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Abstract
Nonalcoholic fatty liver disease (NAFLD) is a frequent 
cause of chronic liver diseases, ranging from simple 
steatosis to nonalcoholic steatohepatitis (NASH)-related 
liver cirrhosis. Although liver biopsy is still the gold 
standard for the diagnosis of NAFLD, especially for the 
diagnosis of NASH, imaging methods have been in-
creasingly accepted as noninvasive alternatives to liver 
biopsy. Ultrasonography is a well-established and cost-
effective imaging technique for the diagnosis of hepatic 
steatosis, especially for screening a large population at 
risk of NAFLD. Ultrasonography has a reasonable accu-
racy in detecting moderate-to-severe hepatic steatosis 
although it is less accurate for detecting mild hepatic 
steatosis, operator-dependent, and rather qualitative. 
Computed tomography is not appropriate for general 
population assessment of hepatic steatosis given its 
inaccuracy in detecting mild hepatic steatosis and po-
tential radiation hazard. However, computed tomog-
raphy may be effective in specific clinical situations, 
such as evaluation of donor candidates for hepatic 

transplantation. Magnetic resonance spectroscopy and 
magnetic resonance imaging are now regarded as the 
most accurate practical methods of measuring liver fat 
in clinical practice, especially for longitudinal follow-
up of patients with NAFLD. Ultrasound elastography 
and magnetic resonance elastography are increasingly 
used to evaluate the degree of liver fibrosis in patients 
with NAFLD and to differentiate NASH from simple ste-
atosis. This article will review current imaging methods 
used to evaluate hepatic steatosis, including the diag-
nostic accuracy, limitations, and practical applicability 
of each method. It will also briefly describe the poten-
tial role of elastography techniques in the evaluation of 
patients with NAFLD.
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Core tip: Ultrasonography is a cost-effective imaging 
technique for the diagnosis of hepatic steatosis in clini-
cal practice. Magnetic resonance spectroscopy and 
magnetic resonance imaging are the most accurate 
and reliable methods of quantifying liver fat, especially 
for longitudinal follow-up of patients with nonalcoholic 
fatty liver disease. Ultrasound elastography and mag-
netic resonance elastography are promising imaging 
methods to evaluate the degree of liver fibrosis and to 
differentiate nonalcoholic steatohepatitis from simple 
hepatic steatosis.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is one of  the 
most common causes of  chronic liver diseases in West-
ern countries, occurring in approximately 30% of  the 
general population[1,2]. NAFLD consists of  a spectrum 
of  diseases, including simple steatosis, nonalcoholic ste-
atohepatitis (NASH), liver fibrosis, and liver cirrhosis[3,4]. 
Although the exact risk or incidence of  progression 
from simple hepatic steatosis to advanced stages of  fatty 
liver disease has yet to be determined, the progression 
of  simple hepatic steatosis to cirrhosis through the de-
velopment of  steatohepatitis (NASH) and fibrosis has 
been established[2,5-11]. NASH, characterized by hepa-
tocyte injury, inflammation, and fibrosis, is a clear risk 
factor for progression to cirrhosis, and such progression 
has been reported in up to 25% of  patients[6,7,9]. NASH 
is also associated with an increased risk of  liver cancer 
and death from cardiovascular diseases or liver-related 
causes[2,6,9,10,12]. NAFLD is closely related to obesity, insu-
lin resistance, hypertension, and dyslipidemia and is now 
regarded as a hepatic manifestation of  the metabolic 
syndrome[4,13,14]. NAFLD also adversely affects disease 
progression and response to treatment in patients with 
viral hepatitis C[15] and has negative effects on the prog-
nosis of  hepatic transplant recipients[16].

Liver biopsy is regarded as the gold standard for the 
assessment of  NAFLD and is the only reliable method 
for differentiating NASH from simple steatosis. This 
method, however, is invasive and is, therefore, unsuit-
able for screening large numbers of  subjects at risk, or 
for follow-up of  patients with NAFLD after therapeutic 
intervention. Furthermore, as liver biopsy samples are 
small in size, they are subject to sampling variability[17,18]. 
The clinical importance of  NAFLD and the limitations 
of  liver biopsy have increased the need for accurate and 
noninvasive imaging methods to evaluate NAFLD. To 
date, various imaging methods have been utilized to eval-
uate patients with NAFLD, including ultrasonography 
(US), computed tomography (CT), magnetic resonance 
imaging (MRI), and magnetic resonance spectroscopy 
(MRS), with these methods mostly used to quantify he-
patic steatosis. Each imaging method has its own advan-
tages and disadvantages which are summarized in Table 
1. More recently, several imaging methods that measure 
liver stiffness have been investigated for their usefulness 
in assessing inflammation and fibrosis in patients with 
NAFLD. This article will review the imaging methods 
currently utilized for the evaluation of  NAFLD and dis-
cuss their practical applicability.

