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On the Theoretical Basis of Perfusion Measurements by
Dynamic Susceptibility Contrast MRI

V.G. Kiselev*

A quantitative analysis was undertaken to calibrate the perfu-
sion quantification technique based on tracking the first pass of
a bolus of a blood pool contrast agent. A complete simulation of
the bolus passage, of the associated changes in the T2 and T*2
signals, and of the data processing was performed using the
tracer dilution theory, an analytical theory of the MR signal from
living tissues and numerical simulations. The noise was ex-
cluded in the simulation in order to analyze the ultimate accu-
racy of the method. It is demonstrated that the relationship
between the contrast agent concentration and the associated
changes in the transverse relaxation rate shows essentially
different forms in studied tissue and in the reference artery.
This effect results in systematic deviations of the measured
blood flow, blood volume, and the residue function obtained
with conventional processing from their true values. The error
depends on the microvascular composition, the properties of
the contrast agent, and the weights of the various compart-
ments in the total signal. The results show that dynamic sus-
ceptibility contrast MRI can reach the goal of absolute perfu-
sion quantification only with additional input from measure-
ments of the microvascular architecture. Alternatively, the
method can be used to provide such information if the perfusion
is quantified by another modality. Magn Reson Med 46:
1113–1122, 2001. © 2001 Wiley-Liss, Inc.

Key words: perfusion imaging; dynamic MRI; bolus tracking; T2

contrast; susceptibility contrast

Magnetic resonance imaging (MRI) of the first passage of a
bolus of a blood pool contrast agent is a promising method
for assessment of regional perfusion (1,2). This method
implies a measurement of the contrast agent concentration
time course in both a volume of interest (VOI) and a
feeding artery. The quantification of the perfusion is
achieved by comparison of these data sets. The underlying
theory rests on two basic assumptions. First, it is assumed
that the measured MR signal is proportional to the con-
centration of the contrast agent, with a universal propor-
tionality coefficient for both the VOI and a reference voxel
in the artery. Second, the kinetic of the contrast agent is
described in terms of a linear model. The aim of this work
is to demonstrate that the former assumption is invalid in
proton MRI: the relationship between the MRI signal and
the concentration of the contrast agent in the VOI signifi-
cantly differs from that in the reference voxel. It depends
on the MRI pulse sequence and the vascular composition
of the investigated tissue.

The reason for such variability in the MRI signal is the
contribution of the extravascular protons. These parenchy-

mal protons are dephased by the blood pool contrast agent
through the inhomogeneous, long-ranged, susceptibility-
induced magnetic field. Thus, their contribution to the MR
signal follows the time course of the contrast agent con-
centration with a specific functional dependence that sig-
nificantly differs from the relaxation effect of the contrast
agent in blood. This peculiarity is not accounted for in the
present theory (1,3).

Until now, theoretical interest has been focused on the
so-called deconvolution procedure in the presence of
noise. This issue is well understood (3) and is not consid-
ered here. The presented results were obtained for a noise-
free simulation. This allows analysis of the inherent accu-
racy of the method. The obtained theoretical predictions
are compared with published experimental data (4–6).

METHODS

Tracer Dilution Theory

Let us start with a brief review of the tracer dilution theory
(7). Consider a VOI and a voxel inside a properly chosen
supplying artery. Let us denote as ca(t) and c(t) the con-
centrations of the contrast agent in the artery and in blood
in the studied tissue, respectively. The concentration c(t)
linearly depends on the history of ca(t). This is expressed
as a convolution with a kernel h(t) which describes the
blood transport:

c~t! 5 E
2`

t

h~t 2 t!ca~t!dt. [1]

In practical calculations the lower limit in this integral can
be replaced with the moment of bolus injection. The func-
tion h(t) possesses a property

E
0

`

h~t!dt 5 1 [2]

which reflects the fact that c 5 ca if both concentrations are
constant in time. Integration of Eq. [1] over t with account
for this property leads to a useful relation

E
2`

`

c~t! 5 E
2`

`

ca~t!. [3]

This equation results in a widely used formula for the
calculation of the blood volume fraction z. Suppose that
the average concentration of the contrast agent in the VOI,
denoted hereafter as c#(t) 5 zc(t), is known. Then
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z 5

E
2`

`

c# ~t!

E
2`

`

ca~t!

. [4]

The average concentration c#(t) can be expressed in
terms of h(t) by applying Eq. [1] to the draining veins of the
VOI and calculating the amount of contrast agent in the
pool between these veins and the feeding reference artery:

c# ~t! 5 f E
2`

t

5~t 2 t!ca~t!dt. [5]

Here f is the blood flow measured in ml/100 ml/min and

5~t! 5 1 2 E
0

t

h~t!dt [6]

is a kernel called the residue function. It is equal to the
fraction of the inflowed contrast agent, which remains in
the VOI after the time t. By this meaning it should monot-
onously decrease from 5(0) 5 1 to 5(`) 5 0. The latter
property states the complete washout of the contrast agent
in a sufficiently long time. The integral * 5(t) dt is equal
to the mean transit time T of blood from the arterial to the
venous pool. Integration of Eq. [5] with an account for Eq.
[3] results in the central volume principle z 5 fT.

In the MR technique the concentrations ca(t) and c#(t) are
measured by the associated increases in the transverse
relaxation rates in the artery R2a and the VOI R2. The
central assumption of the dynamic perfusion measure-
ments is a universal linear dependence between the relax-
ation and the concentration for both the reference voxel
and the VOI:

R2a~t! 5 rca~t! and R2~t! 5 rc#~t!. [7]

The proportionality coefficient r is the relaxivity. By virtue
of this assumption, the concentrations in Eqs. [4] and [5]
are replaced with the measured changes in the correspond-
ing MR signals according to the formula

c# ~t! 5 2
1

rTE
ln

s~t!
s~0!

