 Dav)2 
 (�2 	 Dav)2

H, K 2I2/I1 2�1�2/(�1 
 �2)

Note: Dan is the anisotropic part of D (Eq. [67]).

Table 4 Rotationally Invariant Parameters of 2D
Diffusion Tensors Expressed in Terms of Tensor
Elements

Index Tensor Element Formula

I1 Dxx 
 Dyy

I2 DxxDyy 	 Dxy
2

I3 Dxx
2 
 Dyy

2 
 2Dxy
2

Dav (Dxx 
 Dyy)/2
Darea (DxxDyy 	 Dxy

2 )1/2

Dmag [(Dxx
2 
 Dyy

2 
 2Dxy
2 )/2]1/2

Dan:Dan (Dxx 	 Dav)2 
 (Dyy 	 Dav)2 
 2Dxy
2

H, K 2(DxxDyy 	 Dxy
2 )/(Dxx 
 Dyy)

Note: Dan is the anisotropic part of D (Eq. [67]).

Concepts in Magnetic Resonance Part A (Bridging Education and Research) DOI 10.1002/cmr.a

DIFFUSION TENSOR IMAGING MATHEMATICS: PART I 115



I2 � �Trace2�D� � Trace�D2��/2 [77]

Ulug and van Zijl defined Dav, Dsurf, Dvol, and
Dmag in terms of I1, I2, I3, and I4, scaled and modified
to have the same units as diffusion coefficients
(length2/time) (48). Bahn used single letters of the
alphabet to define A (arithmetic mean � Dav), G
(geometric mean � Dvol), H (harmonic mean), J
(Dsurf), and K, and stated that A � J � G (Dav �
Dsurf � Dvol) (47). Presumably the names J and K
were chosen because they follow I in the alphabet.
(These names should not be confused with two func-
tions that will be discussed in Part II: The Heaviside
Unit-Step Function, H, and the cylindrical symmetry
anisotropy index, A.)

Important Points in “Tensors and Tensor
Rotations”

The rotation matrices that were derived for vectors
can be applied to tensors, but it is also necessary to
multiply on the right by the transpose (which is the
inverse) of the rotation matrix (Eqs. [27], [32], [43],
[50], and [60]). As with vectors, rotations can be
specified as a rotation through a specified angle about
a specified axis, or a rotation to a desired final position
for vectors initially along the x, y, and z axes. The
expanded results of tensor (matrix) rotation are shown
in Eqs. [27–30] (2D) and Eqs. [43–56] (3D). Some of
the rotationally invariant properties of a tensor are
shown in Tables 1–4.

CALCULATION OF EIGENVECTORS AND
EIGENVALUES

The purposes of this section are to explain 1) the
meaning of the eigenvectors and eigenvalues of the
diffusion tensor, 2) how the eigenvectors and eigen-
values can be calculated analytically, and 3) that they
represent the directions of the principal axes of the
diffusion ellipsoid and the squares of the hemiaxis
lengths, respectively. This allows the size, shape, and
orientation of the diffusion ellipsoid to be calculated
directly from the diffusion tensor.

General Eigenvector Equations

Consider a diffusion ellipsoid perfectly aligned with
the gradient reference frame, so that its tensor is
diagonal (Eq. [57]). The diagonal elements �1, �2, and
�3 are called eigenvalues. The root mean squared
displacement along each of the three principle axes of

the ellipsoid is proportional to (2�it)
1/2, where t is the

diffusion time. The unit vectors that point along the
ellipsoid axes—(1, 0, 0)T, (0, 1, 0)T, and (0, 0, 1)T—
are called eigenvectors. Each eigenvector corresponds
to one eigenvalue. When the ellipsoid is rotated, the
tensor has the same eigenvalues and different eigen-
vectors. The eigenvalues and eigenvectors usually are
not immediately obvious from the tensor. Eigenvec-
tors and eigenvalues are related by the fact that when
the tensor is multiplied by an eigenvector, the result is
the same eigenvector multiplied by the eigenvalue:

Dεi � �iεi � �iIεi i � �1, 2, 3� [78]

�Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

��εix

εiy

εiz

� � �i�εix

εiy

εiz

� [79]

This is matrix notation for the following equations:

Dxxεix � Dxyεiy � Dxzεiz � �iεix [80]