US fOR evalUaTINg hepaTIC 
STeaTOSIS
Hepatic steatosis on US appears as a diffuse increase in 
hepatic echogenicity, or “bright liver”, due to increased 
reflection of  US from the liver parenchyma, which is 
caused by intracellular accumulation of  fat vacuoles. 

US evaluation of  hepatic steatosis typically consists of  
a qualitative visual assessment of  hepatic echogenicity, 
measurements of  the difference between the liver and 
kidneys in echo amplitude, evaluation of  echo penetra-
tion into the deep portion of  the liver, and determina-
tion of  the clarity of  blood vessel structures in the liver 
(Figure 1). Severity is usually graded clinically using 
a four-point scale, as follows: normal (grade 0), mild 
(grade 1), moderate (grade 2), and severe (grade 3)[19-21]. 
The diagnostic performance of  US in detecting hepatic 
steatosis has been reported to vary, depending on the 
exact definition of  steatosis and the presence of  coexist-
ing chronic liver disease. In patients without coexisting 
liver disease, US offers a fairly accurate diagnosis of  
moderate-to-severe hepatic steatosis (i.e., defined as his-
tologic degree ≥ 30% or 33%), with reported sensitivity 
ranging from 81.8% to 100.0% and specificity as high as 
98%[19,20]. In contrast, US was not accurate in diagnos-
ing hepatic steatosis when all degrees of  steatosis were 
considered (i.e., ≥ 3% or 5%), with a reported sensitiv-
ity ranging from 53.3% to 66.6% and specificity ranging 
from 77.0% to 93.1%[19,21-23]. As hepatic fibrosis may 
also increase hepatic echogenicity[24,25], the presence of  
underlying chronic liver disease may reduce the accuracy 
of  US in the diagnosis of  hepatic steatosis. For example, 
one study that included hepatitis C patients[25] found that 
US had a sensitivity of  60% and a specificity of  73% in 
detecting histologically proven moderate-to-severe he-
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Figure 1  Ultrasonography evaluation of hepatic steatosis. A: Ultrasonog-
raphy (US) image of a normal liver, showing that the echogenicity of liver pa-
renchyma (L) and kidney cortex (K) is similar; B: US image of a steatotic liver, 
showing increased echogenicity of the liver parenchyma (L) which is clearly 
brighter than the kidney cortex (K).
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Table 1  Advantages and disadvantages of imaging techniques for evaluating hepatic steatosis

patic steatosis.
One major limitation of  US is the substantial intra- 

and inter-observer variability. A retrospective study of  
168 US examinations showed intra- and inter-observer 
agreements of  54.7%-67.9% and 47.0%-63.7%, respec-
tively, when assessing the severity of  hepatic steatosis 
using the traditional four-point visual grading system[26]. 
These findings are consistent with the results of  a pro-
spective study of  161 potential liver transplant donors[19], 
in that the results of  21.7% US examinations differed 
between two independent readers, with the two radiolo-
gists differing significantly in diagnosing hepatic ste-
atosis by US[19]. These results indicate that US is highly 
dependent on the operator. Another limitation of  US 
is the qualitative nature of  the current four-point grad-
ing system. Although this grading system is the most 
widely used for US evaluation of  hepatic steatosis in 
practice, it is too simplistic to account for small altera-
tions in steatosis severity on follow-up. Thus, US may 
be inadequate for evaluating patients with NAFLD after 
therapeutic intervention. To overcome the limitations of  
US, computer-assisted quantitative US techniques were 
developed for the assessment of  hepatic steatosis[27-29]. 
These techniques employ dedicated post-processing 
software programs to analyze US echo amplitude, at-
tenuation, and/or texture-based information. The most 
robust parameter is the computerized hepatorenal index, 
defined as the ratio of  the echo intensities of  the liver 
and renal cortex. The results of  two related studies were 
very promising, with this index demonstrating sensitivi-
ties of  92.7% and 100% and specificities of  91% and 
92.5% in diagnosing hepatic steatosis ≥ 5%[28,29].