[8]

and an analogous one for ca(t). Here TE is the echo time,
s(t) is the measured MR signal time course, and s(0) is the
baseline value before the bolus passage. As explained in
the Introduction, the assumption of equal relaxivity in the
reference artery and the VOI is incorrect. Let us label all
values obtained by means of Eq. [8] with a subscript “app”
(an abbreviation for “apparent”) to contrast the true values
written without subscript. These are zapp, fapp, 5app(t),
c# app(t), and z, f, 5(t), c# (t), respectively. The aim of this
study can now be reformulated as to find the relationship
between the apparent values and their true counterparts.

Tissue Model

The tissue is modeled with three main compartments:
blood in vessels, parenchyma, and a nonperfused compart-
ment, which does not change its properties during the
bolus passage. The latter models the CSF in the brain. The
blood and parenchyma occupy a partial volume p of the
VOI. Within this combined compartment the blood occu-
pies a volume fraction z. The vascular network consists of
three pools: arteries, capillaries, and veins, with the vol-
ume fractions za, zc, and zv, respectively. This microvas-
cular composition needs to be further specified because
the MR signal depends on the vessel radius. Let us intro-
duce the differential volume fractions za(r), zc(r), and
zv(r) of vessels with radius r. These functions obey a
normalization condition

E
0

`

za~r!dr 5 za [9]

where a labels the three blood pools: a 5 a, c, v. The
calculation of the MR signal from each compartment is
described below. Further input parameters are the true
blood flow f and the residue function 5(t).

Outline of Simulation

The starting point of the analysis is the time course of the
contract agent concentration in the artery ca(t). It provides
an increase in the relaxation rate in blood according to the
first equality in Eq. [7]. It is assumed that the relaxivity r is
known from in vitro measurements.

The concentration c(t) in blood is calculated as c(t) 5
c# (t)/z, using Eq. [5] for c#(t). This defines both the relax-
ation in blood, which is the same as in Eq. [7], and the
magnetic susceptibility of blood x as

x 5 x0 1 kc~t!. [10]

Here x0 is the natural susceptibility of blood, which equals
zero in the arterial pool and is nonzero in veins. The
coefficient k is supposed to be measured in vitro.

The first round of analysis is not sensitive to the details
of the dependence of the MR signal on x. The only used
theoretical result is the additiveness of the microvascula-
ture contribution to the relaxation rate in the parenchyma,
which takes the form R2p0 1 R2p (8–10). The quantity R2p0

is the rate of relaxation caused by the spin-spin interac-
tions at the molecular scale. This rate can be measured
with the Carr-Purcell-Meiboom-Gill sequence (11) with a
vanishing interecho interval. In turn, the susceptibility
effect of vessels R2p is a sum of contributions of each of the
three blood pools:

R2p 5 R2pa 1 R2pc 1 R2pv ; O
a

R2pa. [11]

The above formulae are written for the true relaxation
rates measurable in the spin-echo (SE) experiments. Anal-
ogous formulae for the gradient-echo (GE) measurements
have the same form, with a star symbol added. To avoid
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duplications, such formulae are omitted throughout this
work. The equations below are applicable to both the SE
and the GE sequences unless otherwise stated.

The total MR signal from the VOI takes the form

s~t! 5 p$~1 2 z!exp@2~R2p0 1 R2p!TE# 1 z exp~2R2bTE!%

1 ~1 2 p!exp~2R2wTE! [12]

where R2b is the total relaxation rate in blood, and R2w the
relaxation rate in the nonperfused compartment. This for-
mula leads to a general analytical dependence between
fapp and f, as presented in the Results section. This depen-
dence is specified at the next step using the theoretical
model (8–10) for the relaxation rates.

Up to this point the theoretical analysis is duplicated by
numerical simulations. The further computations are nu-
merical. The obtained c(t) is used to calculate the MR
signal using Eq. [12] and an extension of the analytical
formulae (8–10) for R2p, as described below. Then the
conventional processing (1) of this simulated signal yields
the apparent values 5app(t), fapp, and zapp.

Calculation of the Intravascular Signal

The intravascular signal is a sum of three monoexponen-
tial contributions from the arterial, capillary, and venous
pools weighted with their volume fractions. Thus, the rate
R2b in Eq. [12] is only a place-hold notation. The relax-
ation rate in the arterial pool is described by the first
equality in Eq. [7], which is the same as for the arterial
reference voxel. Explicitly, R2a 5 R2a0 1 rc(t), where the
first term describes the relaxation in arterial blood without
the contrast agent. The relaxation rate in the venous blood
takes a similar form R2v 5 R2v0 1 rc(t). Both R2a0 and
R2v0 are taken from in vitro measurements (12).

The signal from the capillary pool sc is calculated by a
linear interpolation of the relaxation rate between the ar-
terial and venous ends. This gives

sc 5 zc

exp~2R2a0TE! 2 exp~2R2v0TE!

~R2v0 2 R2a0!TE
exp@2rc~t!TE#.

[13]

The bulk susceptibility of venous blood results in oscil-
lations of the blood signal measured with the GE tech-
nique. This can be described with an additional factor (10).
It takes the form

S p

4vTE
D1/2

cosSvTE

3
2

p

4D [14]

for vTE @ 1 and can be continued to vTE 5 0 to interpolate
the numberical result of Ref. 10. The blood frequency
offset is neglected in the major part of the present simula-
tion for the following reasons. The oscillation period ob-
tained from Eq. [14] is close to 200 ms for B0 5 1 T and the
values given below in the Numerical Values of Parameters
section. As it is larger than the typically used TE, the
oscillations effectively modify the signal relaxation. Dur-
ing the bolus passage, the blood magnetic susceptibility

increases by more than an order of magnitude, and the
period becomes shorter than the TE. In this case the fre-
quency offset results in an apparent displacement of the
blood vessels—for example, one in the phase-encoding
direction in the EPI technique. An appropriate modifica-
tion of the point spread function is beyond the scope of
this work.

Further uncertainty comes from the fact that the capil-
laries cannot be described with the bulk blood parameters
implied in Eq. [14]. An analytic approach developed in
Ref. 9 suggests that the frequency offset in the capillary
network is suppressed relative to its relaxation effect by a
factor of vtD for vtD ! 1. More detailed predictions are not
currently available. The blood frequency offset as de-
scribed by Eq. [14] is included only for an assessment of its
effect. To this end Eq. [14] is applied to the arterial and
venous pools, while the capillary contribution remains
unchanged.

