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A new technique of forming two- or three-dimensional images of a macroscopic 
sample by means of NMR is described. It is based on the application of a sequence 
of pulsed magnetic field gradients during a series of free induction decays. The image 
formation can be achieved by a straightforward two- or three-dimensional Fourier 
transformation. The method has the advantage of high sensitivity combined with ex- 
perimental and computational simplicity. 

I. INTRODUCTION 
P. C. Lauterbur (I) has recently described an ingenious technique to determine one-, 

two- or three-dimensional images of the distribution of magnetic moments in a macro- 
scopic sample. He calls such an image a zeugmatogram. The potential use of this 
method includes the measurement of the spatial distribution of a given nuclear species 
in living tissue and the determination of its relaxation times with the possibility of 
localizing cancerous parts in a living organism (2,3). The most important nuclei to be 
detected are the protons of water in biological materials. 

Lauterbur’s method (I) is based on the application of linear magnetic field gradients 
in different directions in a series of experiments. Each of the resulting spectra of a single 
resonance line represents a distribution function of the nuclei as a function of the local 
magnetic field strength. It can be considered as a prqjection of the three-dimensional 
nuclear spin density onto the axis along which the linear field gradient has been applied. 
From a sufficient number of such projections onto different axes, it is possible to par- 
tially reconstruct the two- or three-dimensional spin density function by means of well- 
known image reconstruction techniques (4-7). The inherent spatial resolution is deter- 
mined by the number of independent projections obtained and by the natural width of 
the resonance line under consideration. The various linear gradients along different 
directions can be generated either by means of a set of suitable gradient coils or, more 
easily, by means of a single gradient coil and step-by-step rotation of the sample. 

A modification of the Lauterbur technique (1) can be obtained by the application of 
Fourier spectroscopy techniques (8). For each gradient setting, a free induction decay 
signal (FID) is recorded. Except for improved sensitivity and for the elimination of one 
computational step (many image reconstruction techniques require as an intermediate 
step the Fourier transformation of the spectrum (4, 7)), this method does not show 
advantages over the Lauterbur procedure and it will not be mentioned further. 
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In this paper, an alternative technique is described which is remarkable for its ex- 
perimental and computational simplicity and by its inherent high sensitivity. It is based 
on the application of a sequence of pulsed orthogonal linear field gradients to the sample 
during the FID. The spatial spin density function can then be reconstructed by a 
straightforward two- or three-dimensional Fourier transformation. One of the impor- 
tant features of this method is the homogenous error distribution over the entire fre- 
quency range such that low and high frequency components can be reconstructed with 
equal accuracy. The method can easily be implemented on a small on-line computer. 

II. MATHEMATICAL ANALYSIS OF THE TECHNIQUE 
Although the experimental examples presented in this paper and probably many of 

the future applications of this technique will be confined to the two-dimensional 
imaging of a sample, the theory will be developed for the more general three-dimensional 
case. 

The principle of the technique is explained by means of Fig. 1. At time t = 0, an FID 
is generated by means of a short 90” pulse. In the course of this decay, three orthogonal 

9O’PULSE 

FIG. 1. Diagram depicting the principle of the zeugmatographic method. The FID is recorded during 
the third time-interval as a function oft,. For a three-dimensional zeugmatogram, usually N2 such FID 
signals will be needed for a complete set of values for x- and y-gradients. N is the number of samples in 
an FID. 

linear magnetic field gradients, g,, g,,, and g,, are applied in succession. The z-compo- 
nent of the local magnetic field is then given by 

l 

= HI + &X7 for o<t<t, 

fL(r) = & + g,x for t, < t < t, + ty Dl 
= f&l + gzz, for tx + ty < t. 

The FID is sampled in the third time-interval as a function oft, = t - (tx + r,). It is at 
the same time a function of the preceding time-intervals t, and ty. It will be denoted by 
s(t) = s(t,,t,,,t,). The experiment is repeated for a full set of equally spaced t, and tY 
values. Jt will be shown in this section that the three-dimensional Fourier transform of 
s(t) is a measure for the spatial spin density function c(r) = c(x,y,z) and provides a three- 
dimensional image of the sample. 
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The observed signal s(t) is a composite of the contributions from the various volume 
elements of the sample and can be written as 

s(t) = .lj”Jc(r> dr,t) du PI 
where s(r,t) dz is the contribution from the volume element du = dx dy dz at position r. 
For a single resonance, the function s(r,t) can easily be found by solving Bloch equations. 
After phase-sensitive detection with the frequency wl, the signal is given by 

s(r,t) = M,c0s{(d + qXx)tX + (A + qyy)t, + (d + q,z>tJ .exp{--(tX + t, + rZ)/T2>. [31 

The resonance offset in the absence of a field gradient is given by A = -yH, - ol. The 
field gradients qk = -yg, are measured in frequency units. The setting of the phase- 
sensitive detector has been assumed arbitrarily to produce a cosine signal. It can easily 
be shown that the function 15(r)\, which is plotted in a Fourier zeugmatogram, is inde- 
pendent of this arbitrary phase setting. 

