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Abstract A transverse gradient coil (x- or y-coil) of an MRI-scanner is modeled as a network of curved circular
strips placed at the surface of a cylinder. The current in this network is driven by a time-harmonic source current.
The low frequency applied allows for an electro-quasi-static approach. The strips are thin and the current is assumed
to be uniformly distributed in the thickness direction. For the current distribution in the width direction of the strips,
an integral equation is derived. Its logarithmically singular kernel represents inductive effects related to the occur-
rence of eddy currents. For curved circular strips of width much smaller than the radius of the cylinder one may
locally replace the curved circular strip by a tangent plane circular strip. This plane geometry preserves the main
characteristics of the transverse current distribution through the strips. The current distribution depends strongly
on the in-plane curvature of the strips. The Petrov–Galerkin method, using Legendre polynomials, is applied to
solve the integral equation and shows fast convergence. Explicit results are presented for two examples: a set of 1
strip and one of 10 strips. The results show that the current distributions are concentrated near the inner edges and
that resulting edge-effects, both local and global, are non-symmetric. This behavior is more apparent for higher
frequencies and larger in-plane curvatures. Results have been verified by comparison with finite-element results.
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1 Introduction

Magnetic Resonance Imaging (MRI) is a revolutionary way of scanning in medical diagnostics, producing images
with contrast differences. MRI utilizes gradient coils to induce magnetic-field gradients for the spatial differentia-
tion of the signals emitted from parts of the human body to be diagnosed. A gradient magnetic field is an alternating
magnetic field, superimposed on a strong static and substantially uniform magnetic field, which changes linearly
with position. For a detailed description of MRI we refer to e.g. [1,2].

The gradient coils of an MRI-scanner consist of copper strips on a cylinder. They are designed such that alter-
nating electric currents through the coils cause the magnetic field to have a uniform gradient in a specific region
of interest. High precision of the gradient field is crucial for reliable high-quality images. Thus, research is carried
out on the development of eddy currents in the gradient coils, which have a negative effect on the uniformity of the
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316 J. M. B. Kroot et al.

gradient field. In previous work ([3,4]), networks of plane straight strips and of coaxial rings were considered. It was
shown that a longitudinal or z-coil can be modeled by a set of circular loops of strips (rings) around the cylinder.
By properly selecting the positions of the loops and the magnitudes of the currents, one can achieve a uniform
gradient field of high precision. Different design solutions are presented by, e.g., Romeo and Hoult [5] or Suits and
Wilken [6]. In other methods, the values of the currents are fixed and the corresponding positions are computed.
This leads to optimization methods, such as the conjugate gradient method by Wong and Jesmanowicz [7] and the
simulated annealing method by Crozier and Doddrell [8]. Other basic methods for the design of x- and y-coils
are described by Frenkiel et al. [9] or Siebold [10]. A standard example of a coil that creates a magnetic field
whose axial component is linearly increasing in the transversal direction is the Golay coil. The Golay coil consists
of four sets of symmetrically placed saddle coils. The optimal dimensions are determined using zonal spherical
harmonics. For more details on the Golay coil, see [1,Sect. 3.4]. In the practical design of gradient coils, first, for a
DC source current the optimal distribution of streamlines, representing one-dimensional wires, is determined and,
then, thin strips of copper are placed along these streamlines. The magnetic field induced by the currents in the
conductor pattern is computed, assuming that the current density is uniform in the strips. For an optimal distribution
of streamlines, often stream functions are used; see [11–14].

The present paper focusses on a mathematical model of the current distribution in the transverse gradient coils of
the scanner. Since strips of finite width (instead of wires) are used in the manufacture of a gradient coil, eddy currents
occur. The eddy currents cause extra dynamic forces on the conductors that result in noise and reduction of lifetime.
More importantly, the eddy currents cause perturbations of the expected gradient field, leading to MR pictures with
blurring and ghosting. Eddy-current response is greatly affected by the frequencies used, by geometrical features
such as curvature, edges, grooves, and by the distances between conductors.

The main objective of this paper is to determine the current distribution within the strips. In contrast to the
currently used streamline methods, in which the current in a strip is assumed to be uniformly distributed, we include
eddy currents, making the current distribution non-uniform, thus affecting the linearity of the gradient field and
consequently the quality of the images.

In previous work, we have determined the eddy currents in sets of plane rectangular strips [3] and parallel coaxial
rings [4]. In both papers, an integral equation for the current is derived and the Galerkin method is used to solve the
integral equation. Legendre polynomials turned out to be a very appropriate choice of the basis functions, because
of fast convergence and the analytical way to overcome the logarithmic singularity in the kernel of the integral
equation. The results in both plane rectangular strips and rings show edge-effects in the currents and phase-lag with
respect to the source. The main conclusion after comparing the results of [3] and [4] is that the curvature of the
rings hardly affects the current distribution, as compared with that of the plane strips, provided the radius of the
rings is always much larger than their width.