Calculation of the Extravascular Signal

The extravascular signal is calculated by means of an
analytical theory of the MR signal developed in Refs. 8–10.
According to this theory, the effect of microvessels on the
parenchymal relaxation rate is additive and takes the fol-
lowing form:

R2pa 5 E drza~r!r2a [15]

for each of the three blood pools in Eq. [11]. The functions
r2a are the relaxivities of vessels of a given type and radius
r defined as the relaxation rate per unit volume fraction.
These functions may depend on TE. The combination
TEr2a in Eq. [15] is defined by the dephasing effect of a
single vessel. Each vessel is characterized by two param-
eters: the time of diffusion across the vessel tD 5 r2/D, and
the characteristic shift of the Larmor frequency on the
surface of the vessel v 5 2pxgB0. The relaxation effect of
the vessel depends on these values and TE via two dimen-
sionless combinations: TE/tD and vtD. The latter gives the
order of magnitude of the phase acquired by a diffusing
proton after passing the vessel. The theory provides ana-
lytical results in two extreme cases called the diffusional
narrowing regime (DNR) and the static dephasing regime
(SDR) (Fig. 1). Let us consider them in more detail.

The SDR implies that the proton diffusion length lD 5
(DTE)1/2 is much shorter than the vessel radius. Then the
dephasing of a spin packet occurs in a uniform gradient of
the magnetic field. The vessel relaxivity for the free induc-
tion decay (FID) reads (8)

TEr*2a 5
2

15
~vTE!

2 [16]

for vTE ! 1 and

TEr*2a 5
2
3

vTE 2 1 [17]
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for vTE @ 1. In the SE measurement the relaxivity takes the
form (10)

TEr2a 5
1

15
~vtD!2STE

tD
D3

[18]

for (vtD)2/3TE/tD ! 1 and

TEr2a 5 0.694~vtD!2/3
TE

tD
2 1 [19]

for (vtD)2/3TE/tD @ 1.
In terms of the TE, the above-written condition for the

static dephasing reads tD/TE @ 1. This range can be ex-
tended up to vtD @ 1, as illustrated in Figs. 1 and 2.
Consider the attenuation of the MR signal from the protons
affected by a single vessel of the radius r0 to the time
moment TE @ 1/v (Fig. 2). For the FID the characteristic
phase difference f induced by the presence of the vessel is
on the order of vTEr0

2/r2 at the distance r from the vessel.
The protons near the vessel have f @ 1 and are completely
dephased. The main contribution to the relaxation rate

comes from the spins for which f ; 1. These are located at
the distances r ; (vTE)1/2r0. A comparison of the diffusion
length with r gives lD/r ; (vtD)21/ 2 ! 1. This validates
the approximation of the static dephasing. For the SE the
dephasing is determined by the variation of the Larmor
frequency over the diffusion length such that f ; vTEr0

2lD/
r3. A comparison of lD with the distance r, at which f ; 1,
yields lD/r ; (vtD)21/3 ! 1. To sum up, the SDR is always
valid for short TEs. If the MR signal reaches its long-time
asymptotic form (Eqs. [17] and [19]) within this regime, it
remains valid for arbitrary long TE.

The DNR takes place for the weak dephasing vtD ! 1.
The vessel relaxivity reads (9)

TEr*2a 5
4

45
~vtD!2FTE

tD
Sln

TE

tD
1 0.309D 1

1
4

ln
TE

tD
1 0.619G

[20]

for the FID and

TEr2a 5
8

45
~vtD!2FTE

2tD
Sln

TE

2tD
2 0.384D 1

1
4

ln
TE

2tD
1 0.619G

[21]

for the SE relaxation. As follows from a comparison of this
theory with the results of a Monte Carlo simulation (13),
the crossover between the DNR and the SDR occurs in the
range vtD ' 6 (Fig. 3).

Let us list the dephasing regimes for each vessel group
during the bolus passage (Fig. 1). For the capillaries the
DNR is applicable at low c(t). The postarterial capillaries
are deeper in this regime due to their very low natural
magnetic susceptibility. The increase in c(t) during the
bolus passage transfers the relaxation to the SDR. An in-
terpolation formula (Eq. [35]), which is given in the Ap-

FIG. 2. Extension of the applicability range of the SDR from the
short diffusion lengths lD ! r0 to vTE @ 1. A cross-section of a
vessel of radius r0 is shown with the black circle. The folded line
represents a packet of diffusing spins. The span of the diffusion
motion is lD 5 (DTE)1/2. The spins within the gray region are effec-
tively dephased, while the spins outside this region contribute to the
signal. The signal attenuation can be considered as a growth of the
dephased area. Thus, the relaxation rate is dominated by its bound-
ary and the diffusion length should be compared with its size, which
is r @ r0. The static dephasing takes place when lD ! r rather than
lD ! r0, which is the case illustrated in the figure. This condition is
equivalent to vTE @ 1, as explained in the Calculation of the Ex-
travascular Signal section.