Dxyεix � Dyyεiy � Dyzεiz � �iεiy [81]

Dxzεix � Dyzεiy � Dzzεiz � �iεiz [82]

Equation [78] can be rewritten in matrix form as

DE � E� [83]

�Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

��ε1x ε2x ε3x

ε1y ε2y ε3y

ε1z ε2z ε3z

� � �ε1x ε2x ε3x

ε1y ε2y ε3y

ε1z ε2z ε3z

�
� ��1 0 0

0 �2 0
0 0 �3

� [84]

where E, the eigenvector matrix, is produced by writ-
ing the orthonormal eigenvectors as column vectors,
and � is the eigenvalue matrix (Eq. [57]) (4, 52).
Because the three eigenvectors are orthonormal, E has
the properties of a rotation matrix, including

E	1 � ET [85]

Equation [83] can therefore be used to calculate D
from �, or � from D:

DEET � D � E�ET [86]

ETE� � � � ETDE [87]
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Equation [86] shows how to produce a tensor with any
desired eigenvectors from a diagonal tensor with speci-
fied eigenvalues. Comparison with Eqs. [32] and [60]
shows that the reference frame is rotated in the direction
away from the eigenvectors, which can be visualized as
the tensor (ellipse) rotating to the eigenvector positions.
Equation [87] shows how to reverse this process and
produce a diagonal tensor (the eigenvalue matrix) by
using the eigenvector matrix to perform the opposite
rotation, rotating the reference frame to the eigenvector
position so that the eigenvectors are aligned with the
axes of the reference frame.

The eigenvalues and eigenvectors can be calcu-
lated by application of Eq. [78]. Subtracting �iIεi

from each side yields

�D � �iI�εi � 0 [88]

�Dxx � �i Dxy Dxz

Dxy Dyy � �i Dyz

Dxz Dyz Dzz � �i

��εix

εiy

εiz

� � �0
0
0
� [89]

This is matrix notation for the following equations:

�Dxx � �i�εix � Dxyεiy � Dxzεiz � 0 [90]

Dxyεix � �Dyy � �i�εiy � Dyzεiz � 0 [91]

Dxzεix � Dyzεiy � �Dzz � �i�εiz � 0 [92]

A set of homogeneous equations like this has a non-
trivial solution only if the determinant of (D 	 �iI) is
zero:

det�D � �iI� � 0 [93]

This results in an n-th order polynomial equation
where n is the matrix dimension. For example, in 2D,
Eq. [93] corresponds to

�Dxx � �i��Dyy � �i� � Dxy
2 � 0 �2D� [94]

and in 3D Eq. [93] corresponds to

�Dxx � �i���Dyy � �i��Dzz � �i� � Dyz
2 �

� Dxy�Dxy�Dzz � �i� � DxzDyz�

� Dxz�DxyDyz � Dxz�Dyy � �i�� � 0 [95]

In the general n-dimensional case, a number of methods
are available for estimating the eigenvalues (53). The
analytic solutions for the 2D quadratic equation and the
3D cubic equation are discussed in the next two sections.

2D Eigenvalues and Eigenvectors

In the 2D case, Eq. [94] can be written as

�2 � I1� � I2 � 0 [96]

where I1 and I2 are two rotationally invariant param-
eters, the trace and the determinant of the tensor (see
Tables 3 and 4). This quadratic equation is easily
solved with the quadratic formula, yielding

�1 � �I1 � �I1
2 � 4I2�

1/ 2�/ 2 [97]

�1 � �Dxx � Dyy � ��Dxx � Dyy�
2

� 4�DxxDyy � Dxy
2 ��1/ 2�/ 2 [98]

�2 � �I1 � �I1
2 � 4I2�

1/ 2�/ 2 [99]

�2 � �Dxx � Dyy � ��Dxx � Dyy�
2

� 4�DxxDyy � Dxy
2 ��1/ 2�/ 2 [100]

The eigenvectors can be determined by applying Eq.
[88] to each eigenvalue. For each eigenvalue this
provides two equations in two unknowns:

�Dxx � �i�εx � Dxyεy � 0 [101]

Dxyεx � �Dyy � �i�εy � 0 [102]