In this paper, we consider configurations of one or more closed circular loops of strips placed on top of a cylinder.
These circular strips form an appropriate geometry to model a transverse gradient coil. In contrast to the rings, these
strips have two characteristic curvatures: the (global) curvature of the basic cylinder and the (in-plane) curvature
of the circular central line of the strip on the cylinder. Since the radius of the cylinder is always much larger than
the width of the strips, the global curvature is not so relevant, but the in-plane curvature will play a dominant role.
The strips are conductors and carry a time-harmonic electric current. In this respect, we note that gradient coils are
switched on and off rapidly for slice selection and amplitude and phase encoding. A typical switching sequence
consists of trapezoidal pulses. These pulses are composed in practice by a limited series of harmonics. Hence, the
analysis can assume a superposition of time-harmonic currents as well, and only a few frequencies are needed. In
the numerical results we will present, a range of frequencies of the significant Fourier components are used that are
practically relevant for MRI applications. The thin strips have an almost uniformly distributed current density in the
thickness direction, implying that the thin strip can be modeled as a 2-D surface and the current density (A/m2) as a
surface current (A/m). The current in the strips is in tangential direction (along the central line), but non-uniformly
distributed in the transverse (width) direction. For this current distribution, an integral equation with a singular
logarithmic kernel is derived. The non-uniformity of the current is not only due to the, dynamic, eddy currents, but
also to the, static, 1/r effect: the static (or DC) current is inversely proportional to the radial distance r measured
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Fig. 1 (a) Sketch of the
x-coil. The y-coil has an
identical shape and is placed
in the scanner with a
rotation of 90 degrees about
the x-coil; (b) Sketch of the
z-coil

with respect to the center of the circular strip. To account for this 1/r effect, the Petrov–Galerkin method is used
to solve the integral equation.

We start this paper with the problem formulation and the derivation of the basic integral equation in Sect. 2. In
Sect. 3, the solution procedure for this integral equation is presented, while numerical results for two different types
of transverse gradient coils are given in Sect. 4. Explicit results are depicted for the transverse current distributions
and for the electric resistances of the coils. We show how due to the 1/r effect and the eddy currents the current
distribution on the strips is shifted towards the inner edges of the strips. This effect is getting stronger as the in-plane
curvature of the strip and the frequency of the time-harmonic current increase.

2 Problem formulation

A gradient coil consists of a long strip of copper arranged on a cylinder. Figure 1 shows design configurations of
gradient coils. As can be seen from this figure, the strips on a transverse (x- or y-) coil form circles on top of the
cylinder, whereas the z-coil consists of a set of parallel circular strips (rings) around the cylinder. The width of
a strip is a few centimeters, its thickness a few millimeters, and a common value for the radius of the cylinder is
35 cm. The mutual distance between separate windings of the coil varies from just a few millimeters to several
centimeters. As in [3] and [4], the strips are of uniform width; however, not all the strips need to have the same
width and mutual distances may be different.
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A comparison of the results of [3] and [4] revealed that inductance effects are local; see the second paragraph
of [4, Sect. 5]. Induction causes the non-uniformness of the transverse current distribution. This leads us to the
following conclusion: the current distribution in transverse direction in a point on a strip of width D is only affected
by the currents in a D-vicinity (distances of a few times D) of that point. Mathematically, the basic reason is that
the logarithmic part of the kernel of our fundamental integral equation governs the principal behavior of the current.
This logarithmic kernel is the same for a straight and a curved strip, and the approximation made by replacing the
whole kernel for the curved ring by only its logarithmic part is of O(D2/R2), for D/R � 1. Therefore, replacing
the cylindrically curved loop locally by a plane circular loop in the tangent plane on the cylinder in the same point is
allowed within the same order of accuracy. As long as we are only interested in the transverse current distribution,
this replacement by a plane circular loop is justified. However, it must be emphasized that this is not allowed when
we want to calculate the magnetic field induced by the currents in the curved circular loops on top of the cylinder.
All this holds irrespective of the in-plane radius of the circular loop; even if this radius becomes of the order of
magnitude of a few times D, this approximation is still allowed.

Hence, since in this paper we focus on the transverse current distributions in the strips, we can approximate the
strips, locally, by plane circular strips. The configuration of a set of plane circular loops is depicted in Fig. 2. In
this plane configuration, we introduce a radial coordinate r , measured from the center of the circle (the notation
r should not be confused with the r -coordinate of a set of cylindrical coordinates attached to the cylinder), and a
tangential coordinate ϕ, as shown in Fig. 2.

We consider a set of N distinct plane circular strips of uniform width and thickness. The thickness of all strips is
h, which is very small compared to their widths. Therefore, the current distribution through the thickness is fairly
uniform (see [4]) and thus the resulting current can be considered as a surface current j on an infinitely thin strip. The
circular strips are lying concentrically in a plane; see Fig. 2. Not all strips are necessarily of the same width and their
mutual distances may differ. Because the geometry is rotationally symmetric and the current divergence-free, the
current does not depend on ϕ and has a component in the ϕ-direction only, so j = j (r)eϕ . The current distribution
j (r) is the unknown function we want to calculate here.

The loops occupy a surface S∪ on the plane. The set of loops is subdivided into L groups, each of which is driven
by a separate source current and has a prescribed time-harmonic total current Il(t) = Re{Ile−iωt }, l = 1, . . . , L ,
with Il ∈ C a complex constant. The sum of the widths of all loops in group l is denoted by Dl . The number of
loops in each group is denoted by Nl . Then, S(l)n can be defined as the surface of the nth loop within group l, with
n ∈ {1, . . . , Nl} and S(l)∪ as the surface occupied by the strips in the l th group. Hence,

S(l)∪ =
Nl∑

n=1

S(l)n , and S∪ =
L∑

l=1

S(l)∪ =
L∑

l=1

Nl∑

n=1

S(l)n , (1)

where
∑

denotes disjoint union of sets. Note that S(l)n ⊂ S(l)∪ ⊂ S∪.
Since the currents do not depend on ϕ, it is more convenient to introduce a notation for the r -intervals in which

the loops are positioned. Instead of S∪, which represents a surface, we introduce the one-dimensional set Sr∪ as the
collection of all radial intervals of the loops:

Sr∪ =
N∑

n=1

Sr
n, Sr

n = {r |r (n)0 < r < r (n)1 }. (2)

The current distribution j (r) satisfies an integral equation that is derived from the Maxwell equations in the same
way as in [3] and [4]. Thereby we use the assumption that the low frequency ω of the time-harmonic fields allows
an electro-quasi-static approach; see [4, Sect. 2].