FIG. 1. A schematic representation of the dephasing regimes for
tissues with low blood volume fraction. The relaxivity, which is
defined as the relaxation per unit vessel volume fraction, depends
on two parameters: vtD and TE/tD. Two quadrants below the hori-
zontal line TE/tD 5 1 correspond to the SDR, in which the diffusion
length is shorter than the vessel radius. The upper right quadrant
shows the extension of the applicability range of the SDR to vtD @

1, as discussed in the Calculation of the Extravascular Signal sec-
tion and in the caption for Fig. 2. The vertical line separates the SDR
from the DNR, which is valid for vtD ! 1. The boundary is positioned
at vtD ' 3, accounting for the results of the Monte Carlo simulation
(13) partially reproduced in Fig. 3. For simplicity, the finite crossover
thicknesses are not shown. The SDR and DNR overlap in the lower
left quadrant. The solid biased lines represent the transitions be-
tween the short-time (Eqs. [16] and [17]) and the long-time (Eqs. [18]
and [19]) asymptotic forms of the SDR. The analogous boundary for
the DNR is just TE/tD ' 1. The dotted lines represent the mapping of
the parameter range probed by the results of Monte Carlo simula-
tion (13) (Fig. 3). The actual length of these lines spans about one
decade above and below the figure frame. The thick lines with
arrows represent the evolution of the three vessel groups during the
bolus passage. The initial and final states are indicated by filled
circles. The ascending and descending branches are separated for
clarity.
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pendix, is used to bridge over the transition region (Fig. 3).
The trajectories of veins and arteries in Fig. 1 move right-
downwards from that of capillaries according to the in-
creased diameter. Thus, the major part of these vessels
falls into the SDR. For both the veins and arteries interpo-
lation formulae (Eqs. [31] and [32]) are applied to describe
the transition between the short (Eqs. [16] and [18]) and
long (Eqs. [17] and [19]) asymptotic forms, as illustrated in
Fig. 4.

Numerical Values of Parameters

Unless otherwise stated, the following parameters are used
in the numerical calculations. The main magnetic field
B0 5 1 T, and TE 5 45 ms for the GE and 75 ms for the SE
measurements were chosen to match the calibration exper-
iments (4–6).

The blood flow was set to f 5 80 ml/100 g/min. The
minor difference between the units of ml/100 g/min and
ml/100 ml/min is neglected throughout this paper. The
partial volume of the parenchyma was assigned a value of
p 5 0.9, and the diffusion coefficient D 5 0.8 mm2/ms (14).

A proper simulation of the microvasculature requires a
knowledge of the detailed vessel size distribution as it
follows from Eq. [15]. It is available for capillaries in
animal models (16). For the present study a monosized
distribution was chosen with the radius rc 5 3.5 mm at 2%
volume fraction (zc 5 0.02), which is close to the typically
reported average values for the human brain. Unfortu-
nately, the author has not found any directly acquired
differential volumetric data for the whole arterial and ve-
nous systems. In order to construct a model for the vessel
size distribution, recent information (17) concerning the
self-similarity structure of the vascular system was used.
Following the assumptions of Ref. 17, the whole arterial

and venous trees possess scaling relations that result in
equal volume fractions of vessels of all sizes. This implies
that both za(ra) and zv(rv) are constant. An estimate of
these values can be obtained with a formula derived in Ref.
17 that relates the vein caliber to the cortical area A it
drains: 2rv 5 [( A/mm2)1/3/8]mm. Applying this formula
to an area of 600 mm2, which represents a region of inter-
est in the brain rather than in a voxel, results in 2rv 5 1
mm. The vessels on the order of, or larger than this size
cannot be considered within the statistical approach of the
present study, and thus provide an upper limit on the
vessel size accounted for in the model. On the other hand,
the above formula gives 2rv 5 5 mm for a significant part,
such as one-quarter of the total cortical area, which is
equal to 2430 cm2 (15). Thus, the portion of the venous
and arterial vascular volume, which is accounted for by
the present model, is about one-fifth of the total one. The
latter is 6–8%, with 80–93% in the venous and arterial
pools (18,19). Therefore, the resulting estimate is za 1 zv '
0.01.

Another estimate of this value can be obtained from the
results of a recent study (20), in which an average vessel
size in the rat brain was deduced by comparison of R2 and
R*2. The reported value, called the vessel size index, is R 5
4.77 mm. This is larger than the expected pure capillary
index Rc 5 3.31 mm (20) by the contribution of larger
vessels. To make use of this difference, note that Eq. [19]
holds for all vessels at high concentrations of the contrast
agent used in Ref. 20. Thus the vessel size index reflects
the averaging of the vessel radii to the power 22/3: R22/3 5

FIG. 4. The relaxation exponent r*2TE in the static dephasing regime
for (a) the FID and r2TE for (b) the SE measurement. The solid lines
represent the theoretical results found with a numerical integration
(10). The dashed lines show the interpolation formulae (Eqs. [31] and
[32]) that are used here to calculate the signal from arteries and
veins (crf. Fig. 1). The asymptotic formulae (a) Eqs. [16] and [17] and
(b) Eqs. [18] and [19] are shown with the dotted lines.

FIG. 3. Relaxation rate in a simulated tissue as a function of the
radius r of monosized vessels for the GE and SE measurements.
The points show the results of the Monte Carlo simulation (13). The
lines were obtained using the interpolation formulae in Eq. [35] for
the dephasing of the extravascular protons. These formulae are
used here for the calculation of the relaxation effect of capillaries
(crf. Fig. 1). A deviation from the Monte Carlo point at r 5 100 mm
for the SE is due to poor applicability of the long time asymptotic
form (Eq. [19]) (crf. Fig. 1). This imperfection does not affect the
presented calculations because no capillaries, for which Eq. [35] is
used, gets in this dephasing regime, as seen in Fig. 1. The param-
eters are B0 5 1.5 T, z 5 2%, x 5 1027, D 5 1 mm2/ms, TE 5 60 ms
for the GE, and TE 5 100 ms for the SE. The walls of the vessels are
impermeable.
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^r22/3&. This gives R ' Rc(1 1 x)3/2, where x 5 (za 1
zv)/zc. Finally, x ' 0.2 leads to a very small noncapillary
volume fraction of 0.4%. This is a rather rough estimate
because the capillary radius distribution used in Ref. 20
was taken from another study (21). However, it practically
rules out the volume fraction of veins and arteries in a
parenchymal voxel that exceeds zc. With an account for
the presented estimates and for the conventionally-used
model parameters (13,22), the volume fractions of the ve-
nous and arterial pools were set to zv 5 0.01 and za 5
0.005.

The continuous vessel radius distributions can be re-
placed by monosized distributions with a representative
radius. This value is not significant for the GE technique
because R*2 does not depend on the size of the large vessels
(Eq. [17]). For the SE experiment, the vessel size index of
separated arterial or venous pools should be used. It is
close to the maximal radius, which is about 500 mm, as
discussed above, divided by 33/2 ' 5. This results in rv 5
ra 5 100 mm assumed in the present model.