In summary, US is an established imaging technique 
for screening subjects at risk of  NAFLD, with accept-
able sensitivity and specificity in detecting moderate-to-
severe hepatic steatosis. As US is easy to perform and 
less costly than other imaging methods, US is probably 
currently the most widely used imaging method for 
detecting hepatic steatosis in asymptomatic patients 
with elevated liver enzymes and suspected NAFLD[30]. 
However, because of  its low accuracy in detecting mild 
steatosis, its operator dependency, and its qualitative na-
ture in the absence of  dedicated image post-processing, 

US may not be an adequate tool for monitoring NAFLD 
patients after therapeutic interventions. Computer-
ized quantitative analysis methods for US may be able 
to overcome these limitations, but they require further 
clinical validation.

CT fOR evalUaTINg hepaTIC 
STeaTOSIS
CT evaluation of  hepatic steatosis is based on the at-
tenuation values of  the liver parenchyma, evaluated as 
Hounsfield units (HUs), and dependent on tissue com-
position. As the attenuation value of  fat (i.e., approxi-
mately -100 HU) is much lower than that of  soft tissue, 
hepatic steatosis lowers the attenuation of  liver paren-
chyma. Although a few studies reported that contrast-
enhanced venous phase CT and unenhanced CT scan 
had comparable diagnostic accuracy in the diagnosis 
of  hepatic steatosis[31,32], unenhanced CT scans are usu-
ally preferred to avoid the potential errors in contrast-
enhanced CT caused by variations in liver attenuation 
related to contrast injection methods and scan timing. 
Several quantitative CT indices have been used to assess 
hepatic steatosis, with the two most frequently used be-
ing the absolute liver attenuation value (i.e., HUliver) and 
the liver-to-spleen difference in attenuation (i.e., CTL-S) 
(Figure 2). Despite HUliver showing a stronger correlation 
with histologic degree of  hepatic steatosis than CTL-S, 
HUliver may be subject to errors resulting from variations 
in attenuation values across CT scanners from different 
vendors[33,34]. This error can be avoided, however, by us-
ing CTL-S, which incorporates spleen attenuation as an 
internal control[33].

Although the accuracy of  CT in diagnosing hepatic 
steatosis was found to vary, CT was quite accurate 
for the diagnosis of  moderate-to-severe steatosis but 
was not as accurate for detecting mild steatosis. The 
threshold values of  CT indices for the diagnosis of  
hepatic steatosis were also quite variable, depending on 
the methods and populations used[19,21,35]. In one study, 
which included 154 potential living liver donor candi-
dates[35], a threshold CTL-S value of  -9 had a specificity 
of  100% and a sensitivity of  82% in detecting moderate-
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Techniques Advantages Disadvantages Clinical applications

US Widely available, easy to 
perform, less expensive

Operator dependency, limited accuracy in diag-
nosing mild hepatic steatosis, rather qualitative 
nature

Population screening, initial examination for subjects 
with suspected nonalcoholic fatty liver disease 

CT Widely available, easy to 
perform

Potential radiation hazard, limited accuracy in 
diagnosing mild hepatic steatosis

Detecting moderate-to-severe hepatic steatosis in donor 
candidates for liver transplantation

MRI Highly accurate and reproduc-
ible for measuring hepatic fat

High cost, long examination time Follow-up of response after therapy in practice or clini-
cal trials

MRS Highly accurate and reproduc-
ible for measuring hepatic fat

High cost, long examination time, evaluation of 
small portion of the liver, expertise required for 
data acquisition and analysis

Follow-up of response after therapy  in practice or clini-
cal trials

US: Ultrasonography; CT: Computed tomography; MRI: Magnetic resonance imaging; MRS: Magnetic resonance spectroscopy. 
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to-severe hepatic steatosis. Another study reported that 
a threshold CTL-S of  3.2 had a sensitivity of  72.7% and a 
specificity of  91.3%[19]. The variability in these reported 
threshold values limits the ability to generalize from the 
results of  previous studies. To establish a more general-
ized threshold value of  CT indices for the diagnosis of  
hepatic steatosis, a normal reference range for CTL-S (1-18 
HU) was established using histologically proven, nons-
teatotic healthy livers[36]. An HUliver of  48 and a CTL-S of  
-2 were found to be threshold values for a 100% specific 
diagnosis of  moderate-to-severe hepatic steatosis.

