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 We critically review the development of the concept of

 kurtosis. We conclude that it is best to define kurtosis vague-

 ly as the location- and scale-free movement of probability

 mass from the shoulders of a distribution into its center and

 tails and to recognize that it can be formalized in many

 ways. These formalizations are best expressed in terms of

 location- and scale-free partial orderings on distributions

 and the measures that preserve them. The role of scale-

 matching techniques and placement of shoulders in the for-

 malizations that have appeared in the literature are empha-

 sized.

 KEY WORDS: Measure; Ordering; Peakedness; Shape; Tail

 weight.

 1. INTRODUCTION

 The terms kurtosis, peakedness, and tail weight are often

 used in descriptive statistics and statistical inference. There

 has been a variety of uses and interpretations of these terms,

 however; and in this article we discuss the development of

 these concepts as components of distributional shape.

 In Section 2 we describe the various attempts that have

 appeared in the literature to interpret the value of the stan-

 dardized fourth central moment /32. It is apparent that al-
 though moments play an important role in statistical inference

 they are very poor indicators of distributional shape. Kur-

 tosis, peakedness, and tail weight are nevertheless important

 distributional concepts and several authors have proposed

 alternative measures, some of which are discussed in Section
 3.

 These studies have identified a shape characteristic that

 we call kurtosis and can be vaguely defined as the location-

 and scale-free movement of probability mass from the shoul-

 ders of a distribution into its center and tails. Like location,

 scale, and skewness, kurtosis should be viewed as a "vague

 concept" (Mosteller and Tukey 1977) that can be formalized

 in many ways. We argue that the various interpretations of

 /32 and alternative measures can be obtained from this def-
 inition by taking a specific scale-matching technique and a

 particular placement of shoulders. In Section 4 we outline

 an approach to descriptive problems based on partial or-

 derings on distributions and measures that preserve them.

 Only a few orderings and measures have appeared in the
 literature, defined only on symmetric distributions, and these

 are discussed in Section 5. The ordering-based approach

 has been more successful, but some areas require further

 attention. In Section 6 we outline some ongoing work.

 2. INTERPRETATION OF THE STANDARDIZED

 FOURTH CENTRAL MOMENT

 Kurtosis is traditionally defined operationally. The oldest

 and most commonly used definition is that the kurtosis of

 a distribution H is that characteristic measured by its stan-

 dardized fourth central moment :2(H) (provided it exists)

 defined by :2(H) = )u4(H)/(A2(H))2. The normal distri-
 bution, with a value of /2 equal to 3, is often used as a

 standard, and the quantity y2(H) defined by y2(H) = :2(H)
 - 3 is sometimes called the kurtosis (or coefficient of ex-
 cess) of the distribution H. The terms platykurtic, lepto-

 kurtic, and mesokurtic appear to have been first used by

 Pearson (1905). Dyson (1943) gave two amusing mnemon-

 ics attributed to Student for these names: platykurtic curves,

 like platypuses, are squat with short tails whereas leptokurtic

 curves are high with long tails, like kangaroos noted for

 "lepping"! The terms supposedly refer to the general shape

 of a distribution, with platykurtic distributions (/2 < 3)

 being flat-topped compared with the normal, leptokurtic

 distributions (/2 > 3) being more sharply peaked than the
 normal and mesokurtic distributions (/2 = 3) having shape
 comparable to that of the normal.

 Because of the "averaging" nature of moments, however,

 the relationship of /2 to shape is far from clear; in this

 section we discuss some of the attempts that have appeared
 in the literature to describe the distributional shapes cor-

 responding to large values of /2. These investigations con-

 centrate on symmetric distributions and fall into two major

 areas:

 1. Many form part of a more general inquiry into the

 relationship between moment crossings and density cross-
 ings. Typically, conditions on the crossings of two stan-

 dardized (usually symmetric) densities f and g that ensure
 ,LL4(f) c ,t4(g) are described. Earlier results deal only with
 kurtosis, whereas more recent works discuss more general

 crossings and give results about kurtosis as corollaries (see
 Sec. 2.1).