To make our formulation dimensionless, let j c be the characteristic value for the surface current through the
strips, and Rc the characteristic length, successively defined by

j c =
∑L

l=1 Il∑L
l=1 Dl

, Rc = r (1)0 . (3)
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Thus, the current is scaled by the average current through all strips and the distances are scaled by the inner radius
of the first loop. We can write the complex amplitude of the vector potential A at position x in a dimensionless form
Ã, according to

A(x) = µ0 Rc jcÃ(x̃), (4)

where

Ã(x̃) = 1

4π

∫

S∪

j̃(ξ̃)

|x̃ − ξ̃ | da(ξ̃). (5)

Here, µ0 is the magnetic permeability, x̃ = x/Rc is the dimensionless position of the observation point, and j̃ is the
dimensionless current, scaled by j c. This means that j(x, t) = Re{ j c j̃(x̃)e−iωt }. In the sequel, we consider only
the spatial parts of the fields; time derivatives are replaced by −iω. The tildes are omitted from now on.

On the plane circular strips, we denote the observation point P and the source point Q by vectors p = p(r, ϕ)
and q = q(ρ, θ), which in polar coordinates are given by

p = rer (ϕ), q = ρeρ(θ) = ρ cos(ϕ − θ)er − ρ sin(ϕ − θ)eϕ. (6)

The distance between the points P and Q is

|p − q| =
√

(r − ρ)2 + 4rρ sin2
(
ϕ − θ

2

)
. (7)

Substituting j(ξ) = j (ρ)eθ = j (ρ) sin(ϕ − θ)er + j (ρ) cos(ϕ − θ)eϕ in (5), we obtain the components of the
vector potential A = A(r) according to

Ar (r) = 1

4π

∫

S∪

sin(ϕ − θ) j (ρ)√
(r − ρ)2 + 4rρ sin2(

ϕ−θ
2 )

da(ρ, θ) = 0, (8)

Aϕ(r) = 1

4π

∫

S∪

cos(ϕ − θ) j (ρ)√
(r − ρ)2 + 4rρ sin2(

ϕ−θ
2 )

da(ρ, θ), (9)

where the surface element da(ρ, θ) = ρ dρ dθ . The component Ar = 0, because the integrand of the integral on
the right-hand side is an odd function of (ϕ − θ).

To arrive at an integral equation for the current, we use the relation between the electric field E and the vector
potential (E, eϕ) = Eϕ = iωAϕ , apply the continuity of the tangential component of the E-field at the surface
of the strip and then Ohm’s law in the form j = σhEϕ + j s = iωσh Aϕ(r) + j s(r), where σ is the electric
conductivity (the factor h is added because j is a surface current) and j s is a source current (see [4, Eq. (6)]). Thus,
after dimensionalization, we obtain

j (r)− iκ

4π

∫

S∪

cos(θ) j (ρ)√
(r − ρ)2 + 4rρ sin2( θ2 )

da(ρ, θ) = j s(r), (10)

where

κ = hσµ0ωRc. (11)

Since S∪ = Sr∪ × [−π, π ], repeated integration yields

j (r)− j s(r) = iκ

2π

∫

Sr∪

[∫ π/2

−π/2
cos(2θ)√

(r + ρ)2 − 4 cos2(θ)
dθ

]
ρ j (ρ) dρ

= iκ

2π

∫

Sr∪

1

k
√

rρ
[(2 − k2)K (k)− 2E(k)]ρ j (ρ) dρ. (12)
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Here, K (k) and E(k) are the complete elliptic integrals of the first and second kind ([15, Sect. 17]), respectively,
and

k = 2
√

rρ

r + ρ
. (13)

The source current is a time-harmonic current, but its spatial part is independent of the frequency ω, as this spatial
part is equal to the DC source current (ω = 0).

3 Solution method

3.1 Construction of a linear set of equations

The Petrov–Galerkin method, used to solve the integral equation (12), is first applied to a single circular strip:
Sr∪ = {r |1 < r < r1/r0}. The case of more strips is treated in the same way and explained further on.

Let the current distribution j be expanded in a series of basis functions φm , with corresponding coefficients αm ,
according to

j =
∞∑

m=0

αmφm . (14)

The source current j s is expanded in the same basis functions φm , but with coefficients βm ,

j s =
∞∑

m=0

βmφm . (15)

For an appropriate choice of the basis functions, we are led by the solution for the DC-situation. For ω → 0
(equivalently, κ → 0), the inductive effects disappear and j → j s . The analytical solution for the static current
distribution in one plane circular loop, carrying a total current I , is given by

j = I

Rc jc log(r1/r0)

1

r
= D

r0 log(r1/r0)

1

r
. (16)

Consequently, the current is inversely proportional to r (where one should read r̃ = r/r0 for r ).
The kernel of the integral equation (12) has a logarithmic singularity in r = ρ (i.e., k = 1). Therefore, we

approximate j by a series of scaled and shifted Legendre polynomials divided by r , according to