Several factors other than hepatic fat can influence 
liver attenuation on CT, including the presence of  excess 
iron in the liver and the ingestion of  certain drugs such 
as amiodarone[33,36,37]. Unlike conventional CT, dual-en-
ergy CT can differentiate among several chemical com-
ponents in tissue, by using X rays at two different energy 
levels. This method has been applied to the evaluation 
of  hepatic steatosis because it may more accurately 
evaluate hepatic steatosis in the absence of  other factors 
affecting CT hepatic attenuation. To date, however, the 
theoretical advantage of  dual-energy CT has not been 
established clinically. A recent study in animals using an 
up-to-date, dual-source, dual-energy CT scanner report-
ed that the use of  duel-energy CT did not improve the 
accuracy of  conventional single-energy CT in assessing 
hepatic steatosis[38], reconfirming the results of  a similar 
study in humans[39].

The low accuracy of  CT in detecting a mild degree 
of  hepatic steatosis suggests that this method may not 
be suitable for the evaluation of  NAFLD because pa-
tients with NAFLD frequently have a mild degree of  
steatosis[9,40]. Moreover, the potential hazard of  ionizing 
radiation makes CT unsuitable for use in children or 
for longitudinal monitoring of  patients with NAFLD. 
CT for longitudinal follow-up of  hepatic steatosis is 
also uncertain, due to a lack of  knowledge about the 
reproducibility of  serial CT measurements and the assay 
sensitivity of  CT indices in detecting small changes in 
the severity of  hepatic steatosis. Therefore, CT may not 
be appropriate for the evaluation of  NAFLD, although 

it may be useful in evaluating hepatic steatosis in specific 
clinical scenarios. For example, CT can be used success-
fully to detect moderate-to-severe hepatic steatosis in 
donor candidates for liver transplantation[35,36,41], and CT 
measurement of  fat in the liver may be useful for pa-
tients at risk of  metabolic syndrome[42,43].

MagNeTIC ReSONaNCe MeThODS fOR 
evalUaTINg hepaTIC STeaTOSIS
Unlike CT and US, which evaluate hepatic steatosis 
through proxy parameters (echogenicity and attenuation, 
respectively), MRI and MRS can more directly measure 
the quantity of  hepatic fat. MRI and MRS both mea-
sure proton density fat fraction (PDFF), defined as the 
amount of  protons bound to fat divided by the amount 
of  all protons in the liver, including those bound to fat 
and water. The basic magnetic resonance (MR) physics 
used in both techniques to differentiate protons in fat 
from those in water is the chemical-shift phenomenon, 
i.e., the difference in MR frequency between the protons 
in fat and water. The chemical-shift effect is directly vis-
ible on MRS spectra, displaying signals at their respective 
resonance frequencies. Moreover, the chemical-shift ef-
fect is used in a number of  MRI techniques to generate 
MR images, with signal intensities reflecting the mag-
nitude of  protons bound to fat. Accurate quantitative 
measurement of  hepatic steatosis using MRS and MRI 
premises that MR signal intensities from fat and water 
are entirely created by proton densities of  fat and wa-
ter without any influence from other factors. However, 
in reality, the differences in T1, T2, and T2* relaxation 
times between fat and water inevitably affect the signal 
intensities of  fat and water on MRS and/or MRI. There-
fore, various techniques have been developed to mini-
mize the confounding effects. Several clinically feasible 
MRS and MRI techniques are introduced in the follow-
ing sections.