The magnetic susceptibility of venous blood was as-
signed according to a recent result (12) for the conditions
close to that met in vivo: x0 5 0.038 ppm. This value is the
product of the reported susceptibility of the fully deoxy-
genated blood, which equals 0.108 ppm, and the 35%
oxygen extraction, which enters the formulae as the differ-
ence in the oxygenation levels between arteries and veins.
(All magnetic values are measured in the CGS units. To
convert them to SI units the given numbers should be
multiplied by 4p). To simulate the change of the magnetic
susceptibility in the capillary pool, the venous value of x
was assigned to one-half of the capillary volume, and the
arterial x to the other half.

The simplest exponential form was chosen for the resi-
due function:

5 5 exp~2t/T!. [22]

The mean transit time T is defined by the central volume
principle T 5 z/f ' 2.6 s.

The microscopic contribution to the relaxation rate in
parenchyma and arterial blood R2p0 was chosen to be
16.7 s21 (5 1/60 ms) for the GE 10 s21 for the SE at 1.5 T,
and rescaled down to 1 T proportionally to B0

2. This gives
11.1 s21 and 6.7 s21, respectively. The baseline relaxation
rates in the arteries R2a0 and the veins R2v0 were calcu-
lated from the empiric formula R2v0 5 (6.2 1 59 E0

2) s21

(12), in which E0 is the oxygen extraction fraction. The
values measured at B0 5 1.5 T were downscaled propor-
tionally to B0

2. This resulted in R2a0 5 2.76 s21 and R2v0 5
5.97 s21. For blood the validity of such a conversion
follows from many reports (23,24), and from the quadratic
dependence of the relaxation rate on the blood oxygen-
ation level observed in Ref. 12. The dependence of R2p0 on
B0 is less clear, as R2p0 is only one of many contributions
to the measurable relaxation rate. Theoretical reasons (25)
suggest a range of possibilities from constant to quadratic
dependence. A linear relationship has been found in post-
mortem blood-free monkey brain specimens (24) and is
assumed in the present study, although the limitations of
such a transfer are understood. The difference between the
GE and SE relaxation rates in blood is neglected.

Gd-DTPA has been considered as the contrast agent. The
relaxivity and volume susceptibility of this substance have
been measured in a number of experiments. In this study,
the results obtained by van Osch et al. (26) in an in vitro
GE experiment were used. The values are k 5 0.024
ppm/mM and r 5 2.7 s21 mM21. The latter was rescaled
proportionally to B0

2 from the reported value r 5 6.0 s21

mM21 at 1.5 T. The fine nonlinearity of the relaxation effect
(26,27) is neglected here.

The input bolus was given the form

ca~t! 5 cmaxt exp~2t/t0 1 1! [23]

where the time constant t0 5 7 ms. The peak concentration
was set to cmax 5 18 mM, which most probably corre-
sponds to the dose 0.2 mmol/kg of 500 mM solution in-
jected within 1 s (28).

The numerical convolution and deconvolution were
performed by fast Fourier transformation. A rather fine
grid on the time and frequency axes was used to approach
the continuous integrals with three significant digits. In
most of the simulations a time interval of 200 s was rep-
resented with 2056 points.

RESULTS

Apparent Blood Flow and Residue Function

Let us consider those general properties of 5app(t) which
follow from the mathematical nature of the deconvolution.
The first aim is to show that the blood flow is defined by
the linear response of the MR signal to small changes in
the concentration of the contrast agent. To this end, note
that Eq. [5] forms a triangular system of linear equations
for the unknown function f5app provided ca(t) is mea-
sured and c#(t) is replaced with the known values of
c#app(t). This becomes obvious in the discrete version of Eq.
[5]. Let time after the beginning of the bolus passage be
incremented as t 5 Dt, 2Dt . . . . Then Eq. [5] takes the form

c# app~Dt! 5 f5app~0!ca~Dt!Dt [24]

c# app~2Dt! 5 @f5app~0!ca~2Dt! 1 f5app~Dt!ca~Dt!#Dt [25]

and so on. The initial value f5app(0) is defined from Eq.
[24], and then f5app(Dt) is found from Eq. [25], etc. The
blood flow is defined by using the normalization condition
5app(0) 5 1. It is therefore determined by the initial small
increases in ca(t) and c#app(t).

This allows a general relationship to be found between
fapp and f by a substitution of Eq. [12] into Eq. [8]. An
expansion in c(t) gives a linear relation

c# app~t! 5 Coeff z c~t! [26]

in which the coefficient takes the form

Coeff 5 Fwb 1 wp

k
r O

a

E drza~r!
dr2a

dx G. [27]

Here
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wb 5
pz exp~2R2bTE!

s~0!
and wp 5

p z ~1 2 z!exp~2R2pTE!

s~0!

[28]

are the weights of the blood and parenchyma in the signal
(Eq. [12]) measured before the bolus passage, k is defined
in Eq. [10], and the derivatives are taken at c 5 0. Com-
parison of Eqs. [26] and [5] yields finally

fapp 5
Coeff

z
f. [29]

Further development of this formula requires knowl-
edge of the derivatives dr2a/dx in Eq. [27]. The contribu-
tion of the arterial pool to the relaxation rate R2pa is
proportional to x2 according to Eqs. [16] and [18]. The
point c(t) 5 0 corresponds to x 5 0 because of the dia-
magnetism of arterial blood (x0 5 0). Thus, the arterial
contribution in Eq. [29] vanishes. This is not the case for
the capillary and venous pools, in which x0 Þ 0. A power
law dependence r2a } xna results in dr2a/dx 5 nar2a/x0.
Consequently, fapp (Eq. [29]) takes the form

fapp 5
1
z Fwb 1 wp

k
rx0

~nvR2pv 1 ncR2pc!Gf. [30]

The values of nc and nv depend on the measurement type
and parameters. For the typical measurements at B0 below
2 T the theory predicts nc 5 2 (Eqs. [20] and [21]). The vein
contribution is more variable. For low fields nv 5 2 (Eq.
[16]) due to small v. For high fields nv 5 1 (Eq. [17]) and
nv 5 2/3 (Eq. [19]) for the GE and SE, respectively.