However, these two equations are not independent.
There is not a unique solution because the determinant
in Eq. [93] is zero. This occurs because the length of
an eigenvector is not specified, only its direction and
therefore the ratio εy/εx. The ratio εy/εx can be deter-
mined from either Eq. [101] or [102]:

εy/εx � 	�Dxx � �i�/Dxy [103]

εy/εx � 	Dxy/�Dyy � �i� [104]

The ratios in Eqs. [103] and [104] are equal because
of Eq. [94]. One normalized eigenvector can then be
calculated from Eq. [103] as

ε1 � �1, 	�Dxx � �1�/Dxy�/M2 [105]

where the magnitude of the unnormalized vector is

M2 � �1 � �Dxx � �1�
2/Dxy

2 �1/ 2 [106]

If Dxy � 0, then the tensor was already diagonal, and
the diagonal elements are the eigenvalues. The other
eigenvector can be calculated the same way from Eq.
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[104]. However, since the two eigenvectors must be
orthogonal,

ε2 � ��Dxx � �1�/Dxy, 1�/M2 [107]

Keep in mind that the negative of each eigenvector is
also an eigenvector with the same eigenvalue. Thus,
	ε1 and 	ε2 are also valid eigenvectors.

If the tensor D is already diagonal, this eigenvector
solution fails because of division by 0 in Eq. [103]. In
this case the eigenvectors are along the x and y axis.
If the two eigenvalues are equal (degenerate), the
tensor is always diagonal, and the eigenvectors are not
uniquely defined. A diagonal tensor is unlikely to
arise with actual data, but could arise in computer
simulations with no noise.

In applying Eq. [87] to produce a diagonal tensor,
the result is not changed by replacing ε1 by 	ε1 or ε2

by 	ε2. That is, one or more columns of E (and the
corresponding rows of ET) can be multiplied by 	1
without changing the results of Eqs. [86] and [87].
This is an example of the property mentioned after
Eq. [56]. Therefore, two distinct eigenvector matrices
can be formed, [�ε1, �ε2] and [�ε2, �ε1]. In the
diagonal tensor resulting from application of Eq. [87],
the eigenvalue corresponding to the first eigenvector
will appear as Dxx, and the eigenvalue corresponding
to the second eigenvector will appear as Dyy.

3D Eigenvalues and Eigenvectors

In the 3D case,

�3 � I1�
2 � I2� � I3 � 0 [108]

where the rotational invariants I1, I2, and I3 are de-
fined in Tables 1 and 2. The solution to this cubic
equation is more complex than the 2D solution (53)
but still manageable (44). The sorted eigenvalues
(�1 � �2 � �3) are

�1 � I1/3 � 2v1/ 2cos�� [109]

�2 � I1/3 � 2v1/ 2cos��/3 � � [110]

�3 � I1/3 � 2v1/ 2cos��/3 � � [111]

where

v � �I1/3�
2 � I2/3 � Dan:Dan/6 [112]

s � �I1/3�
3 � I1I2/6 � I3/ 2 [113]

 � arccos�s/v3/ 2�/3 [114]

The third eigenvalue can also be calculated from �3 �
I1 	 �1 	 �2 (44).

The eigenvectors can be determined, as in the 2D
case, by applying Eqs. [90–92] to determine any two
of the three ratios εiy/εix, εiz/εiy, and εix/εiz. Following
the notation of (44), the diagonal elements of D 	 �i

I are defined as

Ai � Dxx � �i; Bi � Dyy � �i; Ci � Dzz � �i

[115]

After setting εiz to an arbitrary value in Eqs. [90] and
[91],

Aiεix � Dxyεiy � 	Dxzεiz [116]

Dxyεix � Biεiy � 	Dyzεiz [117]

Solution of these two equations yields

εix � εiz�DxyDyz � BiDxz�/�AiBi � Dxy
2 � [118]

εiy � εiz�DxyDxz � AiDyz�/�AiBi � Dxy
2 � [119]

εix/εiy � �DxyDyz � BiDxz�/�DxyDxz � AiDyz� [120]

Similar calculations setting εiy or εix to an arbitrary
value yield

εiy/εiz � �DxzDyz � CiDxy�/�DxyDyz � BiDxz� [121]

εiz/εix � �DxyDxz � AiDyz�/�DxzDyz � CiDxy� [122]