MR spectroscopy: Technical aspects
MRS measures proton signals as a function of  their res-
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Figure 2  Computed tomography evaluation of hepatic steatosis using computed tomographyL-S index. A: Computed tomography (CT) image of a normal liver, 
showing that its attenuation (65 HU) measured using regions-of-interest (white circles) was higher than that of the spleen (50 HU), and the CTL-S value was 15 HU, 
which lies within the normal reference range; B: CT image of a steatotic liver, showing hepatic attenuation (10.5 HU) much lower than that of the spleen (51 HU), mak-
ing the CTL-S value -40.5 HU, far below the normal reference range and indicating moderate-to-severe hepatic steatosis.
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onant frequency and displays multiple peaks at different 
locations, according to the chemical structure of  protons 
in these frequency domains. On MRS spectra of  the 
liver, where fat and water are the most abundant proton-
containing materials, most of  the identifiable peaks are 
derived from water and fat, with water appearing as a 
single peak at 4.7 ppm and fat as multiple peaks due to 
the presence of  various chemical bonds between the 
protons and adjacent atoms in fat, e.g., a methylene (CH2) 
peak at 1.3 ppm and other smaller peaks at various loca-
tions (Figure 3). The signal intensities of  fat and water 
peaks can be directly quantified by the spectral tracing 
of  each peak, and PDFF can be calculated as the ratio 
of  the sum of  the signal intensities of  the fat-derived 
peaks divided by the sum of  the signal intensities of  all 
fat- and water-derived peaks.

For hepatic fat quantification, MRS data is usually 
collected from a single voxel (typically 2 cm × 2 cm × 
2 cm to 3 cm × 3 cm × 3 cm in size), manually placed 
in the liver parenchyma using 3-plane localizing im-
ages. Shimming is necessary to achieve a homogeneous 
magnetic field across the voxel. Either a stimulated 
echo acquisition mode (STEAM) or a point-resolved 
spectroscopy (PRESS) sequence can be used to acquire 
MRS spectra, with PRESS sequences providing a higher 
signal-to-noise-ratio (SNR) than STEAM sequences. 
STEAM, however, is considered more appropriate for 
fat quantification, as this sequence is less susceptible to 
a J-coupling effect and results in more reliable PDFF 
quantification[44,45]. As water and fat peaks are acquired, 
water or fat suppression must not be used to quantify 
liver fat using MRS. Unlike brain MRS, which requires 
multiple acquisitions of  data to achieve a sufficiently 
high SNR to detect minute metabolites, MRS of  the 

liver can be performed successfully with a single acquisi-
tion[45,46]. Therefore, MRS of  the liver with a single acqui-
sition can be performed in a short time during a single 
breath-hold, effectively avoiding respiratory movement-
related problems; this method is currently preferred[47-51]. 

For unbiased fat quantification, MRS sequences 
should be optimized to minimize relaxation effects. A 
long repetition time (TR), i.e., typically longer than 3000 
ms at 1.5T, can minimize T1-relaxation effects. T2-relax-
ation effects can be reduced by using the shortest possi-
ble echo times (TEs). However, multi-echo MRS, which 
corrects for T2-relaxation effects using multiple spectra 
acquired at different TEs, allows for a more complete T2 
correction[49,52]. Multi-echo MRS techniques are typically 
performed within a single breath-hold, with five single 
averaged spectra acquired at five different TEs[47,48,50,52].

MR imaging: Technical aspects
Several different MRI methods have been introduced 
to quantify hepatic fat, including chemical-shift imag-
ing (CSI), fat saturation, and fat-selective excitation ap-
proaches[45,53,54]. The CSI approach is most widely used 
because of  its easy applicability and higher accuracy. Un-
like MRS, which shows signals from fat and water at dif-
ferent locations on frequency domains, MRI displays the 
signal intensity of  an image pixel as the vector sum of  all 
signals from fat and water. CSI techniques separate MR 
signals into water and fat components based on the same 
MR physics as MRS (i.e., the chemical shift between fat 
and water), but in a different way by using the chemical-
shift-induced signal interference between the protons in 
fat and water.

The difference in resonance frequency between the 
dominant fat peak (i.e., the methylene peak at 1.3 ppm) 
and the water peak (4.7 ppm) is 3.4 ppm, indicating that 
the water peak resonates 3.4 ppm faster than the methy-
lene peak. Therefore, the protons in both methylene and 
water oscillate regularly and are positioned in opposed 
phase (OP) or in in-phase (IP) at certain TEs. The TEs 
corresponding to OP and IP depend on field strength: 
at 1.5T, the first OP and IP occurs at 2.3 ms and 4.6 
ms, respectively, and OP and IP repeat at multiples of  
4.6 ms after their first occurrence. At IP, the signals of  
methylene and water add constructively but, at OP, their 
signals cancel each other. Therefore, the difference in 
signal intensities between OP and IP images reflects the 
amount of  fat (Figure 4).