 2. In the second type of investigation, a (usually discrete)
 distribution is modified in some way and the effect on the
 value of /2 is noted. Although some of these studies are
 not very sophisticated, they have provided some interesting

 interpretations of /2 such as the one in terms of bimodality
 discussed in Section 2.2

 2.1 Moment Crossings and Density Crossings

 Dyson (1943) proved the following result. Iff and g are
 standardized to have mean 0 and equal variances, and there

 exist constants a,, a2, a3, and a4 with a, < a2 < a3 < a4
 such that

 - oc < x < a1

 (a) a2 < x < a3 f : f(X) ' g(x),
 a4 < x < oc J
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 (b) a IK<x<a,} z:> f(x)?~>g (x),
 (a3 < x < a4)

 and (c) [a1 + a2 + a3 + a4] and Ii.3(f) - )U3(g)] are
 not both strictly positive or both strictly negative, then 1.4(f)
 ? g4(g). An example of two standardized symmetric dens-
 ities f and g is given, showing the condition

 f(x) < g(x) for xl small and x| large

 is not incompatible with g4(g) < )u4(f). Dyson's result
 does not assume symmetry and is one of the few to suggest

 a relationship between the skewness and kurtosis of a dis-

 tribution; this relationship receives little attention because

 of the common practice of restricting the discussion of kur-

 tosis to symmetric distributions only. Balanda (1986), Bal-

 anda and MacGillivray (1987), and MacGillivray and Balanda

 (1987) each considered kurtosis in asymmetric distributions;

 the later paper discussed this relationship in detail.

 An error commonly associated with kurtosis is that the

 sign of y2 compares the value of the density at the center
 with that of the corresponding normal density. Kaplansky

 (1945) gave four examples of standardized (mean 0 and

 variance 1) symmetric distributions that, when compared

 with the standard normal, show there is no logical connec-

 tion between the value of the density of the standardized

 distribution at the center and the sign of Y2.
 Finucan (1964) "rediscovers the original interpretation of

 kurtosis as an indicator of a prominent peak and tail on the

 density curve" (p. 111), claiming that the incorrectly sim-
 plified version of this interpretation as peakedness led to

 the types of errors discussed by Kaplansky (1945). Finucan
 claimed that the quantity 12 measures what is best described
 as peakedness combined with tailedness or lack of shoul-

 ders, and proved that if f and g are symmetric with mean

 0 and common variance and the graph of Ig(x) - f(x)]

 goes through a peak-trough-peak pattern as |x| increases,

 then P2(f) c 82(g). This result was mentioned without
 proof by Fisher (1925) and is essentially Dyson's result in

 the symmetric case. Figure 1 contains two standardized

 symmetric densities satisfying the Dyson-Finucan condi-

 tion. Finucan suggested that this pattern be taken as the

 common explanation of high kurtosis and hoped that some

 further explanation may be found for the exceptions.

 The Dyson-Finucan condition involves crossings of stan-

 dardized densities. Marsagalia, Marshall, and Proschan (1965)

 gave further results concerning the relationship between the

 number of crossings of the absolute moments of two stan-

 dardized symmetric distributions and the number of cross-

 ings of their densities. In particular, they proved that if two

 such densitiesf and g satisfy the Dyson-Finucan condition

 then (provided the absolute moments are finite) (a) vjf)
 > v,(g) if 0 < s < 2 and (b) vj(f) < vj(g) if s < 0 or s
 > 2, where vs(h) is the sth absolute moment of h. The result
 is an immediate consequence of the variation-diminishing

 properties of totally positive functions (discussed by Karlin

 1968), and more general comparisons can be obtained using

 the ideas of positivity (MacGillivray 1985).

 Ali (1974), using generalizations of the stochastic order-

 ing, proved that if two standardized symmetric random vari-

 ables X, Y have the property that IYI is fourth-degree
 stochastically larger than |X|, then p2(X) ? :2(Y). If X, Y

 satisfy the Dyson-Finucan condition, then I YI is third-de-
 gree stochastically larger than |X|, a slightly stronger con-

 dition. Other results are given, as well as the following

 example, which demonstrates how Y2 can be a misleading
 measure of nonnormality. For k = 2, 3, ..., let Fk denote
 the mixture

 Fk(x) 11 - l I(k2- l)] ?(x) +I 1/(k2 - l)]I?(xlk),

 where 1( ) is the standard normal distribution function.
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 Figure 1. Standardized Symmetric Densities f, g Satisfying the Dyson-Finucan Condition. The standardized densities of the double-
 exponential and Normal distributions are plotted.
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 The sequence converges in distribution (uniformly in x) to

 the standard normal distribution as k - oc, and y2(Fk) =
 3(k2 - 2)/4 -oc as k - oc Thus Fk is uniformly approx-
 imated with increasing accuracy by the standard normal

 distribution, and y2(Fk) grows without limit. Under suitable
 regularity conditions, this phenomenon cannot occur for

 quantile-based measures of kurtosis that have been used by

 a number of research workers (see Sec. 3). Ali observed

 that large Y2 can arise from tailedness without peakedness
 about the mean and noted that a number of the exceptional

 cases given by Dyson (1943) and Kaplansky (1945) fall into

 this category. On the basis of these observations, Ali con-

 cluded (erroneously) that /2 "measures only the tailedness

 of a symmetric distribution" (p. 543). If distributions cross

 more than the required minimum number of times, the value

 of /2 cannot be predicted without more information. It is

 the failure to recognize this that causes most of the mistakes

 and problems in interpreting /2-

 2.2 Consideration of a Single Distribution

 Chissom (1970) adopted an approach different from those
 of the aforementioned authors. By progressively modifying

 the shape of a single (discrete) distribution, each time noting

 the effect on /2, Chissom attempted to describe those shape
 characteristics that affect the value of /2. Although Chissom

 agreed with Ali that the tails of a distribution can drastically

 affect the kurtosis value, he reminded us that it also depends

 on the peak and that the tendency toward bimodality may

 also be important.