The three-dimensional Fourier transform of s(t) is denoted by S(o) = S(O,,W,,O~) 
and is given by 

S(o) = JJj s(t) exp(-iot) dt,dt, a’&. [41 
It is again a composite of the contributions from the various volume elements, 

S(o) = [[[c(r) S(r, o) dv. [51 

Here, S(r,o) is the Fourier transform of s(r,t) and is calculated to be 

S(r,o) = +{G(A + qXx - co,) G(A + q,,y - 0,) G(A -t rp - w,) 
+ G(- A - qXx - co,) G(-A - qyy - co,) G(-A - qzz - w,)} bl 

with the complex line shape function 

MolT, MOO 
G(o) = A(o) + jDcO) = (l/T,)2 + o2 + ‘(,,r,)’ + w2. 

The second term in Eq. [6] which describes the contribution of the resonance near -A 
can be neglected whenever the linewidth is small compared to A. 

Equation [6] shows that the following identity holds, 

S(r, 0) = S(0, 0 - qr) PI 
where q is a diagonal matrix with the elements g,, ye,,, and qZ. One obtains for S(w) 

S(o) = [j[ c(r) S(0, cu - qr) dv. [91 
The frequency variable o will now be replaced by a spatial variable r’ with 

o = AI + qr’. 1101 
I is the vector (1, 1, 1). Then, one obtains 

S(w) = S(AI + yIr’) = C(r’) = Jlf c(r) S(0, AI + q(r’ - r)) dv. VII 
This integral is clearly a three-dimensional convolution integral. It represents a “filtered” 
spin density function C(r’) obtained from the original spin density function c(r) by a con- 
volution with the lineshape function S(0, AI + yr). By means of Eq. [6] and neglecting 
the contribution of the resonance near -A, one obtains finally 

WI = 5;SS.f 44 Gh (x - x’>> WI, (.Y - v’>> Gh (z - z’>> dv. WI 
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The filtered spin density function c(r’) is a complex function. Its real and its imaginary 
parts both contain products of absorption- and dispersion-like parts and can have 
positive and negative function values. It is, therefore, advisable to compute and plot the 
absolute value IF( rather than plotting Re{E(r’)} or Im{LT(r’)). For a sufficiently nar- 
row resonance line or for sufficiently strong gradients qX, q,,, and q,, \Z(r’)l is a good 
measure for c(r’) itself. In Section IV, a modified technique is described that permits 
complete separation of absorption and dispersion mode signals. 

In principle, it is also possible to utilize a quad. -^+.!re phase detector that produces at 
its output s(t) as well as the quadrature component s’(t) which is given by equations 
similar to Eqs. [2] and [3] where the cosine function is replaced by a sine function. A 
linear combination of the two signals permits complete elimination of the contributions 
of the resonance near -A. But the absorption and dispersion parts are not separated and 
the final result is equivalent to Eq. [12] except for an improvement of the sensitivity by 
a factor X4. 

It is a major feature of the described technique that it does not involve one-dimen- 
sional projections of the three-dimensional spin density and that the Fourier transform 
of the spin density is directly measurable (except for the filtering caused by the natural 
lineshape of the NMR signal). Many of the image reconstruction techniques which can 
be used for the Lauterbur procedure (I) utilize the fact that the Fourier transform of a 
one-dimensional projection of the spin density represents a one-dimensional cross sec- 
tion of the three-dimensional Fourier transform of the spin density function (7). All the 
cross sections that can be obtained in this way pass through the point w = 0. The 
density of the obtained samples, therefore, is maximum for w = 0 and decreases for 
increasing (w[. To obtain equally spaced samples representing the Fourier transform, 
it is at first necessary to go through an interpolation procedure. This is a prerequisite 
for the execution of the inverse Fourier transformation that produces the desired image. 
This ultimately implies that the low frequency components are obtained with higher 
precision than the high frequency components of the zeugmatogram. Therefore, the 
coarse features are better represented than the details. In some cases, this may be no 
disadvantage, and it may, in particular cases, even be desirable. This feature is inherent 
and is independent of the reconstruction procedure used. It also occurs in direct alge- 
braic reconstruction techniques (6) that do not involve a Fourier transformation. 