Since their initial description[55], OP and IP image-
based CSI techniques have improved. Dual-echo CSI 
utilizes a pair of  OP and IP images for fat quantifica-
tion. Although this technique is widely used for clinical 
MR imaging of  the liver, fat quantification using dual-
echo CSI is subject to bias from T1-and T2*-relaxation 
effects. In addition to the proton densities of  fat and 
water, the difference in T1-relaxation times between fat 
and water affects the signal intensities on IP and OP im-
ages. Because of  the difference in TEs between OP and 
IP, T2*-related signal decay during the interval from OP 
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Figure 3  Magnetic resonance spectroscopy spectrum of hepatic fat. Water 
and fat peaks are displayed at different frequencies; water appears as a single 
peak at 4.7 ppm, whereas fat appears as four peaks, including the dominant 
methylene (CH2) peak at 1.3 ppm (3), a methyl (CH3) peat at 0.9 ppm (4), an 
α-olefinic and α-carboxyl peak at 2.1 ppm (2), and a diacyl peak at 2.75 ppm (1); 
the areas of these four fat peaks and the water peak can be measured by spec-
tral tracing. Proton density fat fraction can be calculated as (sum of fat peaks) ÷ 
(sum of fat peaks + water peak)[45,82].
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to IP also causes signal differences between OP and IP 
images. As these relaxation effects may lead to inaccu-
rate quantification of  fat[47,56,57], various techniques have 
been developed for correction. The T1 effect can be 
minimized with a low flip angle, whereas the T2*-effect 
can be corrected with triple or multiple echo acquisi-
tions. Triple-echo CSI acquires a second IP echo in ad-
dition to the pair of  first OP and IP echoes. The signal 
intensities of  the first OP and IP echoes are corrected 
for the T2* effect using the T2* time estimated from 
the signal decay between the first and second IP echoes, 
followed by a calculation of  the T2*-corrected PDFF. 
Multiple-echo CSI acquires three or more consecutive 
pairs of  OP and IP echoes. Through signal modeling of  
multiple echoes, this technique allows for the estimation 
of  the T2* time of  the liver and T2*-corrected PDFF. 
These T1-independent, T2*-corrected CSI methods 
have shown higher accuracies in fat quantification than 
the classic dual-echo CSI method, resulting in unbiased 
fat quantification even in the presence of  excess he-
patic iron deposition[47,50-52,58,59]. Recently, an algorithm 
for accurate spectral modeling of  fat was developed 
and implemented in the T1-independent T2*-corrected 
multi-echo CSI technique. This technique is based on 
fat having a complex chemical spectrum, consisting of  
multiple peaks with different resonance frequencies, and 
models the signal intensities on OP and IP images using 
the signal interferences among water and multiple fat 
peaks, not between water and a single methylene peak. 
Since all the aforementioned OP and IP image-based 
CSI methods use only the signal intensity information 
on images without phase information, they cannot deter-

mine whether fat or water is dominant in tissues. Thus, 
the signal intensities of  OP and IP images are nearly the 
same for tissues containing 30% and 70% fat. Therefore, 
the dynamic range of  PDFF is 0%-50% hepatic steatosis 
for these OP and IP image-based CSI methods.

The IDEAL (iterative decomposition of  water and 
fat with echo asymmetry and least-squares estimation) 
method is a chemical-shift-based, water-fat separation 
method using both magnitude and phase information. 
To separate water and fat signals, this technique mea-
sures the local field map and demodulates it from the 
signal in the source images using three or more echoes at 
different TEs. Although technically complex, the use of  
phase information for the IDEAL method allows PDFF 
to be measured over a full dynamic range of  0%-100% 
hepatic steatosis. Following its initial development, the 
algorithms for reducing T1- and noise-related bias, for 
T2*-correction, and for spectral modeling of  fat, were 
implemented with the IDEAL method, allowing for T1-
independent, T2*-corrected estimation of  PDFF[48,60-62].