 Darlington (1970) noted that Il2(X) - 1 = var(Z2),

 where Zx = (X - ,ux)/o-x, and argued that y2(X) measures
 the clustering of the Zx values about ? 1 and hence is best
 described as a measure of unimodality versus bimodality,

 with a small value of fl2(X) suggesting that X displays a
 strong tendency toward bimodality ("bimodality" here is

 taken to be clustering about ,u - o- and ,u + o-). In a vague

 sense this interpretation in terms of tendency toward bi-

 modality is consistent with Finucan's (1964) interpretation.

 If a distribution displays a tendency toward bimodality, then

 it can be thought of as having "strong shoulders" and thus,

 in Finucan's sense, low kurtosis.

 The problem with this interpretation lies, of course, in

 the use of vague, undefined terms such as "tendency toward

 bimodality" and "lack of shoulders"; Hildebrand (1971)

 gave two examples highlighting this difficulty. Hildebrand

 first considered symmetric beta distributions with densities

 f(x; a) = [F(2a)/F2(a)] xa-(l -X-'), 0 < x < 1,

 where a > 0. Here y2(a) = -6/(2a+ 3). If a < 1 then
 the distribution is bimodal and y2(a) < - 1.2. As a -* 0,

 Y2(a) -* -2 and the distribution approaches the two-point
 binomial. If a = 1 then y2(l) = - 1.2 and the distribution
 is uniform (nonmodal), whereas when ac oc the distri-
 bution approaches normality and y2(a) -? 0. This family,
 then, is consistent with Darlington's interpretation. On the

 other hand, the family of double-gamma distributions with

 densities

 f(x; a, /3) = [181/2F(18)] IXa-I exp(-131xj)

 for all x, where a and ,B are both positive, is inconsistent

 with Darlington's interpretation. The values of Y2 are given

 by y2(a, 3) = (a + 3)(a + 2)/(a + 1 )a] - 3, a decreas-
 ing function of a. If a < 1 the distribution is unimodal and

 y2(a, J) > 3. If a = 1 then f is the double exponential
 density and y2 = 3, whereas if a > 1 the distribution is
 bimodal and y2(a, J) ranges from 3 to the limiting value
 - 2 (being 0 at a = I1 + 13 1]/2). This family, then, con-
 tains bimodal distributions with values of Y2 ranging from
 -2 to 3.
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 Figure 2. Standardized Symmetric Densities With y2 = 0: Standard Normal Distribution; Symmetric Tukey Lambda Distribution With A =
 .135; Symmetric Tukey Lambda Distribution With A = 5.2; Double Gamma Distribution With a = (1 + 13' 2)12.
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 Moors (1986) noted that bimodal distributions can have

 large kurtosis and argued that the value of /2 measures the

 dispersion around the values ,ut - o- and ,it + oc. Because

 this can arise either from a concentration of probability mass

 around ,it or in the tails of the distribution, Moors argued

 that Darlington's description of this in terms of bimodality

 is incorrect.

 Ruppert (1987) used the influence function to investigate

 the effect of a small amount of two-point contamination on

 the value Of 32 and other kurtosis measures; he also pointed

 out that this is an extension of Darlington's approach.

 The value Of /2 is affected by so many different aspects

 of a distribution that Kendall and Stuart (1977) concluded

 the words leptokurtic and platykurtic are best regarded as

 describing the sign of y2 rather than the shape of the density.
 It seems that because of the averaging process involved in

 its definition, a given value of /2 can correspond to several

 different distributional shapes. Figure 2 contains a number

 of standardized symmetric densities with P2 = 3. Although
 Curve 3 has finite support (and thus short tails) it is a good

 approximation to the Normal distribution. Curve 4 is bi-

 modal whereas curve 2, although it has infinite support and

 is unimodal, is considerably more peaked than the standard

 normal distribution.