In the described Fourier technique, on the other hand, an equal sample spacing of the 
Fourier transform is automatically obtained. The error distribution of a Fourier zeug- 
matogram is therefore homogenous over the spatial and over the covered frequency 
range, in contrast to the Lauterbur procedure. Coarse features and details are obtained 
with the same accuracy. 

III. EXPERIMENTAL PROCEDURE AND RESULTS 

The predominant problem in practical applications of Fourier zeugmatography is 
the economy of data storage. Three-dimensional zeugmatograms can be obtained in 
exceptional cases only because of the enormous amount of data required. Therefore, 
only the two-dimensional case will be discussed. 

The experiments to be described in this section have been performed with standard 
equipment available in our laboratory. It has not been optimized for this particular 
purpose and could be improved in many respects. The set-up is indicated in Fig. 2. It 
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consists of a Varian high resolution 15in. electromagnet with an 1 l-gradient shim sys- 
tem, a Bruker SXP4-100 high power pulse spectrometer with a Bruker single coil probe 
assembly for high power pulse experiments, and a Varian 620/L-100 computer system 
equipped with 12 k memory, a fast 1Zbit analog-to-digital converter and a number of 
execute lines for the connection to the spectrometer. 

The linear magnetic field gradients have been generated by means of the s- and Z- 
gradient shim coils of the Varian shim system. The currents necessary to produce the 
linear field gradients have been generated by a set of external stable power supplies and 
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FIG. 2. Block diagram of the experimental set-up. 

are computer-controlled by means of a series of very fast solid state DIP relays (Teledyne 
Relays 643-l) with a response time of less than 10 psec. Currents of approximately 70 
mA are necessary to generate field gradients of 1,000 Hz/cm. 

The magnetic field has been stabilized by a Bruker B-SN 15 external pulsed proton 
lock with a long term stability of 1 Hz. To prevent a disturbance of the lock by the 
applied field gradients, it was necessary to interrupt the control loop during the appli- 
cation of the field gradients for approximately 100 msec. This did not affect the field 
stability. 

The maximum number of samples representing the zeugmatogram is limited by the 
available memory size of the computer. In general, a quadratic image with N x N 
samples is desired. It is then necessary to record 2N FID’s and to digitize each FID into 
2N samples. To permit the use of a fast Fourier transform routine, N is usually selected 
to be a power of two. 
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A well-known procedure to obtain a finer representation of a Fourier transform is 
the addition of a set of zeros to the array to be transformed (9). A simple method that 
requires only N(N + 2) memory locations but produces an N x N zeugmatogram is the 
following one. N FID’s consisting of N samples each are recorded. To perform the first 
Fourier transformation, the N samples representing the FID k, {sko, ski, . . ., s~,,,-~}. are 
transferred to a separate memory block and are augmented by N zero values, {skO, ski, 
. ., .s~,,,-~, 0, 0, . ., O}. The Fourier transform consists then of N complex values (Sk,,, 
S,,, . ., S,,-,I. The real parts, {R,,, Rkl, . . ., RkNml}, are retained only and are stored 
back in place of the original FID. After transformation of all FID’s, the matrix (RLjj is 
transposed, {Rkj} -+ (Rjk}, and each row, augmented by N zero values, is Fourier-trans- 
formed a second time. The absolute values of the N2 complex Fourier coefficients are 
then utilized for the plot of a two-dimensional zeugmatogram. It can easily be shown 
that the neglect of the imaginary part after the first Fourier transformation does not 
cause any loss of information nor does it deteriorate the sensitivity. 

The limited number of samples available to represent each FID calls for a careful 
selection of the center frequency, of the strength of the applied field gradients and of the 
sampling rate, such that the spatial resolution is sufficient without violating the sampling 
theorem and avoiding frequency foldover which can seriously distort a zeugmatogram. 
It must be remembered that dispersion-like parts as well must be represented. Disper- 
sion mode signals have a much higher tendency to cause problems with frequency fold- 
over than absorption mode signals because of the much broader wings of the former. 