CSI with MRI and MRS measures the same physical 
quantity (i.e., PDFF) for the assessment of  hepatic ste-
atosis. Therefore, provided that CSI with MRI and MRS 
are correctly performed and interpreted, the PDFFs 
measured by the two techniques should be the same. As 
MRS estimates PDFF by directly measuring each water 
and fat peak, whereas CSI indirectly estimates PDFF us-
ing the signal interference between water and fat peaks, 
MRS has been considered more accurate than CSI in 
measuring PDFF. The feasibilities and accuracies of  CSI 
methods were, therefore, initially validated by compari-
son with PDFF measured with MRS as the reference 
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Figure 4  Dual-echo opposed-phase and in-phase chemical shift images of steatotic liver. A: At opposed-phase (OP) (echo time = 2.3 ms at 1.5T), the protons in 
water and those in methylene (the largest fat moiety) are placed in opposite directions, so that the signals of these two components cancel each other. Therefore, the 
liver appears dark (i.e., decreased signal); B: At in-phase (IP), the protons in water and those in methylene are positioned in the same direction so that their signals 
are added. Liver fat fraction can be calculated based on signal intensities on OP and IP images as (signal at IP - signal at OP) ÷ 2 × signal on IP; the signal fat fraction 
calculated with dual-echo chemical shift images was not corrected for the T2* effect, and therefore may not accurately determine proton density fat fraction.
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standard. The results of  these studies demonstrated 
that PDFF estimated using CSI techniques with T2*-
correction and spectral fat modeling algorithms resulted 
in the most perfect agreement with MRS-derived PDFF, 
for both image-based and IDEAL-based approaches. 
Dual-echo CSI has been reported to generally underesti-
mate PDFF, especially when excessive iron deposition is 
present[50-52,63]. These findings were recently reconfirmed 
by comparing PDFFs measured by CSI techniques and 
MRS with the histologic degree of  hepatic steatosis[47,64]. 
This comparison found that multiple-echo CSI with 
T2*-correction and spectral fat modeling was as accu-
rate as MRS in fat quantification, with no confounding 
effects of  subjects’ demographic factors and coexisting 
histologic abnormalities[47,64]. In contrast, dual-echo CSI 
was less accurate than MRS and multi-echo CSI in fat 
quantification and is confounded by the degree of  he-
patic iron deposition[47].

Clinical application of the MR techniques
Previous studies have compared the accuracies of  MR 
techniques and other imaging modalities in the assess-
ment of  hepatic steatosis, with histologic grading as 
the reference standard[19-21]. These studies consistently 
demonstrated that MRS and MRI outperform CT and 
US in the diagnosis and grading of  hepatic steatosis, 
even when MRS and MRI were performed without 
any of  the sophisticated corrective methods described 
above (i.e., correction of  T2 or T2* effects)[19,21]. The 
MRI sensitivities and specificities in detecting histologic 
steatosis ≥ 5% were 76.7%-90.0% and 87.1%-91%, 
respectively, and the corresponding MRS performances 
were 80.0%-91.0% and 80.2%-87.0%, respectively[19,21]. 
MRS and MRI have several additional advantages over 
CT and US in the assessment of  hepatic steatosis. MRS 
and MRI can evaluate hepatic steatosis in an objective 
manner using the quantitative index (i.e., PDFF). PDFF 
measurements using MRS and MRI have been reported 
very reproducible[1,50,51,65]. In one study, the standard de-
viation of  PDFF values over repeated measurement was 
less than 1% for both MRS and MRI[51]. Another study 
found that the reproducibility of  PDFF measurements 
was high across scanners with different field strengths 
and from different vendors: the 95% Bland-Altman 
limits-of-agreement between MRI-determined PDFF on 
1.5 and 3.0T scanners were approximately 2%-4%[65].