 3. ALTERNATIVE MEASURES OF KURTOSIS,
 PEAKEDNESS, AND TAIL WEIGHT

 Although 12 is a poor measure of the kurtosis, peaked-
 ness, or tail weight of a distribution, these concepts never-

 theless play an important role in both descriptive and inferential

 statistics. This has led some authors to propose alternative

 measures. Most are quantile-based and together form a hap-

 hazardly constructed collection of alternatives rather than a

 coherent alternative approach to the standardized fourth cen-

 tral moment. They do, however, recognize a number of the
 different formalizations of the concepts involved.

 One large class of alternative measures is based on the

 idea that if X is a symmetric random variable with median

 mX, then the skewness properties of the positive random
 variable IX - mxl represent the kurtosis properties of X. If
 m(X) is a measure of skewness, then m(IX - mxl) is used
 as a measure of kurtosis for X and alternative kurtosis mea-

 sures can thus be generated from existing skewness mea-

 sures. Using this idea, Groeneveld and Meeden (1984)

 proposed a number of alternative measures of kurtosis that

 have natural interpretations for symmetric distributions in

 terms of the movement of probability mass from the shoul-

 ders of a distribution into its center or tails. They suggested

 that, for each a in (0, 1/4), the quantity J2(a, H), defined
 by

 02(a, H)

 H- '(.75 + a) + H- '(.75-at) - 2H-1'(.75)

 H- I(.75 + a) - H- '(.75 - a)

 measures the kurtosis of the symmetric distribution H. The

 quantity f2(a, H) is the value of a measure of skewness

 (MacGillivray 1986) applied to IX - mx|, where X has
 distribution H. Referring to Figure 3, if f2(a, H) is large

 then, relative to the quartiles, there has been a shift of mass

 into the center or tails of H. These measures lie in the interval

 (- 1, 1), U-shaped distributions have negative kurtosis, and
 the uniform distributions have zero kurtosis. Groeneveld

 and Meeden (1984) proposed other measures, and we refer
 the reader to their article for further details. Groeneveld and

 Meeden have been, to our knowledge, the only authors to

 propose alternative measures for kurtosis that cannot be

 considered in terms of just peakedness or just tail weight.

 Their measures involve both peakedness and tail weight as

 components of kurtosis, whereas the measures we discuss

 next deal separately with peakedness or tail weight. As we

 argue later, a better understanding of distributional shape

 through partial orderings on distributions involves the si-

 MH"8'(.5y H-/0.75) H-'(0.75 +DO

 Figure 3. Groeneveld and Meeden's (1984) Measures of Kurtosis. 12(r, H) is the (scaled) difference [d2(a) - d, (a)]/[d, (a) + d2(a)].
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 multaneous consideration of these two concepts.

 Horn (1983) suggested that, for 0 < p < 1/4, the quantity

 mtp(h) = 1 - pl[h(mH)(H - l(. 5+p) - mH)]

 be used as a measure of peakedness for a symmetric uni-

 modal density h. Rogers and Tukey (1972) used mtp(h) for
 p > 1/4 as measures of tail weight. Rosenberger and Gasko

 (1983), however, rejected these as measures of tail weight,

 arguing that they were too sensitive to the central part of a

 distribution to be used for tail comparisons. Referring to

 Figure 4, if mtp(H) is large for p close to 0, then h looks
 like a spike at the center. These measures essentially refer

 to the slope of the density near the median. If, for example,
 the graph of h exhibits a plateau around the median (albeit

 very high), then mtp(H) = 0 forp close to 0. Each measure
 takes values between 0 and 1 for symmetric unimodal dis-
 tributions, 0 if the density is constant around the center.
 Using these measures, Horn ranked the Normal, t6, Cauchy,

 and double-exponential distributions in order of increasing

 peakedness and suggested that the peakedness of the central

 t distributions decreases as the degrees of freedom increase.

 Most would agree with these conclusions.
 Another family of quantile-based measures that has ap-

 peared in the literature is the following. For a distribution

 H and for 0 ' p < ?/2, let

 H-1(.5 +p) H- 1(.5 -p)
 tp (H) = H- -(7)- -l 5

 - H-1(.75) H- H(.25)

 Sometimes tp(H) is standardized to be 1 for the normal
 distribution. The standardized version stp(H) is related to
 the pth pseudovariance PVp(H) by

 stp(H) = PVp(H)?/2 PV 25(H)?./2

 Pseudovariances PVp(') are robust estimators of scale and
 were discussed by Andrews et al. (1972) for example. Ex-

 tensions of these were discussed by Balanda (1986) and

 Ruppert (1987). Particular values of tp(H) have been used
 in a variety of contexts:

 1. Crow and Siddiqui (1967) used t45(H) to rank, in
 order of increasing tail thickness, the (symmetric) distri-

 butions included in a comparative study of location esti-

 mators. Their measure suggested that, in order of increasing

 tail thickness, the distributions could be ranked as uniform,
 parabolic, triangular, Normal, double exponential, and Cau-

 chy. Where appropriate, this coincides with the ranking
 suggested by the value of /32. Note that, although the double-
 exponential distribution is more peaked than the Cauchy
 distribution (in Horn's sense), the Cauchy has heavier tails