φm(r) = 1

r
Pm

(r − c

d

)
, (17)

where

c = r1 + r0

2r0
, d = r1 − r0

2r0
. (18)

As was said before, the spatial behavior of the source current is the same for all frequencies ω, including ω = 0.
This yields, with P0(r) = 1,

β0 = I

Rc jc log(r1/r0)
, βm = 0, m ≥ 1. (19)

The coefficients αm,m ≥ 0, depend on the frequency ω. Only for ω= 0 we know them a priori: α0 =β0,

αm = 0,m ≥ 1, because for ω = 0 inductive effects are absent. The total current condition for one strip reads

∫ r1

r0

j (ρ) dρ = α0 log

(
r1

r0

)
+ d

M∑

m=1

αm

∫ 1

−1

Pm(r)

dr + c
dr = I

Rc jc
. (20)
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We apply a projection method with test functions different from basis functions and use the inner product

( f, g) =
∫

Sr∪
f (r)g(r)r dr. (21)

The basis functions are Legendre polynomials of the first kind divided by r (see (17)) while the test functions are
the Legendre polynomials themselves, i.e., Pm((r − c)/d). Their mutual inner products are
∫ r1

r0

Pm(
ρ−c

d )

ρ
Pn

(ρ − c

d

)
ρ dρ = 2d

2m + 1
δmn . (22)

Thus, the source current only yields a non-zero inner product for the zeroth-order test function P0. This is the main
reason to use the Petrov–Galerkin method. It enables us to embed the source current in the family of basis functions
such that the total current density is expanded into components that comprise the source current density.

Next, we generalize the method for two or more plane circular loops. Let ψl be the characteristic function of
group l,

ψl =
Nl∑

n=1

1[r (n)0 ,r (n)1 ], (23)

where 1[a,b] represents the characteristic function of the interval [a, b]. In (23), r (n)0 and r (n)1 are dimensionless, scaled

on Rc = r (1)0 . Due to disjointness of the intervals Sl
, each two characteristic functionsψl1 , ψl2 , l1, l2 ∈ {1, 2, . . . , L}

satisfy
(
ψl1

r
, ψl2

)
= Dl1

Rc
δl1l2 . (24)

The source current j s is in every loop inversely proportional to r and can therefore be written as

j s =
L∑

l=1

Cl
ψl

r
, (25)

with unknown constants Cl . The integral equation (12) then becomes

j (r)− iκ
∫

Sr∪
K(r, ρ) j (ρ)ρ dρ =

L∑

l=1

Cl
ψl(r)

r
, r ∈ Sr∪, (26)

with

K(r, ρ) = 1

2πk
√

rρ
[(2 − k2)K (k)− 2E(k)], k = 2

√
rρ

r + ρ
. (27)

Moreover, the total current per group is prescribed, so j (r) must satisfy
∫

Sr∪
j (ρ)ψl(ρ) dρ =

(
1

r
j, ψl

)
= Îl , l = 1, . . . , L , (28)

where Îl = Il/( j c Rc), with j c according to (3).
We define the operator K on L2(Sr∪, r dr) by

(K f )(r) =
∫

Sr∪
f (ρ)K(r − ρ)ρ dρ, (29)

and then (26) can be written in operator form as

(I − iκK) j =
L∑

l=1

Cl
ψl

r
. (30)
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We define the projection � on the linear span of the characteristic functions r−1ψl , l ∈ {1, . . . , L}, by

(� f ) =
L∑

l=1

( f, ψl)

( 1
rψl , ψl)

ψl

r
. (31)

The projection � applied to j yields, by use of (24),

� j =
L∑

l=1

Rc ( j, ψl)

Dl

ψl

r
=

L∑

l=1

α
(l)
0
ψl

r
, (32)

where the coefficients α(l)0 are defined by α(l)0 = Rc( j, ψl)/Dl , l = 1, . . . , L .
We note that, although �2 = �,� is not orthogonal, because �∗ 
= � as

(�∗ f ) =
L∑

l=1

( f, 1
rψl)

( 1
rψl , ψl)

ψl 
= (� f ). (33)

Moreover, we note that (28) cannot be used here in the same way as in [3,4], where the coefficients of the basis func-
tions ψl disappeared in favor of the total currents Îl . Hence, we cannot directly eliminate the unknown coefficients
α
(l)
0 here.

Next, j is split into two parts according to

j = � j + (I −�) j =
L∑

l=1

α
(l)
0
ψl

r
+ j⊥. (34)

Here, j⊥ = (I −�) j is in the range of �∗, i.e., ( j⊥, ψl) = 0, for l = 1, . . . , L . Applying the operator (I −�) to
(30), we obtain

j⊥ − iκ(I −�)K j = 0, (35)

or equivalently,

j⊥ − iκ(I −�)K j⊥ = iκ
L∑

l=1

α
(l)
0 (I −�)K

ψl

r
. (36)

In this relation for j⊥, the constants Cl have disappeared, but they are replaced by the coefficients α(l)0 , which are
also unknown a priori. For this, we should use the L known values Îl , l = 1, . . . , L , for which we need an additional
set of L equations. These equations are obtained from the inner products of relation (30) with ψl , l = 1, . . . , L .