An evaluation of Eq. [30] for the GE measurement with
nv 5 nc 5 2 results in fapp 5 4.98f, while the numerical
simulation gives fapp 5 4.61f. The 8% difference is attrib-
uted to the too-high values of n, which are in reality below
2. The found coefficient consists of two main contributions
according to the way the contrast agent affects the MR
relaxation rate. The variation of the relaxation rate in
blood gives 25%. The remaining 75% is due to the change
in the parenchymal signal by the susceptibility-induced
magnetic fields during the bolus passage. This contribu-
tion is shared by the capillaries (29%) and veins (46%).
The arteries give 0.2%, which is within the computation
error. Numerical simulation confirms the independence of
fapp on the forms of ca(t) and 5(t).

The analogous results for the SE measurement are as
follows. An evaluation of Eq. [30] with nv 5 nc 5 2 results
in fapp 5 1.75f, while the numerical simulation gives
fapp 5 1.71f. The blood and parenchymal contributions in
the coefficient 1.71 are 59% and 41%, respectively. The
capillaries, veins, and arteries give 40%, 1%, and 0.003%,
respectively.

Accounting for the frequency offset in the blood pool
results in a modification of the intravascular contribution
on the right side of Eqs. [27] and [30] for GE sequences.
Numerically, the apparent blood flow increases from 4.61f
to fapp 5 5.50f.

As follows from Eqs. [16], [18], and [19], the MR signal is
a nonlinear function of c(t). This affects the shape of

5app(t) (Fig. 5). The apparent contrast agent concentration
takes the form c#app ' Coeff z c(t) 1 Coeff2 z c(t)2 for initial
times. The first coefficient is defined in Eq. [27]. Assume,
for example, that 5 5 1 and ca(t) } t for small t. As follows
from Eq. [5] for this case, c(t) } t2 and the nonlinear term
in c#app is proportional to t4. This results in a term 5app

which is proportional to t2. By the linearity of Eq. [5], this
term should be added to the constant 5app found in the
linear approximation. This produces a deviation from the
true function. A test calculation for the simplified case T 5
t0 has shown that the appropriate analytical formulae ac-
curately describe the difference 5app 2 5 for cmax ! 1 mM.

Apparent Blood Volume

In contrast to the blood flow, the apparent blood volume
zapp is defined by the integrated signal time course accord-
ing to Eq. [4]. For small peak concentrations of the contrast
agent the relationship between capp(t) and c(t) is linear.
This yields zapp 5 Coeff z z with the coefficient defined in
Eq. [27]. The behavior for higher concentrations depends
on whether capp(t) is overlinear or sublinear in c(t). The
former case results in an increasing, and the latter in a
decreasing zapp as a function of cmax. With the field
strength considered here, both cases take place (Fig. 6).

The apparent blood volume is marginally affected by the
blood frequency offset. When included, it changes, for
example, the data point zapp 5 28.4% for cmax 5 18 mM in
Fig. 6a up to zapp 5 29.5%.

DISCUSSION

The obtained results form a complete simulation of the
bolus passage, the associated changes in the T2 and T*2

FIG. 5. The apparent residue function 5app(t) as a function of time
t for various maximal contrast agent concentrations (Eq. [23]) (solid
lines labeled with the values of cmax in mM) for the (a) GE and (b) SE
measurements. The dashed lines show the actually used residue
function 5(t). The odd behavior of 5app(t) for high concentrations is
due to the effect of nonlinearity of the MR signal, as discussed in the
Apparent Blood Flow and Residue Function section.
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signals, and the mathematically exact processing of the
acquired noise-free data. This approach shows a system-
atic deviation of the measured blood flow and blood vol-
ume from their true values.

As stated in Eqs. [29] and [30], the measured apparent
blood flow is indeed proportional to its actual value, but
with a coefficient, which depends on the composition of
microvasculature, its relaxation effect, the properties of
the contrast agent, and the weights of different compart-
ments in the total signal. The measured blood volume is a
more complicated nonlinear function of its true value (Fig.
6). The reason for such an inherent drawback of the cur-
rently used data processing scheme is the neglect of the
changes in the MR signal from the parenchymal protons,
as discussed in the Introduction.

Although the considered effects are specific to the T2 or
T*2 contrast, they are a manifestation of a general problem
of the MR flow measurements, which arises from the fact
that the concentration of the MR tracers is measured indi-

rectly via its relaxation effect. The measurement results are
affected by the tracer compartmentalization as well as by
the spreading of its influence outside its nominal compart-
ment, which usually coincides with the blood pool. The
T2, T*2, and T1 contrasts all suffer from this disadvantage.
The spreading is mediated by the susceptibility-induced
gradients for the transverse, and by the water exchange
between compartments for the longitudinal relaxation. A
detailed analysis of T1 contrast bolus tracking can be
found in Ref. 29.

The method of dynamic susceptibility contrast perfu-
sion measurement has been validated against the gold
standard of the positron emmision tomography by Øster-
gaard et al. (4,5). The SE technique has shown good agree-
ment between the two modalities (4,5), while the GE tech-
nique resulted in an approximately threefold overestimate
of the absolute blood flow and volume (6). The present
theory predicts a 59% overestimate of the blood flow for
the SE and an approximately sixfold overestimate for the
GE measurement techniques for the used parameters. This
can serve as only an approximate validation of the present
theory. The sources of uncertainty are as follows: 1) Pos-
sible deviation of the contrast agent properties, which
affects the parameters k and r. A proper validation would
require an in vitro measurement of these values for each
new stock used. 2) An unclear effect of the filtering of the
noisy data, either explicit or in the form of fitting of a
smooth function to the signal time course (3). The con-
straint of monotonous decrease of the residue function can
also affect the deconvolution procedure. The present the-
ory does not impose such a condition on the apparent
function, as shown in Fig. 5. 3) Last, but not least, is a
possible mismatch between the microvasculature compo-
sition in the subjects of the experimental studies and the
parameters used here.