 [in terms of t.45 (H) ].
 2. Rosenberger and Gasko (1983) used st49(H) as an

 index of tail weight of a symmetric distribution H, arguing

 that stp(H) (for 1/4 C p < 1/2) measures how the extreme
 portion of a distribution spreads out relative to the width of

 the center (this measure being standardized to be 1 for a

 normal distribution). Rosenberger and Gasko also used st49(H)

 to order the distributions included in a comparative study
 of location estimators and, where appropriate, their ranking
 agrees with that of Crow and Siddiqui (1967).

 3. Heavy tail weight is often the most important aspect
 of nonnormality, and Andrews et al. (1972) used t49(H) as
 an index of nonnormality to assess the distribution of the
 estimators included in the Princeton Robustness Study.

 4. Parzen (1979) proposed that sample versions of

 log(tp(H)) be compared with the values of log(tp(qF)) (where
 CF is the standard normal distribution function) in diagnostic,
 tests for nonnormal tails in H.

 5. Hogg (1974) proposed adaptive location estimators
 that used statistics like

 Q = [U(.2) - L(.2)]/[U(.5) - L(.5)]

 as the selector [where U(d) and L(d) denote the average of
 the largest and smallest lOOd% of the sample]. Such sta-

 h (m)X

 rn) \(.S

 rn H- '(0- 4

 Figure 4. Horn's Peakedness Measure. mtp(H) is the ratio of the area of the shaded region to the area of the enclosing rectangle.
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 tistics are sample analogs of the measures

 t (H) U4(H) - Lr(H) ' < r < 1/2
 T, U5(H) - L5(H)

 where U8(H) = E[XIX > H-'1(l-8)], LE(H) = E[XIX
 < H- I (E)], and X - H. Originally the sample kurtosis was
 used, but Hogg later found that measures like Q were more

 appropriate for detecting heavy tails.

 Finally, we discuss a somewhat different approach. Par-

 zen (1979) defined a density-quantile tail exponent based

 on the limiting behavior of the density-quantile function

 h(H-1(p)) as p approached 0 or 1. For a tail-monotone
 density h (Parzen 1979), the limit

 a(H) = - lim (1 -p)h'(H1(p))

 is finite and is called the tail exponent of H. If p is close

 to 1, then -[log(h(H- 1(p)))]' - a(H)/(l -p) andh(H- 1(p))
 = (1 p)a(H). Thus a(H) describes the tail behavior of H
 and a(F) ? a(G) iff G- I(F(x)) is convex for all sufficiently
 large x. Parzen classified distributions according to the value

 of a: a < 1 -short tails (or limited type); a 1 -medium

 tails (or exponential type); a > 1 -long tails (or Cauchy

 type). The names in parentheses are used in classical ex-

 treme-value theory (Gumbel 1962) to classify the types of

 distributions leading to the three possible limiting distri-

 butions of X(,), the largest order statistic in a random sample

 of size n. Parzen (1980) proved the classification based on

 the value of a(H) coincides with the extreme-value classi-

 fication and advocated tail exponents as easily applied cri-

 teria for determining the extreme-value distribution

 corresponding to a specified distribution. Examples of Par-

 zen's classification include short tailed [uniform, f(x) =

 c(1 -x)`lfor 0 < x < 1]; medium tailed [exponential,
 extreme value, logistic, Normal, Weibull]; and long tailed

 [Cauchy, Pareto, slash (1/uniform), symmetric Tukey lambda

 with A < 1]. Although the exponent above is a right-tail

 index, a left-tail index can be similarly defined in terms of

 the limiting behavior of h(H- l (p)) as p approaches 0 from

 above. Although the left and right indexes agree in the

 symmetric case, this approach has the advantage that the

 left and right tails of an asymmetric distribution can be

 considered separately.

 Schuster (1984) refined Parzen's classification using the
 limiting value of the reciprocal of the hazard function and

 gave an interpretation in terms of the limiting size of the
 extreme spacings in a random sample from the distribution.

 Bickel and Lehmann (1975) suggested that measures of

 kurtosis, peakedness, and tail weight should be ratios of

 scale measures in the sense that both numerator and de-

 nominator should preserve their spread ordering. Except for

 Parzen's tail exponent, all of the preceding measures are of

 this form.