The number of samples N has been selected to be 64. This results in a total of 4096 
sample values. The time required for one complete experiment including the data 
transformation is 8 min and the plotting of the 64 x 64 zeugmatogram on the teletype 
requires another 7 min. 

The NMR samples that were used to demonstrate the principle of Fourier zeugmato- 
graphy consisted of two parallel glass capillary tubes filled with H,O. For Figs. 3 and 4, 
the two capillaries, with an inner diameter of 1 .O mm and a separation of the centers by 
2.2 mm, were surrounded with D,O. The sample was positioned in the magnet gap such 
that the capillary tubes were parallel to the y-axis and the line joining the centers of the 
two tubes was parallel to the z-axis. Figure 3 shows a series of typical FID’s and their 
first Fourier transform. During the first time-interval of length t,, a linear gradient of 
500 Hz/cm was applied along the x-axis. The two capillary tubes are then in the same 
local field and the FID remains unmodulated as is demonstrated by Fig. 3. During the 
second time-interval, a gradient of 700 Hz/cm was applied along the z-axis. It causes the 
two tubes to be in different local fields and it is responsible for the modulation of the 
FID as well as for the doublet structure of the first Fourier transform with respect to 
tZ, shown on the right-hand side of Fig. 3. The phase and amplitude of the signal after 
the first Fourier transformation map out the FID at the end of the first time-interval. A 

FIG. 3. Nine typical FID’s selected out of a complete set of 64 signals obtained for pulsed linear field 
gradients along the X- and z-axis. The corresponding Fourier transforms are shown on the right-hand 
side. The numbers on the ordinate represent the time intervals in terms of sampling cycles during which 
the x-gradient was on. The broken vertical lines in the FID’s indicate the point in time when the X- 
gradient was stopped and the z-gradient was switched on. At the same time, the recording of the FID was 
started. The sample consisted of two parallel capillary tubes arranged such that their centers were lying 
on the z-axis. The sampling interval was 0.5 msec giving a total spectral width of 1 kHz. 
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second Fourier transformation with respect to t, then yields the final two-dimensional 
Fourier zeugmatogram shown in Fig. 4. For this map, the total intensity range has been 
divided into eight equal intervals and a teletype character assigned to each interval. 
The intensity intervals are indicated in increasing order by the symbols (blank), l , ‘.!:, 
A, B, C, D, and E, respectively. This assignment is used for all zeugmatograms given 
in this paper. 
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FIG. 4. The Fourier zeugmatogram obtained from the data partially shown in Fig. 3. The absolute 

value IF( of the spin density function is plotted as a function of x and z. Only the central section of 
the 64 x 64 zeugmatogram is shown. 

Figures 5 and 6 show a series of FID signals along with their first Fourier transforms 
and the Fourier zeugmatogram computed therefrom for the same experimental para- 
meters and for the same sample as used for Figs. 3 and 4, except that the two gradients 
have been interchanged in time. The first gradient is now along the z-axis and the second 
along the x-axis. In this case, phase and amplitude of the first Fourier transform clearly 
show the beats caused by the different local fields of the two capillaries during the first 
time interval. Figures 4 and 6 represent images of the same sample effectively rotated 
by 90”. The two zeugmatograms do not exactly match due to experimental imperfec- 
tions which will be discussed below. 
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FIG. 5. Ten typical FID signals and their Fourier transforms obtained for the same conditions as in 
Fig. 3, but with the x- and z-gradients interchanged in time. The FID is recorded in this case during the 
time the x-gradient is on. 
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FIG. 6. The Fourier zeugmatogram calculated from the data partially shown in Fig. 5. The X- and 
z-axis are interchanged as compared to Fig. 4. Only the central section of the 64 x 64 zeugmatogram is 
shown. 

Figure 7 gives the zeugmatogram of another sample consisting of two capillary tubes, 
with an inner diameter of 1.3 mm and a separation of the centers of 2.6 mm, placed in 
the magnet gap such that the line joining the centers was making an angle of about 30” 
to the z-axis. This sample had no D,O outside the capillaries and the change in suscep- 
tibility required a retuning of the basic magnetic field homogeneity. This figure demon- 
strates the two-dimensional resolution of Fourier zeugmatography. 

The zeugmatograms shown in this paper were obtained mainly to demonstrate the 
principle of the technique and therefore a very simple sample geometry was used. With 
future applications in view, it may be worthwhile to point out some of the prob- 
lems that were encountered. These problems are most likely responsible for some of the 
spread and for the limited resolution of the zeugmatograms shown. We believe that it 
is possible to improve the images by paying attention to the following points. 