The error seems to be smaller for the relative values due
to the linearity of the deconvolution. The ratio between the
blood flow measured by the SE and GE techniques was
found to be 0.40 6 0.07 (6). The present theory gives a
value of 0.37, in good agreement with the experiment. A
linear relationship with a coefficient of 0.34 6 0.06 has
been found between the blood volume measured by the SE
and GE techniques over a wide interval of the blood flow
(6). The present theory results in a ratio of 0.37 for low
peak concentrations of the contrast agent and in very close
values up to the assumed concentration of 18 mM (Fig. 6b).
Even up to cmax 5 100 mM this ratio remains close to the
1 SD corridor of the experimental result (6), as shown in
Fig. 6b. Note that the internal variable in this figure is the
peak concentration cmax, while the blood flow is kept
fixed.

A possible experimental validation of the present theory
would be to test parameter dependencies that follow from
the general result (Eq. [29]) or from the more specific one
given by Eq. [30]. Let us consider some of them in more
detail.

A dependence on the MRI parameters, such as B0 and
TE, enters Eq. [30] via the weights of the blood and paren-
chymal signal wb and wp. This dependence is, however,
not very pronounced for the used parameters. For exam-
ple, a change in the TE of the GE from 20 ms to 75 ms
results in about 10% variations in the simulation results:

FIG. 6. Dependence of the apparent blood volume on the maximal
concentration of the contrast agent cmax defined in Eq. [23]. a: zapp

as a function of cmax for the GE and SE measurements. The dashed
line indicates the actually used value of z. b: A relation between the
apparent blood volume measured with the GE and SE techniques as
follows from the data shown in a. The dependence on cmax results
from the nonlinearity of the parenchymal relaxation rate in the con-
trast agent concentration c. A linear relationship would yield a
constant zapp, which is the case for low concentrations (left parts of
the curves in a and the single box in b). The increase in zapp for the
moderate cmax is due to the initially quadratic dependence in the
concentration c (Eqs. [16] and [18]). For large c the relaxation rate is
mainly proportional to c (Eq. [17] for the GE) or to c2/3 (Eq. [19] for
the SE). This explains a stronger relative decrease in zapp for the SE
data which results in the lower part of the curve in b. The dashed line
in b shows the linear regime for the variable true blood volume. The
straight solid line represents the linear dependence with a coeffi-
cient of 0.34 6 0.06, which was experimentally found by manipu-
lating the blood flow (6). The dotted lines show the 1 SD corridor of
this result.
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from fapp 5 339 ml/100 ml/min and zapp 5 30% to fapp 5
379 ml/100 ml/min and zapp 5 27%. Another example
illustrates the TE dependence of the blood volume mea-
sured at B0 5 4 T with the GE technique. An increase of the
TE from 10 to 40 ms results in a change from zapp 5 7.9%
to zapp 5 6.0%, with a minor decrease in the apparent
blood flow. This is only a rough estimate because the
quadratic dependence of the relaxation rate on B0 should
become more linear at high fields (23).

The dependence of the results on B0 is mainly due to the
above effect because the quadratic dependence on B0 in
the relaxivity r in Eq. [30] is canceled by the similar de-
pendence of the relaxation effect of veins R2pv and capil-
laries R2pc. This is true for the moderate fields below
approximately 2 T. For higher fields R*2pv } B0 and R2pv }
B0

2/3, which tends to decrease fapp as in the example dis-
cussed above for B0 5 4 T. The results for the typical field
strength B 5 1.5 T of the clinical scanners are qualitatively
similar to those obtained for B 5 1 T, with some decrease
in the apparent perfusion values. For example, fapp 5
306 ml/100 ml/min and zapp 5 19% for the GE measure-
ment at B0 5 1.5 T and rescaled relaxation rates, but with
other parameters kept at their default values.

Another possible test point would be to probe the de-
pendence of the apparent blood volume on the maximal
concentration of the contrast agent (Fig. 6). This value is
the most stable against the noise due to its integral char-
acter (Eq. [4]). However, the curve segments near the max-
ima (Fig. 6a) should be avoided. This requires either high
or low doses, with the associated limitations to exclusively
animal experiments or the noise level, respectively.

The present theory predicts an odd behavior of the ap-
parent residue function 5app(t) (Fig. 5). For verification,
the restriction of the monotonous decrease of 5app(t)
should be released during the processing of the experi-
mental data. The noise in the data can also perturb the
time course of the calculated residue function. Effective
noise control appears to be feasible with the presently
used deconvolution techniques (1,3).

CONCLUSIONS

The obtained results show that dynamic susceptibility
contrast MRI has not yet reached the goal of absolute
perfusion quantification. This method is shown to be
highly sensitive to details of microvascular architecture
and to weights of various vessel groups in the total relax-
ation rate. This makes perfusion quantification very chal-
lenging. The good side of this finding is that the T2 or T*2
signal variations during bolus passage depend on the same
physiological and microanatomical parameters that define
the relaxation effect of deoxyhemoglobin. The complex
parameter dependence of both contrasts suggests that a
complete patient-specific quantification of microcircula-
tion can be achieved in a combined measurement that
includes both of these MRI modalities.
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APPENDIX

Presented here are the interpolation formulae that were
used for the calculations of the relaxation exponent f 5
r2TE. There is no special mathematical rationale behind
them other than to provide a reasonable interpolation be-
tween theoretically known limits with the account for the
results of the Monte Carlo simulation (13). The first for-
mula bridges over the crossover between the short (Eqs.
[16] and [17]) and the long (Eqs. [18] and [19]) asymptotic
forms, and is applied to arteries and veins (Fig. 4). For the
FID the function f depends on a single argument, x 5 vTE.
An interpolation formula reads:

f~x! 5 FS2
3

xD 5

1
2
3

x2 1 1G 1/5

2 1. [31]