 4. KURTOSIS AS A VAGUE CONCEPT AND THE

 ORDERING-BASED APPROACH

 The aforementioned works have identified a general shape

 characteristic that can be called kurtosis. All are consistent

 with the definition of kurtosis as the location- and scale-
 free movement of probability mass from the shoulders of a

 distribution into its center and tails. In particular, this def-
 inition implies that peakedness and tail weight are best viewed

 as components of kurtosis, since any movement of mass
 from the shoulders into the tails must be accompanied by a

 movement of mass into the center if the scale is to be left
 unchanged. This definition is necessarily vague because the

 movement can be formalized in many ways. Specifically,

 the formalization depends on the scaling technique used to

 make it scale free and the position chosen for the shoulders.
 The measure of location used is not important in the sym-

 metric case, as they all coincide with the center of sym-
 metry.

 The various measures discussed use different scaling tech-
 niques and positioning of shoulders. The scaling techniques
 used include (a) the standard deviation (in the definition of

 132), (b) central density matching using the inverse of the
 density at the median as the scale measure (in the definition

 of Horn's peakedness measure), (c) interquartile matching

 using the interquartile range [in the definitions of tp(H) and
 stp(H)], and (d) matching techniques involving different
 distributional distances (in the definition of Hogg's selector

 statistic). The shoulders above were placed around the quar-
 tiles [in Groeneveld and Meeden's (1984) measure of kur-

 tosis] and around j - o- and jA + o- [Darlington's (1970)
 and Moors's (1986) interpretation of 132], and they can be
 considered to coincide at the median in Horn's (1983)
 peakedness measure. In the latter case there is no movement

 of mass into the center, since peakedness corresponds to
 the density falling away from that center.

 Different scaling techniques and positioning of the shoul-

 ders give rise to different formalizations of kurtosis, and its
 components' peakedness and tail weight. For example, Horn's

 peakedness corresponds to a spike at the center, whereas

 Groeneveld and Meeden's measures correspond to a per-
 sistence of mass around the center compared with the quar-
 tiles. These different formalizations have been used in practice,
 and it seems preferable to accept kurtosis as a vague concept
 with the definition already given and develop a coherent
 structure of such formalizations rather than to concentrate

 only on 132-
 We have only discussed alternative measures; however,

 the measure-based approach has been criticized recently.
 For example, van Zwet (1964) recorded two serious reser-

 vations about the use of 12:

 1. Many of the comparisons made are meaningless. Any

 two distributions with finite fourth moments, for example,

 can be compared using 182, whereas one feels there are pairs
 of such distributions that are totally incomparable in this
 regard.

 2. Very few applications of general interest have arisen.

 These difficulties regarding 12 apply to any other single-
 parameter representation and arise because a single value

 usually corresponds to many different distributional shapes.
 Many of the measures discussed in Section 3 are families

 of measures indexed by a range of p values, and some

 authors suggest that a plot of these measures against p is
 required to fully describe the concept being discussed. This
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 implicitly identifies an underlying ordering and leads to the

 ordering-based approach proposed by van Zwet. Rather than

 measure the kurtosis of a single distribution, we define

 partial orderings << in such a way that F << G means,

 in some sense, that G has greater kurtosis than F. Some of

 the orderings called kurtosis orderings in the literature are

 not scale free and are in fact used as scale orderings in other

 contexts. For example, Bimbaum (1948) used a scale or-

 dering to indicate peakedness, whereas Doksum (1969) used

 Bickel and Lehmann's (1975) spread ordering to indicate

 heavy tails. The value of /32 is dimensionless, and we believe
 that any discussion of kurtosis should, therefore, be location

 and scale free, where location and scale free means invariant

 under linear transformations of the random variables in-

 volved. Orderings << are defined so that F << G means,

 in some location- and scale-free sense, that G has greater

 mass in the center and tails than does F. Measures of kurtosis

 are then restricted to be location- and scale-free functionals

 of distributions that preserve one of these orderings. We

 believe that a kurtosis measure should not be used without

 first identifying the ordering underlying it and that a measure

 should not be used to make comparisons within a family of

 distributions unless that family is totally ordered by the

 underlying ordering. It is only in these circumstances that

 the measure genuinely summarizes a kurtosis property in a

 meaningful way. In this approach it is important to identify

 the weakest ordering underlying measures that have been

 proposed in the literature.

 5. EXISTING ORDERINGS ON

 SYMMETRIC DISTRIBUTIONS

 The various conditions (discussed in Sec. 2.1) on F and

 G that guarantee ,l2(F) ' ,l32(G) may be thought of as
 defining relations on certain classes of distributions. They

 do not, however, play a major role in the ordering-based

 approach, because the primary interest there lay only in the
 standardized fourth central moment and not in the definition

 of general orderings on distributions or the measures that
 may preserve them. All existing orderings are weakenings

 of van Zwet's (1964) ordering 's.