We approximate j⊥ by a finite series of basis functions φm ∈ ran(I −�),

j⊥
.=

M∑

m=1

αmφm . (37)

Taking successively the inner product of (30) with ψl and (36) with rφn , we arrive at

α
(l)
0

Dl

Rc
− iκ

L∑

k=1

α
(k)
0

(
K
ψk

r
, ψl

)
− iκ

M∑

m=1

αm(Kφm, ψl) = Dl

Rc
Cl , l = 1, . . . , L , (38)

M∑

m=1

αm(φm, rφn)− iκ
L∑

l=1

α
(l)
0

(
K
ψl

r
, rφn

)
− iκ

M∑

m=1

αm(Kφm, rφn) = 0, n = 1, 2, . . . ,M. (39)

For convenience of notation, we write (38) and (39) in matrix form as

(G − iκA)a = c, (40)
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where the block matrices G,A and the column vectors a, c are defined by

G =
(

G11 0
0 G22

)
, A =

(
A11 A12

A21 A22

)
, a =

(
a1

a2

)
, c =

(
c1

c2

)
, (41)

with elements (m, n = 1, . . . ,M; k, l = 1, . . . , L)

A11(l, k) =
(
ψl ,K

ψk

r

)
, A12(l,m) = (ψl ,Kφm), A21(n, l) =

(
rφn,K

ψl

r

)
,

A22(n,m) = (rφn,Kφm), G11(l, k) = Dl

Rc
δkl , G22(n,m) = (rφn, φm), a1(l) = α

(l)
0 ,

a2(m) = αm, c1(l) = Dl

Rc
Cl , c2(m) = 0. (42)

The way we solve this matrix equation is explained in Sect. 3.2. We first show how the entries of the matrices are
computed.

We introduce shifted and scaled Legendre polynomials, Ps,q(r; cq; dq), of order s, defined on strip
q(q = 1, . . . , N ) as

Ps,q(r; cq; dq) = Ps

(r − cq

dq

)
, r ∈ [r (q)0 , r (q)1 ], (43)

where

cq = r (q)1 + r (q)0

2
, dq = r (q)1 − r (q)0

2
, q = 1, . . . , N , (44)

and Ps,q(r; cq; dq) = 0 for r 
∈ [r (q)0 , r (q)1 ]. Orthogonality of Legendre polynomials yields
∫

Sr∪

Ps,q(ρ; cq ; dq)

ρ
Ps′,q ′(ρ; cq ′ ; dq ′)ρ dρ = 2dq

2s + 1
δss′δqq ′ . (45)

The shifted and scaled Legendre polynomials are used to construct the basis functions. We create a series expansion
in different basis functions for each strip separately, that is,

j⊥ =
S∑

s=1

N∑

q=1

αs,qφs,q +
N−L∑

t=1

α0,tφ0,t , (46)

where S denotes the number of degrees of basis functions that is included.
Requirements for the basis φs,q functions is that (φs,q , rφs′,q ′) = 0 for s 
= s′ or q 
= q ′ and (φs,q , ψl) = 0 for all
s and l. For Legendre polynomials of degree one and higher, we have
∫

Sr∪

Ps,q(ρ; cq ; dq)

ρ
ψl(ρ)ρ dρ = 0, (47)

for q = 1, . . . , N , l = 1, . . . , L , and s ≥ 1. Therefore, we can choose the basis functions of degree one and higher
equal to the shifted and scaled Legendre polynomials:

φs,q = 1

r
Ps,q(r; cq; dq), q = 1, . . . , N , s = 1, . . . , S. (48)

The functions φ0,t , t = 1, . . . , N − L together with the functions r−1ψl , l = 1, . . . , L establish an orthogonal
system with the same linear span as {r−1 P0,q(ρ; cq ; dq)|q = 1, . . . , N }, satisfying

(φ0,t , rφ0,t ′) = δt t ′, t, t ′ = 1, . . . , N − L ,

(φ0,t , rψl) = 0, t = 1, . . . , N − L , l = 1, . . . , L; (49)

for more details see [4, Sect. 3].
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It is convenient to transform all intervals [r (q)0 , r (q)1 ] to [−1, 1]. For the entries of A, we have to compute integrals
of the form

dqdq ′
∫ 1

−1

∫ 1

−1
Ps′(r)Ps(ρ)K(dq ′r + cq ′ , dqρ + cq)(dq ′r + cq ′) dρ dr. (50)

Since the integrands are logarithmically singular if q = q ′, we extract the logarithmic part, which is obtained
explicitly from the asymptotic expansion of K(r, ρ) for r close to ρ:

rK(r, ρ) ≈ − 1

2π

(
log|r − ρ| − log

√
rρ − log2 + �(0)

(
3

2

)
+ γ

)
, |r − ρ| � 1, (51)

where �(0)(3/2) ≈ 0.03649 (�(0) is the polygamma function), and γ ≈ 0.57722 (Euler’s constant); see [15]. The
difference between rK(r, ρ) and this asymptotic expansion is a regular function.

In computing integrals of the type (50), we use the following explicit result:
∫ 1

−1

∫ 1

−1
Pk(r)Pk′(ρ) log |r − ρ| dρ dr

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

8

(k + k′)(k + k′ + 2)[(k − k′)2 − 1] , if k + k′ > 0 even,

0, if k + k′ odd,

4 log 2 − 6, if k = k′ = 0.

(52)

For the derivation of this relation, we refer to [16]. The remaining difference function is regular and can therefore
be integrated numerically. We will use the Gauss–Legendre quadrature rule as integration method. We note that the
singular logarithmic part of the integral kernel governs the behavior of the current distribution j (r); the contributions
of the regular part are small.