The ratios in Eqs. [120–122] are satisfied by setting

εix � �DxyDyz � BiDxz��DxzDyz � CiDxy� [123]

εiy � �DxzDyz � CiDxy��DxyDxz � AiDyz� [124]

εiz � �DxyDxz � AiDyz��DxyDyz � BiDxz� [125]

The normalized eigenvectors can be calculated by
dividing by the magnitude of the eigenvector,

�̂i � �i/��i
T�i � �i/�εix

2 � εiy
2 � εiz

2 [126]

This procedure can be repeated for each eigenvalue.
The third eigenvector can also be calculated from the
cross product of the first two eigenvectors,
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�̂3 � �̂1 � �̂2 � �ε1yε2z � ε2yε1z, ε1zε2x

� ε2zε1x, ε1xε2y � ε2xε1y�
T [127]

As in the 2D case, this eigenvector solution fails if D
is diagonal. In this case the eigenvectors are along the
x, y, and z axes. A diagonal tensor is unlikely to arise
with actual data, but could arise in simulations with
no noise.

As in the 2D case, in applying Eq. [87] to produce
a diagonal tensor, the result is not changed by replac-
ing ε1 by 	ε1, ε2 by 	ε2, or ε3 by 	ε3. Therefore, six
distinct eigenvector matrices can be formed. In the
diagonal tensor resulting from application of Eq. [87],
the eigenvalue corresponding to the first eigenvector
will appear as Dxx, the eigenvalue corresponding to
the second eigenvector will appear as Dyy, and the
eigenvalue corresponding to the third eigenvector will
appear as Dzz. If two or three eigenvalues are equal
(degenerate), there is not a unique eigenvector solu-
tion. Any linear combination of the two degenerate
eigenvectors is also an eigenvector.

Dyadic Tensors

The dyadic tensor was introduced in Eq. [4]. The dyadic
tensor produced from an eigenvector is given by

�i�i
T � �εix

εiy

εiz

��εix εiy εiz� � � εix
2 εixεiy εixεiz

εixεiy εiy
2 εiyεiz

εixεiz εiyεiz εiz
2
�

[128]

An excellent summary of the properties of dyadic
tensors produced from the eigenvectors has been
given (41). These dyadic tensors have been used for
two purposes. First, dyadic tensors are useful when
eigenvectors must be averaged for data analysis (41,
54). Because the sign of the eigenvector is indeter-
minate, summation of eigenvectors may result in par-
tial cancellation. In contrast, the dyadic tensors
formed from εi and 	εi are identical, so summation of
the dyadic tensors does not have this same problem.
The averaged eigenvector can be recovered by calcu-
lating the largest eigenvector of the averaged dyadic
tensor (41). Second, dyadic tensors can be used for
sorting eigenvalues, to decrease the noise-induced
bias of eigenvalues that are close together relative to
the noise level (41).

The diffusion tensor can be expressed in terms of
the three dyadic tensors formed from the three eigen-
values (41):

D � �1ε1ε1
T � �2ε2ε2

T � �3ε3ε3
T [129]

Important Points in “Calculation of
Eigenvectors and Eigenvalues”

The eigenvectors and eigenvalues of the diffusion
tensor represent the directions of the principal axes of
the diffusion ellipsoid and the squares of the hemiaxis
lengths, respectively. Equation [83] shows the funda-
mental eigenvalue and eigenvector equation in matrix
form. Equations [86] and [87] show how to rotate a
diagonal tensor so that it has specified eigenvectors,
and how to rotate a nondiagonal tensor to produce a
diagonal tensor. Eigenvalues and eigenvectors of 2D
tensors (Eqs. [97–100] and [105–107]) and 3D tensors
(Eqs. [109–115] and [123–127]) can be determined
analytically. Dyadic tensors formed from the eigen-
vectors can be useful when comparing or averaging
multiple tensors.

APPENDIX

The mistakes presented here are primarily typograph-
ical and mathematical, not conceptual, errors. Al-
though some of the mistakes listed here are discussed
in parts II and III, they are included here so that the
following list will be more comprehensive.

Incorrect Formulas Whose Correct
Versions Are Shown in Part I

In (18), the I3 part of Eq. [13] should have the product
of the eigenvalues, not their sum. In Eq. [15], the last
term should be 3���, not ���.