The f-function for the SE relaxation depends on x 5
(vtD)2/3TE/tD. An interpolation is achieved with the ex-
pression (Fig. 4):

f~x! 5 F ~0.694x!5 1
1
3

x3 1 1G 1/5

2 1. [32]

The simulation of capillaries requires additional formu-
lae, which were used to generate Fig. 3. They are to inter-
polate between Eqs. [17] and [20] and Eqs. [19] and [21],
and are described here in a constructive way. The function
f depends on both the time parameter t 5 TE/tD and the
dephasing parameter z 5 vtD. The interpolation occurs
between the regions z ! 1 and z @ 1 for each value of t. As
a function of z the f function has the structure f 5 Const z
zn (Eqs. [17], [19]–[21]) in both regions, if the term 21 in
Eqs. [17] and [19] is neglected for a while. The constant for
z @ 1 takes the form Csdr 5 2t/3 and Csdr 5 0.694t for the
GE and SE measurements, respectively. For the small z !
1 the right sides of Eqs. [20] and [21] read Cdnrz

2. This is
transformed to a positively defined value Cdnr1 5 (Cdnr

2 1
a2)1/ 2 with an as yet undefined constant a. The f function
for the FID is first approached with the form

f0 5 expS3z9

2
2

v
2

1
1
2

ln~CsdrCdnr1!

1
z9

2v
ln

Csdr

Cdnr1
1 S3

2
2

1
2

vDz0D. [33]

Here z9 5 z 2 z0, v 5 [( z 2 z0)2 1 a2] and a constant z0,
which is as yet undefined, determine the position of the
crossover between the regions of the static and the diffu-
sion dephasing. Equation [17] requires restoration of the
term 21 for large z. The following function is unity for
large z and turns sufficiently fast to zero for z ! 1:

u 5 expFz9 2 v9 1 S1 2
z9

v9Dz0G [34]

where v9 5 [( z 2 z0)2 1 8a2]1/ 2. Finally,
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f 5 f0 2 @1 2 ~1 2 u!2#@1 1 ~1 2 u!#u. [35]

The parameters a and z0 in this formula were adjusted to
fit the results of the Monte Carlo simulation (13), as shown
in Fig. 3. This resulted in a 5 0.8 and z0 5 1.4.

The SE relaxation is described by the same formula,
with the following modification of the function f0:

f0 5 expS4z9

3
2

2v
3

1
1
2

ln~CsdrCdnr1! 1
z9

2v

ln
Csdr

Cdnr1
1 S4

3
2

2
3

vDz0D [36]

with the parameters a 5 0.7 and z0 5 1.6.

REFERENCES

1. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR. High
resolution measurement of cerebral blood flow using intravascular
tracer bolus passages. Part I: mathematical approach and statistical
analysis. Magn Reson Med 1996;36:715–725.

2. Østergaard L, Soronsen AG, Kwong KK, Weisskoff RM, Gyldensted C,
Rosen BR. High resolution measurement of cerebral blood flow using
intravascular tracer bolus passages. Part II: experimental comparison
and preliminary results. Magn Reson Med 1996;36:726–736.

3. Wirestam R, Andersson L, Østergaard L, Bolling M, Aunola J-P,
Lindgren A, Geijer B, Holtås S, Stålberg F. Assessment of regional
cerebral blood flow by dynamic susceptibility contrast MRI using dif-
ferent deconvolution techniques. Magn Reson Med 2000;43:691–700.

4. Østergaard L, Smith DF, Vestergaard-Pulsen P, Hansen SB, Gee AD,
Gjedde A, Gyldensted C. Absolute cerebral blood flow and blood vol-
ume measured by magnetic resonance imaging bolus tracking: compar-
ison with positron emission tomography values. J Cereb Blood Flow
Metab 1998;18:425–432.

5. Østergaard L, Johansen P, Høst-Poulsen P, Vestergaard-Pulsen P, Asboe
H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C. Cerebral
blood flow measurements by magnetic resonance imaging bolus
tracking: comparison with [15O]H2O positron emission tomography in
humans. J Cereb Blood Flow Metab 1998;18:935–940.

6. Simonsen CZ, Østergaard L, Smith DF, Vestergaard-Pulsen P, Gylden-
sted C. Comparison of gradient- and spin-echo imaging: CBF, CBV, and
MTT measurements by bolus tracking. J Magn Reson Imaging 2000;12:
411–416.

7. Lassen NA, Perl W. Tracer kinetic methods in medical physiology. New
York: Raven Press; 1979.

8. Yablonskiy DA, Haacke EM. Theory of NMR signal behavior in mag-
netically inhomogeneous tissue: the static dephasing regime. Magn
Reson Med 1994;32:749–763.

9. Kiselev VG, Posse S. Analytical theory of susceptibility induced NMR
signal dephasing in a cerebrovascular network. Phys Rev Lett 1998;81:
5696–5699.

10. Kiselev VG, Posse S. Analytical model of susceptibility-induced MR
signal dephasing: effect of diffusion in a microvascular network. Magn
Reson Med 1999;41:499–509.

11. Meiboom S, Gill D. Modified spin echo method for measuring nuclear
relaxation times. Rev Sci Instrum 1958;29:688–691.

12. Spees WM, Yablonskiy DA, Oswood MC, Ackerman JH. Water proton
MR properties of human blood at 1.5 Tesla: magnetic susceptibility, T1,
T2, T*2, and non-Lorenzian signal behavior. Magn Reson Med 2001;45:
533–542.

13. Boxerman JL, Hamberg LM, Rosen BR, Weisskoff RM. MR contrast due
to intravascular magnetic susceptibility perturbations. Magn Reson
Med 1995;34:555–566.

14. Le Bihan D, Turner R, Patronas N. Diffusion MR imaging in normal
brain and in brain tumor. In: Le Bihan D, editor. Diffusion and perfu-
sion. Magnetic resonance imaging: applications to functional MRI. New
York: Raven Press; 1995. p 134–140.

15. Schlenska G. Messungen der Oberflächen und der Volumenanteile des
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