3.2 Solving the linear set of equations

In this section, we describe the solution procedure for Eq. (40). In this equation, the unknowns areαm , m = 1, . . . ,M ,
Cl and α(l)0 , l = 1, . . . , L . The coefficients Cl , introduced in (25) should be related to the L prescribed values of the
total currents Îl through groups l = 1, . . . , L . The parameter κ has a known value and the entries of G and A can
be determined from (42). Additionally, the total currents Î1, . . . , ÎL in the L groups are given. According to (28)
they yield the relations
∫

Sr∪
j (ρ)

ψl(ρ)

ρ
ρ dρ = α

(l)
0

(
ψl

r
,
ψl

r

)
+

M∑

m=1

αm

(
φm,

ψl

r

)
= Îl , l = 1, . . . , L . (53)

We use these relations to eliminate the L unknown coefficients Cl . To this end, we define the L × (L + M) matrix
S by

S = (
S11 S12

)
, (54)

with elements (m = 1, . . . ,M; k, l = 1, . . . , L)

S11(l, k) =
(ψl

r
,
ψk

r

)
δkl , S12(l,m) =

(ψl

r
, φm

)
, (55)

where the latter elements are only non-zero if φm acts on a ring in group l. Moreover, let Î be the L-vector consisting
of all Îl , l = 1, . . . , L . Then, (53) can be written in matrix form:

Sa = Î. (56)
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Thus, the vector a of length L + M is transformed into the vector Î of length L . The vector c in the right-hand side
of (40) also has length L + M . However, only the first L entries are unknown (representing Cl ); the other entries
are equal to zero. To reduce also the vector c to a vector of length L , we introduce the (L + M)× L matrix B and
the L-vector ĉ, by

B =
(

B11

B21

)
, c = Bĉ, (57)

where (m = 1, . . . ,M; k, l = 1, . . . , L)

B11(l, k) = Dl

Rc
δkl , B21(m, k) = 0, (58)

and

ĉ(l) = Cl . (59)

We know that (G − iκA) is invertible, and so the matrix equation (40) reveals that a = (G − iκA)−1c. According
to (56) and (57)2, the two L-vectors Î and ĉ are related to each other by

S(G − iκA)−1Bĉ = Î, (60)

or

ĉ = [S(G − iκA)−1B]−1Î, (61)

since also S(G − iκA)−1B is invertible.
At this point, we have eliminated the unknown coefficients Cl in favor of the given Îl , l = 1, ..., L . The right-hand

side of (40) becomes

c = Bĉ = B[S(G − iκA)−1B]−1Î =: CÎ, (62)

where C is a known (L + M)× L matrix. The fundamental unknown (L + M)-vector a, containing the unknowns
α
(l)
0 and αm , is governed by the matrix equation in its ultimate form

(G − iκA)a = CÎ. (63)

This linear set of equations will be solved numerically. The results for two different sets of circular strips will
be presented in the next section.

4 Numerical results

In this section we present numerical results for the current distributions for, firstly, a set of one circular strip, and,
secondly, for a set of 10 strips. We also computed the total resistance and the dissipated power of the two sets for a
range of frequency values.

4.1 Single plane circular strip

We first consider one circular loop of width D = 2 cm, thickness h = 2.5 mm, and inner and outer radius
r0 = 32.33 cm and r1 = 34.33 cm, respectively. The amplitude of the total current on the loop is I = 600 A.

In Fig. 3, the amplitude of the current distribution in the strip is shown as a function of r for the four frequencies
f = ω/2π = 100, 400, 700, 1, 000 Hz. For low frequencies, the current tends to the DC solution, which can be
determined analytically from (16). Note that in (16) the variables j and r are dimensionless. In dimensional form
we obtain

j (r) = I

r log
(
r1/r0

) = 1.0

r
× 104A/m. (64)

The value of the average current is j c = I/D = 3.0 × 104 A/m.
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Fig. 2 The configuration of a set of plane circular strips
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Fig. 3 Amplitude of the current distribution in one circular
loop of 2 cm width with a total current of 600 A at frequen-
cies f = 100 Hz (∗), f = 400 Hz (◦), f = 700 Hz (+),
f = 1,000 Hz (�)

On the scale used in Fig. 3, the current distribution at f = 100 Hz cannot be distinguished from the DC solution,
but for higher frequencies edge-effects become visible. In contrast to the situation of a single ring, see [4], the
edge-effects are not symmetric in the circular loop. The current near the inner edge of the loop has a higher value
than near the outer edge; the main part of the current distribution shifts towards the inner edge of the loop. A direct
consequence of this shift is that the magnetic field along the axis of symmetry of the loop, which is induced by the
circular loop, increases and deviates from the desired field. Hence the designer of a transverse gradient coil has to
compensate for this amplified field strength.

In comparison with the uniform current distribution that is assumed in the design approach using streamlines,
two effects play a role in the distortion of the desired field. First, the current is more dense near the inner edge of
the loop than near the outer edge, because of the variation of their circumferential lengths. We refer to this effect as
the 1/r -effect, and we note that it also occurs in the static DC situation. The second effect, the edge-effect, occurs
only in a dynamic situation and is caused by induction.