Incorrect Formulas Whose Correct
Versions Will Be Shown in Part II

In (5 ), the definition of fractional anisotropy (FA)
(Eq. [30]) is incorrect. (Also, in Eq. [5], rTr should be
	rTr.)

In (50), the definition of LIN in Eq. [5] is incorrect.
The published erratum did not include italics or bold-
face letters. On page 903, line 8, Table 2 should be
Table 4.

In (55), in Eq. [7], KD should be �D.
In (26), above Fig. 5, �2g2�2(� 	  /3) should be

�2g2 2(�	  /3), as shown correctly a few lines above
this. In Eq. [111], the same value is given for all three
cases of Knm.

In (48), the last part of Eq. [9(c)] is incorrect. The
second two parts of Eq. [10(b)] are equal, but they do
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not equal the first part. In Eq. [11(a)] there should be
a coefficient 2 in front of D� in the denominator. The
formulas for 1 	 VR in Table 2, and the curve for 1 	
VR in Fig. 4, are incorrect.

In (56), there are mistakes in the derivation of the
formula for calculating TEmin from bmax. [Also, in Eq.
[11], �2 should be �2, and (N 	 NL/6) should be (N 	
NL)/6.]

In (57), the formulas for Asd and Afa are wrong.
The formula for Agv in Eq. [6] needs a close paren-
thesis at the end of the numerator.

In (40), in Table 1 the formulas for A� and FA are
incorrect, and the letters “rlx” should be removed
from the definition of LIn. (Also, in Eq. [1], the lower
limit in the numerator should be i � 1, not i 	 1; and
after Eq. [4], �2�� should be �z��.)

In (58), the definitions of FA (Eq. [4]) and RA (Eq.
[5]) are incorrect. (Also, in Eq. [1], bhighblow should
bhigh 	 blow. In Eq. [2], the left side of the equation
should not be in parentheses.)

In (8 ), Eq. [21] was copied incorrectly from the
source reference. In the cos term, gz should be
sin	1(gz ).

In (1), the definitions of relative anisotropy (RA)
(Eq. [9]) and A� (Eq. [13]) are incorrect.

In (59), the definition of Asd (Eq. [5]) is incorrect.
In (39), in the appendix, the formula for volume

ratio is incorrect.
In (34), in the box on page 217, the definition of

FA is incorrect and the numerators in the definition of
LI should have bold italic, D, to indicate the deviatoric
(Dan).

Other Mistakes

In (4 ), in Eq. [3] F and G should be switched. In Eq.
[19], either Dxz should be 	0.00711, or Dzx should be
0.00711. In reference 2 the title is incorrect, and the
order of the second and third authors is reversed. In
reference 4, the page number should be 584, not 1404.

In (43), in the paragraph after Eq. [29], (1 
 2/3 A)
should be (1 
 2A).

In (60), in Eq. [3b] the T should be a superscript to
indicate the transpose of the vector.

In (11), in the last line of Eq. [7] the term F44 

F55 
 F66 should be multiplied by 2.

In (44), in Eq. 16, Dx should be Dxy.
In (61), in Eq. [2] the D (bold, tensor) should be D

or p (not bold, mean diffusivity).
In (62), the 10-direction scheme has 12 directions.
In (45), in the Table 1 footnotes, Icos16 should be

Icosa6. Reference 6 is in volume 45, not volume 5.
In (3), after Eq. 8, �? should be �1, and there should

not be a question mark after �2.

In (63), adding parentheses in Eq. [10], so that
exp	biri

TDri becomes exp(	biri
TDri ), produces a

repeat of Eq. [5]. It is not clear if another equation was
intended here, or if this equation should have been
deleted during a manuscript revision.

In (54), the definition of fr on page 808 should be
(�5 	 1 )/2, not (�5 	 1)/2. In Eq. [6], the argument
of cos	1 should be the absolute value of the given
expression.

In (64), the Fig. 1 legend mentions only a prolate
tensor, but the figure includes both oblate and prolate
tensors with cylindrical symmetry. Also, below Fig. 1,
“rational” should be “relative”.

In (65), the 12-direction gradient scheme has some
typographical errors. It should include all possible
combinations of 1, �0.5, and 0.
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