(a) Linearity and homogeneity of the gradients. It is obvious that in any zeugmato- 
graphic technique the linearity and the homogeneity of the applied field gradients is of 
crucial importance. Very often, the shim coils provided in commercial spectrometer 
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FIG. 7. Fourier zeugmatogram of a sample consisting of two parallel capillaries with their centers 
lying on a line making an angle of about 30” to the z-axis. The first x-gradient was 600 Hz/cm and the 
second z-gradient was 700 Hz/cm. The absolute value If(r’)I of the spin density function is plotted as a 
function of x and z. Only central section of the 64 x 64 zeugmatogram is shown. 

systems produce gradients that are not of sufficient linearity over the entire sample 
volume. It may, therefore, be advisable to add special gradient coils with improved 
linearity (10). 

(b) Rise andfall time of the gradients. The described pulsed version of zeugmatography 
relies on the instantaneous application and removal of field gradients. Eddy currents in 
pole caps and metal shields can cause response-time problems that will result in serious 
distortions of the zeugmatogram. Special arrangements of gradient coils which mini- 
mize the rise and fall time of the gradients have been described by Tanner (IO). 

(c) Susceptibility problems. In many samples, the local magnetic field is already in- 
homogenous due to variations of the susceptibility and due to the particular shape of 
the sample. It is then necessary to apply sufficiently strong gradients to overcome these 
“natural” field gradients. 

The pictorial representation could certainly be improved for visual effects by more 
sophisticated means, for example, by means of a computer-controlled display. 
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IV. EXTENSIONS OF THE TECHNIQUE 
Many possible extensions of the described technique exist. They have not yet been 

pursued in great detail. This section gives a brief description of some of the possibilities. 

(a) Recording qf a Pure Absorption Mode Zeugmatogram 
It may be desirable to completely separate absortion- and dispersion-like parts as the 

absorption mode signal has an inherently higher resolution than the absolute value 
signal. The pure absorption mode may often produce a more accurate zeugmatogram. 
This separation can be achieved by the following modification of the basic technique. 
For each set of values t, and t,, a series of four different experiments is performed and 
the four resulting FID’s are averaged : 

s,,(t) = *{s+++(t) + s++-(t) + S+-+(t) + s-++(t)}. [I31 
The four experiments differ by the signs of the applied field gradients and by the position 
of the reference frequency o1 above or below resonance (negative or positive frequency 
offset A). The notation of Eq. [ 131 is explained in Table 1. For this technique, it is not 
only necessary to switch gradients between the three phases of the FID but also to 

TABLE 1 

GRADIENTS AND RESONANCE OFFSETS IN THE FOUR REQUIRED EXPERIMENTS 

Applied gradients 1 Resonance offset d 

Time interval 

s+++(t) 91% VY rlz lffl I4 IAl 
s++-(t) ?x % --?z PI IAl -IAl 
s’-+(t) Ix -6% 82 IAI -lAl IAI 
s-++(t) 7.x 6% tlz -IAl IAl IAI 

change the sign of the resonance offset A. This can be achieved by an appropriate change 
of the dc magnetic field (during the off-time of the field-frequency lock) or, better, by a 
sudden change of the reference frequency of the phase-sensitive detector, or. Care must 
be taken to retain phase coherence during this frequency switching. 

By means of Eq. [3] and utilizing the trigonometric addition theorems, one obtains 
for &r,t) 

s&t> = MO cos ((A + w> t,) ~0s ((A + ~,a) t,J ~0s ((A + ~4 t,> 
-expHt, + t, + tJTil. (14) 

In this expression, the three variables t,, t,,, and t, are separated. The three-dimensional 
Fourier transformation is now executed step-by-step, and, after each transformation, 
the imaginary part is eliminated. This is equivalent to a three-dimensional cosine trans- 
formation and gives the result 

(15) 
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with 
&(r,o) = ${A@ + q,x - co,) + A(-A - q,x - co,)} 

*Lw + ?YY - 0,) + 4-d - tlvY - %)l 
.{A@ + q&z - w,) + A(-A - qzz - Co,)}. 

[I61 

This is a three-dimensional absorption mode signal and is the desired result. The con- 
tribution of the negative resonances can again be neglected, in general, and the function 
is converted into a function of r’, C,,(r’) = Say(o), in analogy to Eqs. [I l] and [12], and 
plotted as a function of x, y and z. 