In our approach the Petrov–Galerkin method is applied to solve the basic integral equation. Global basis func-
tions, with unlimited support, are defined on the whole domain of the strips. The resulting matrices are of small
size, but dense. Another option to solve the integral equation for the current distribution is by using local basis
functions, with local support, in the Galerkin method. The matrices are then sparse, but of large size. We have
performed such computations with the finite-element package sysiphos (in cooperation with Dr. H. De Gersem,
Technische Universität Darmstadt). The field-circuit coupling that is implemented is described in [17], the solver in
[18], and the necessary adaptive mesh refinement in [19]. This 2D solver computes the current distribution through
a cross-section of finite thickness. In order to obtain a good approximation of the current, a very fine mesh needs
to be generated. Since the thickness of the strip is very small, in this direction the elements have a size in the order
of tenths of a millimeter. However, as we are mainly interested in the current distribution in the radial direction,
we need a fine mesh in that direction as well. Finally, because the domain of the vector potential extends to the
space outside the (cross-section of the) strip, also the vacuum space around the strip must be meshed. All this easily
leads to a matrix system with millions of elements, resulting in large computing times. However, for a validation
of the results of our approach involving global basis functions, it has been worthwhile to do the finite-element
computations. We obtained exactly the same current distributions with the two methods.

For a second validation, we have computed the resistance of the strip. Again, both our method and the FEM
method yield the same results. This is shown in Fig. 4. The electrical resistance for a three-dimensional body V ,
carrying a time-harmonic current with, complex, spatial density J and total current I, is defined as
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Fig. 4 A single circular strip of 2 cm width with a total current of 600 A. (a) Resistance R̄ at frequencies up to f = 400 Hz;
(b) Resistance R̄ at frequencies up to f = 10,000 Hz. The symbols � denote the FEM results

R̄ = 1

σ I 2

∫

V
J · J∗ dv, (65)

where the asterisk denotes the complex conjugate. For the two-dimensional strip, with
J · J∗ → ( jc/h)2 j (r) and jc = I/D, this formula simplifies to

R̄ = 2πr2
0

hσD

∫ r1/r0

1
r j2(r) dr. (66)

For the DC case, the resistance can be calculated analytically, yielding

R̄DC = 2π

hσ log
(
r1/r0

) = 7.12 × 10−4. (67)

For the time-harmonic case, Fig. 4a presents values of R̄ for the low-frequency range from 0 to 400 Hz. Figure 4b
represents the higher-frequency range from 0 to 10,000 Hz, showing the behavior after the point of inflection.

4.2 Ten plane circular strips

In the practical design of x-coils and y-coils, specific software is used to compute a stream function. The stream
function has a shape that is well approximated by a cosine function. Here, we define the stream function s(r) as

s(r) =
⎧
⎨

⎩
Imax cos

(
πr

2Rref

)
, if |r | < Rref ,

0, if |r | > Rref ,

(68)

where Rref is the radius that defines the support domain of s(r), and Imax represents the maximum value of s(r). The
stream function is discretized by means of streamlines, which form circles for fixed values of r . Each streamline
forms the central line of a plane circular loop. The number of streamlines and the widths of the loops are such that
the strips do not overlap.

In case we want to specify N plane circular loops with central lines at positions r = r (n), n = 1, . . . , N , and
with each loop carrying the same total current, the discretization can be made according to equidistant steps in the
stream function. Then, each loop has a total current of I (n) = Imax/N , and the positions r (n) are determined from

cos
(πr (n)

2Rref

)
= 1

2N
(2n − 1), n = 1, . . . , N, (69)

such that

r (n) = 2Rref

π
arccos

(2n − 1

2N

)
. (70)
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Table 1 Inner and outer
radii of the set of 10 circular
loops

Ring Inner radius (cm) Outer radius (cm)

1 9.11 11.11

2 16.66 18.66

3 22.01 24.01

4 26.48 28.48

5 30.46 32.46

6 34.14 36.14

7 37.62 39.62

8 40.96 42.96

9 44.21 46.21

10 47.41 49.41

Fig. 5 Amplitude of the
current distribution in a set
of 10 circular loops of 2 cm
width, each with a total
current of 60 A, at
frequencies f = 100 Hz (∗),
f = 400 Hz (◦),
f = 700 Hz (+),
f = 1, 000 Hz (�)

0 0.1 0.2 0.3 0.4 0.5 0.6
2500

3000

3500

4000

4500

5000

The configuration we consider here consists of 10 circular loops, all of width 2 cm; its domain is limited by
Rref = 0.5 m. The maximum value of the stream function is chosen as Imax = 600 A. The inner radii r (n)0 and

the outer radii r (n)1 , as found from (70), are listed in Table 1, for n = 1, . . . , 10. The total current in each ring is
I (n) = Imax/N = 60 A. The applied currents have a frequency ω = 2π f and are in phase.

The resulting current distributions within the loops are calculated from (63). In Fig. 5, the amplitudes of the
current distributions in the 10 loops are depicted for f = 100, 400, 700, 1,000 Hz. The average current in each ring
is j c = 3.0 × 103 A/m. In the DC situation, the current is distributed according to the analytical formula

j (r) =
N∑

n=1

I (n)

log
(

r (n)1 /r (n)0

) ψn(r)

r
, (71)

where ψn(r) is the characteristic function of loop n.
In Fig. 5, the current distribution at 100 Hz is very close to the DC solution, but for higher frequencies in each

loop local edge-effects become visible. Moreover, when considering the envelope of the graph, a global edge-effect
is observed. Analogous results were found for a set of coaxial rings in [4]. However, in contrast to [4], here both
the local and the global edge-effect are not symmetric: it is in all loops and in the set as a whole more pronounced
near the inner edges. This will result in an amplified magnetic field along the axis of symmetry, which should be
compensated in the ultimate design.
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Fig. 6 Total resistance of a set of 10 circular loops of 2 cm width carrying a total current of 60 A per loop in phase. (a) Resistance R̄ at
frequencies up to f = 400 Hz; (b) Resistance R̄ at frequencies up to f = 10,000 Hz. The symbols � denote the FEM results

We have also computed the total resistance of the set of loops by means of formula (65). In the DC situation, the
current is given by (71), which yields the following value for the resistance:

R̄DC = 2π

hσ

10∑

n=1

1

log
(
r (n)1 /r (n)0

) = 6.816 × 10−3. (72)

For frequencies in the range from 0 to 400 Hz, the results are shown in Fig. 6a. The symbols � denote the FEM
results. We conclude that the results of our method and those of the finite-element method coincide. Moreover, to
show the behavior of the resistance after the point of inflection, in Fig. 6b, we have depicted the computed values
of R̄ for the range from 0 to 10,000 Hz as well.