 5.1 Van Zwet's Ordering

 Van Zwet (1964) introduced, for the class of symmetric

 distributions, an ordering 's defined by F 'S G iff RF G(X)
 = G- 1(F(x)) is convex for x > mF, where mF is the point
 of symmetry of F. Since the distributions are assumed sym-

 metric, RF,G(X) is convex for x > mF iff it is concave for
 x < mF. F 'S G holds iff a random variable X with dis-
 tribution F can be mapped to a random variable Y with
 distribution G by an increasing concave-convex function

 about the median. Van Zwet argued that if this is the case
 then, in the transformation of F to G, there is a contraction
 of the middle and an extension of the ends of the F scale.
 Moreover, this deformation increases toward the middle and

 ends, so intuitively G has a greater concentration of mass

 around its median and in its tails than does F.

 Van Zwet (1964) showed that U-shaped 's uniform 's
 Normal ?s logistic 's double exponential and logistic 's
 Cauchy. Although the double-exponential and Cauchy dis-

 tributions are not 's comparable, they can be compared
 (Balanda 1987) using the orderings alluded to in Section 6.

 Both the family of double-gamma distributions and the fam-

 ily of symmetric beta distributions are totally ordered by

 ?s, so kurtosis comparisons within these families can be
 based on the value of P2, which preserves the ordering.
 Hildebrand's (1971) examples (see Sec. 2.2), however, show

 that /2 is totally inadequate as a description of the shape of

 individual members. These difficulties arise because the

 ordering is preserved by the standardized even central mo-

 ments and all of the measures discussed in Section 3, re-

 flecting many different kurtosis formalizations.

 Van Zwet (1964) gave several applications of this or-

 dering. For example, the asymptotic relative efficiency of

 Wilcoxon's two-sample test to the normal scores test and

 the relative efficiency of the sample median to the sample

 mean are no smaller for G than they are for F if F 's G.
 We refer the reader to van Zwet (1964) for further examples.

 Like most researchers, van Zwet considered kurtosis as a

 property only of symmetric distributions, even though mea-

 sures of kurtosis are used for asymmetric distributions. Since

 its introduction more than 20 years ago, no extension of

 this ordering to the asymmetric case has been suggested.

 Balanda (1986), Balanda and MacGillivray (1987), and

 MacGillivray and Balanda (1987) proposed several such

 extensions.

 Van Zwet's ordering is probably the strongest that needs

 to be considered in descriptive work, although several stronger

 orderings have appeared (Hettmansperger and Keenan 1975).
 The remaining existing kurtosis orderings are weaker than

 's and belong to one of two branches leading from 's.
 These branches correspond to the two characterizations of

 van Zwet's convexity condition on which weakenings can

 be based: (a) RFG(X) is convex for x > mF iff, for each x0

 > mF,

 [RF,G(X)- RF,G(XO)]/(X - XO)

 is increasing for x > mF (with the reverse for x < mF

 following from the symmetry of F and G). (b) RF,G(X) is
 either concave for x > mF or convex for x> mF iff, for all

 c and d, the graphs of y = RF G(X) and y = cx + d cross
 each other at most twice for x > mF

 If characterization (a) is used, we obtain the orderings of
 Lawrence (1975) and Loh (1984). Characterization (b) leads

 to the orderings defined by Oja (1981).

 5.2 Lawrence's Ordering

 Using the concept of a star-shaped function, Lawrence

 (1966) defined the ordering CR by

 F CR G iff [RF,G(X) - mG]/(x mF)

 is increasing for x> mF

 (equivalently, decreasing for x < mF). F CR G holds iff
 RF,G(X) is star shaped for x > mF, and we refer the reader
 to Bruckner and Ostrow (1962) for properties of such func-

 tions. Star-shaped functions have been used extensively in

 reliability theory to describe the concept of "wearout" and

 were discussed further by Barlow and Proschan (1966) and

 Barlow, Marshall, and Proschan (1969).
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 Lawrence (1975) showed that ?R is preserved by the

 standardized even central moments. The measures tp(H),
 stp(H), and t, 8,(H) discussed in Section 3 also preserve ?R.
 The ordering has a number of applications. Rivest (1982)

 investigated various families of distributions and proved the

 following:

 1. The family of central t distributions is totally ordered

 by ?R, with kurtosis decreasing with increasing degrees of
 freedom.

 2. The family of Tukey models Hk, with distribution

 functions Hk(x) = (1 - E)H(x) + EH(xlk) [where E < 1/2
 is fixed, H is symmetric about 0, and H(cx) has the mon-

 otone likelihood property] is totally ordered by ?R. Kurtosis
 increases with k.

 3. If Fa is the distribution of a symmetric stable law with

 exponent a, then 8 < -y z> F, ?R F,.