In two dimensions, a series of only two experiments is necessary to determine s,,(t) : 

s,,(t) = j&++(t) + s’-(t)}. 

It is obvious that this modified technique is more complicated. It has not yet been 
used, and it is not clear in which cases it is worth the effort. 

(6) Recording qf a Two- Dimensional Cross Section 
It has been mentioned that a full three-dimensional zeugmatogram requires an 

amount of data that goes beyond the capacity of most small computers. The two-dimen- 
sional mapping described in Section III, on the other hand, does not provide distinct 
cross sections but rather a projection of the three-dimensional spin density onto a two- 
dimensional plane. In many circumstances, a true cross section would be more desirable. 

A cross section can be obtained by the following technique. A quadratic or possibly 
higher order gradient is applied along the third direction, e.g., they-axis. Then, only the 
volume elements near y = 0 will appreciably contribute to the signal amplitude. The 
remaining contributions will be smeared over a much larger spectral region and may 
be disregarded. For an additional smearing, it is also possible to average several FID’s 
for various field gradients along the y-axis. For the selection of another cross section 
perpendicular to the y-axis, the sample has to be moved along the y-axis. 

A limited confinement to a cross-sectional area is also possible by using very short 
receiver and transmitter coils. 

cc) Improtjed Resolution with Limited Core Memory 
An improved representation of a zeugmatogram may be obtained in the following 

way when the memory space is limited. Each FID is sampled to obtain M sample values 
which are Fourier-transformed to produce a spectrum containing M samples. The 
sampling rate may be selected such that the interesting part of the spectrum covers only 
a small portion of the total spectrum. N significant, not necessarily equally spaced, 
samples of the spectrum are selected and stored for the subsequent second Fourier 
transformation. The number of relevant samples, N, can be considerably smaller than 
M. All other sample values can be discarded to save memory space. A similar procedure 
for the second Fourier transform is unfortunately not possible. 

(d) Measurement qf Relaxation Times 
The measurement of the two- or three-dimensional distribution of spin-lattice relaxa- 

tion times can be achieved by straightforward extensions of the inversion-recovery 
technique (I I) or of the saturation recovery method (12). The spin system is prepared 



82 KUMAR, WELT1 AND ERNST 

at t = -T by means of a 180” pulse or by means of a saturating burst of rf pulses. The 
zeugmatogram obtained with a 90” pulse at t = 0 is then a measure for the spatial de- 
pendence of the recovery of the z-magnetization during the time Tand permits determi- 
nation of T,(r). An adaptation of the progressive saturation technique (13) is also 
feasible. 

(e) Related Techniques 

A somewhat related technique has been described by Mansfield and Grannell (14). 
It is called NMR diffraction and its aim is the determination of the periodic structure 
of a solid by applying a single linear field gradient and recording the FID signal under 
high resolution conditions. This technique could also be generalized by applying a se- 
quence of pulsed field gradients in the same manner as described in the present paper. 

Two further techniques which also involve time-dependent magnetic field gradients 
have recently been described by Hinshaw (25). Of particular interest seems to be his 
“sensitive point method” as it permits picking out the signals originating from a distinct 
point within a three-dimensional ob.ject. 

It should also be mentioned that the technique of Fourier zeugmatography is remotely 
related to pulse-pair Fourier spectroscopy as proposed by Jeener (16). In this technique, 
which has a completely different aim, two 90” rf pulses are applied at t = 0 and at t = tl. 
The free induction decay signal after the second pulse is then a function of the two time 
parameters t, and t2 = t - t,, s(t,, tJ. It resembles the signal obtained in two-dimen- 
sional Fourier zeugmatography. Its two-dimensional Fourier transform produces a 
two-dimensional spectrum that contains information of the kind usually obtained in 
double resonance experiments. It does not give information about the spatial distribu- 
tion of nuclear spins. But the same experimental set-up and particularly the same com- 
puter programs can be used for both techniques. 

More sophisticated extensions are conceivable, like the measurement of the spatial 
distribution of flow by measuring the echo height in a spin-echo experiment in an in- 
homogenous magnetic field. Various double resonance techniques can also be combined 
with zeugmatography, for example, to single out the contributions of one particular re- 
sonance line in a more complex spin system. Fourier zeugmatography has the potential 
to adopt many of the well-known pulse techniques presently in use in high resolution 
NMR of liquids and of solids. 
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