The dissipated power in a set of loops is defined as

Pdiss = I 2 R̄. (73)

As an example, we calculate the dissipated power for the two sets considered here at a frequency f = 1, 000 Hz. For
the first set of one strip, with a current I = 600 A and a resistance R̄ = 3.2×10−3, we find Pdiss = 1.15×103 W,
whereas for the set of 10 strips, with I = 60 A and R̄ = 2.1 × 10−2, we find Pdiss = 75.6 W. Hence, the total
dissipated power in a set of 10 strips is less than that in a set of one strip, while in both situations the same magnetic
field is created in a specific region of interest (according to (68)). The overall advantage is that the current that has
to be supplied to the 10 strips is 10 times less than that needed in the set of one strip.

5 Conclusions

In this paper, we have modeled a transverse (x-coil or y-coil) gradient coil by a set of curved circular loops, i.e.,
thin copper strips, placed on the surface of a cylinder. We have shown that locally replacing the curved surface
by the tangent plane has a negligibly small effect on the current distribution in the loops. The reason is that the
currents affect each other only locally. Therefore, for the current distribution in the curved circular loops on the
cylindrical surface, we may use the distribution calculated for a plane circular strip model. However, this model
may not be applied for the calculation of the induced magnetic field. For the latter, one must return to the original
curved configuration and then by means of the Biot–Savart law the magnetic field can be calculated.

In a set of plane circular loops, the current flows in the tangential direction and depends on the radial coordinate
only. The current distribution in the loops is induced by a source current. In circular loops, this source current features
a 1/r -decay in the radial direction. For this reason, we apply the Petrov–Galerkin method, in which Legendre poly-
nomials divided by the radial coordinate are chosen as basis functions, and the Legendre polynomials themselves
as test functions. For the resulting current distribution an integral equation is derived. The kernel of this integral
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equation is logarithmically singular. To tackle the logarithmic part of the kernel, we use the analytical formula (52);
the remaining part of the kernel is regular and computed numerically. In this way, the integral equation is reduced
to a finite set of linear algebraic equations for the unknown coefficients of the basis functions. Solving this system,
we obtain the current distribution we are looking for.

The resulting current distribution in the loops shows two effects that influence the induced magnetic field:

1. A decay in the current density in the radial direction, called the 1/r -effect, a typical static effect.
2. Edge-effects, caused by eddy currents, a typical dynamic effect.

The edge-effects are more pronounced near the inner edge of the circular strip. Thus, in total, the currents are shifted
towards the center of the coil. This is in contrast with the original design based on streamlines in which a uniform
distribution of the current in the loops was assumed. Consequently, the induced magnetic field along the axis of
symmetry of the loops is amplified, an effect that should be compensated for in the final design.

Based on the analysis in this paper we conclude that the dominant logarithmic behavior of the kernel of the gov-
erning integral equation justifies the approximation of a curved circular loop locally by a plane circular loop. The
Petrov–Galerkin method, in combination with the use of Legendre polynomials, delivers us a very fast algorithm
to calculate the current distribution, for which only a very small number (5–10) of basis functions are needed. We
have validated our results by comparison with those of a (much more time-consuming) finite-element program, and
complete correspondence was found. We observe a striking difference between a set of coaxial rings (modeling a
z-coil) and one of circular loops (modeling an x-or y-coil) in so far that the latter shows a non-symmetric edge-
effect (leading to the shift in the current distribution mentioned above). From Figs. 3 and 5, we conclude that this
edge-effect becomes more apparent both with increasing frequency and curvature of the loops. Figure. 5 shows not
only a local edge-effect per loop, but also a global one for the set as a whole. Also the magnitude of the latter effect
increases with the frequency.

Finally, the total resistances of the two sets we considered were calculated (for this, not more than six coefficients
were needed). As can be expected, the resistance increases with frequency. More important is the conclusion, which
was also reached in [4], that the dissipated power for a set of 10 loops was less than that for a single loop, provided
that both sets create the same magnetic field in a specific region of interest. Moreover, we noticed from Figs. 4 and 6
that the resistance as a function of the frequency has an inflection point. As explained in [4], this point represents
the frequency at which prevailing resistive effects with respect to inductive effects change into prevailing inductive
effects.

The mathematical analysis presented so far for plane rectangular strips [3], circular loops of strips [4] and trans-
verse curved circular strips can be used for a large number of design concepts to investigate the qualitative effects
of model parameters on the magnetic field. The standard shape missing in this list is the rectangular patch that is
placed as an island between other conducting strips on a cylindrical surface. Research has already been conducted
on these geometries ([16,Ch. 5]) and the results will be published in the near future. Due to the local induction
effects, the standard shapes can be used for any arbitrary shape of conductors on a cylindrical surface.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits
any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
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