 Bickel and Lehmann (1975) showed that the ordering is

 preserved by the asymptotic relative efficiencies of trimmed

 means, and Doksum (1969) used CRto investigate the power

 of two-sample monotone rank tests with translation alter-

 natives. Lawrence (1975) obtained stochastic comparisons

 between combinations of order statistics arising from <R-
 ordered distributions. These results, of course, also hold for

 <s, since it is a stronger ordering.

 5.3 Loh's Ordering

 Loh (1982) introduced an ordering CT implied by CR and

 defined by F CT G iff

 g(mG) [G '(.5+ P) -MG] f(MF) [F- (.5P +p_MF)l

 for 0 ' p < 1/2. Loh noted that F CT G holds iff the random

 variable I g(mG) (Y - mG) is stochastically larger than lf(mF)
 (X - mF) |, where X and Y have distributions F and G, re-

 F <S G

 F, G satisfy the Dyson-

 Finucan condition.

 RF ' G

 * G

 S,***

 F TG

 Figure 5. The Relationships Between Existing Kurtosis Order-
 ings on Symmetric Distributions.

 spectively. A well-known property of stochastically ordered

 random variables then implies that if f[ [] is a positive
 function symmetric about 0 and increasing on (0, oc), then

 EH[fi[h(mH)(X - mH)]] is a measure for ?T (where X has
 distribution H). In particular, EH[[h(mH) ' (X - mH)]2I] is a
 measure for ?T for each positive integer r; so although the

 usual standardized, even central moments do not preserve
 ?T, it is preserved by these alternatively standardized mo-
 ments. Horn's (1983) peakedness measures also preserve

 ?T for all p. Although /82(a, H) does not preserve ?R or
 ?T, it does preserve many of the weak orderings alluded
 to in Section 6. Loh (1984) used CT to characterize some
 families of failure-rate distributions and to obtain bounds

 for certain asymptotic relative efficiencies over these fam-
 ilies.

 5.4 Oja's Orderings

 Using characterization (b) of van Zwet's convexity con-
 dition (see Sec. 5.1), Oja (1981) developed two moment-

 based weakenings of 's. If F and G have finite means YF
 and t and finite standard deviation oF and o-G, Oja (1981)
 defined 's * by F?s,* G iff there exists xl and x2 such that

 F(x) ' G(oGx/lF-oGIJkF/loF)

 for x < xl or /LF < X < X2

 G (oGx/ oF - JG .F/ 0F)

 for xl < x < /tF or X2 < X.

 Oja defined a further ordering 's,** by F 's,** G iff there
 exist c, d, x1, X2, and X3 with x1 < X2 < X3 such that

 F(x) G(cx + d) for x < x1 orx2 < X < X3

 ?G(cx + d) for x < x < x2 orx3 < X.

 Oja (1981) proved that the standardized even central mo-

 ments preserve s,* and that if standardizedf and g satisfy

 the Dyson-Finucan condition then F ?s,* G. We refer the
 reader to Oja (1981) for further discussion of these order-

 ings.

 Figure 5 summarizes the relationships between these or-
 derings. All of the orderings << are location and scale free
 and have the property that F << G and G << F hold

 simultaneously (for symmetric F and G) iff there exist con-

 stants a, b such that G(x) = F(ax + b) for all x. The or-

 derings 's, CR, and ?T are transitive and thus induce partial
 orderings on location-scale families of symmetric distri-

 butions. Oja's orderings are not transitive, so they cannot

 be used to make meaningful comparisons within families

 of more than two distributions. This difficulty arises essen-
 tially because the mean and the variance (moment based)
 are taken to be measures of location and scale. If quantile-

 based measures are chosen instead, this problem does not

 arise and the obtained orderings are transitive.

 6. CURRENT WORK

 We have argued that kurtosis should be viewed as a vague

 concept best formalized using partial orderings on distri-

 butions and measures that preserve them. Only a few or-
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 derings have been defined to date, however, and these only
 on symmetric distributions. Consequently, the weakest or-

 dering underlying several of the measures discussed in

 Section 3 have not been identified, and the notion of kurtosis

 in asymmetric distributions and its relationship with skew-

 ness have not been discussed. These problems need further

 attention.

 We are considering these problems in some current work.

 The work defines a structure of location- and scale-free

 partial orderings on arbitrary distributions. The structure

 consists of hierarchies of orderings of varying strengths, and

 each hierarchy corresponds to a formalization of kurtosis
 arising from the use of a particular scaling technique, po-
 sitioning of shoulders, and, in the asymmetric case, measure

 of location. We consider extensions of van Zwet's (1964)
 ordering to the asymmetric case, and we investigate the
 relationship between skewness and kurtosis. Interested read-

 ers are referred to the appropriate references.

 [Received June 1987. Revised October 1987.]
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