Although histologic degree of  hepatic steatosis has 
been used as the “gold standard” for comparisons, re-
cent studies suggest that MRS- and MRI-derived PDFF 
can actually serve as a better reference standard for the 
amount of  fat in the liver than histological evaluation, 
due to the high accuracy and reproducibility of  these 
MR techniques[66-68]. Studies assessing fat content in liver 
samples by computerized analysis of  microscopic images 
or biochemical lipid assays found that the fat content in 
these liver samples was better correlated with MRI- or 
MRS-determined PDFF than with the pathologist’s as-
sessment of  hepatic steatosis[66-68]. Histologic assessment 

of  steatosis, including visual determination of  percent 
hepatocytes containing fatty vacuoles or percent hepatic 
parenchymal area replaced by fat, is subject to large in-
ter-observer variability[17] and may not accurately reflect 
the physical quantity of  hepatic fat[66-68]. In addition, the 
traditional histological cutoffs categorizing the severity 
of  steatosis (5%, approximately 30%, and approximately 
60%) may be too blunt, especially in longitudinal follow-
up. These findings and the inherent limitations of  liver 
biopsy, including its invasiveness and ability to obtain 
very small samples, suggest that MRS and MRI may be 
the methods of  choice, both as reference standards in 
research studies and in clinical practice, especially in the 
longitudinal follow-up of  patients with hepatic steato-
sis after therapeutic intervention[69-74]. A recent study 
has validated the efficacy of  MRI- or MRS-determined 
PDFF as an imaging biomarker to quantify changes in 
the amount of  liver fat and to assess the effects of  drug 
therapy in patients with NAFLD[71].

From a practical viewpoint, MRI appears to have 
several advantages over MRS. The acquisition and analy-
sis of  MRS data requires expertise and is time-consum-
ing. Single-voxel MRS, the typical MRS method use to 
assess hepatic steatosis, collects data from a small por-
tion of  the liver (within a voxel ≤ 3 cm × 3 cm × 3 cm), 
which may be subject to sampling error, although it is 
much larger than a biopsy sample. By comparison, MRI 
is widely available, easily applicable, and can evaluate the 
entire liver within a short breath-hold. Since the scale of  
MRS- or MRI-determined PDFF (%) differs from the 
histologic degree (%) of  hepatic steatosis (although both 
use percentages), clinical thresholds for MRS- or MRI-
determined PDFF are needed. The largest MRS study 
to date, involving 2349 subjects in a general population, 
suggested that a PDFF value of  5.56% was the upper 
normal margin, as determined from the 95th percentile 
of  PDFF in 345 subjects with no identifiable risk factors 
for hepatic steatosis[1].

IMagINg DIagNOSIS Of NaSh aND 
elaSTOgRaphy
Hepatic steatosis can progress to fibrosis and cirrho-
sis through a development of  steatohepatitis (NASH), 
which is a clear risk factor for liver cirrhosis and liver-re-
lated mortality[9,10,75]. Therefore, it is clinically important 
to diagnose the development of  steatohepatitis in pa-
tients with NAFLD. In general, no imaging examinations 
have been found to accurately diagnose NASH, making 
liver biopsy the only reliable method of  distinguish-
ing NASH from simple steatosis. US elastography and 
MR elastography, however, are emerging as promising 
methods to diagnose NASH. US elastography and MR 
elastography evaluate liver stiffness by measuring the ve-
locity of  shear wave using US (US elastography) or MRI 
(MR elastography). Several US elastography techniques 
have been described, which differ in methods of  shear 
wave generation and/or detection, including transient 
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elastography, acoustic radiation force impulse elastogra-
phy, supersonic shearwave elastography (Figure 5), and 
real-time tissue elastography. These techniques were first 
applied to the evaluation of  liver fibrosis in patients with 
chronic viral hepatitis, and their clinical application has 
recently been expanded to other liver diseases, including 
NAFLD. US elastography techniques have demonstrated 
very promising results for the diagnosis of  liver fibrosis 
in NAFLD[76-80]. They have shown a stepwise increase in 
liver stiffness as the severity of  histologic liver fibrosis 
increased, and have been highly accurate in differentiat-
ing advanced liver fibrosis from mild liver fibrosis, with 
sensitivities ranging from 88.9% to 100% and specifici-
ties ranging from 75.0% to 100%[76-80]. Liver stiffness 
value did not correlate with the degree of  hepatic steato-
sis or with hepatic inflammation[76-80], indicating that US 
elastography can assess hepatic fibrosis associated with 
steatosis without confounding by steatosis but would 
not be able to assess hepatic inflammation[76-80]. A study 
of  MR elastography in 58 patients with NAFLD showed 
that liver stiffness in patients with steatosis and lobular 
inflammation was significantly higher than in patients 
with steatosis only, and significantly lower than in pa-
tients with steatosis and fibrosis[81]. Taken together, these 
results indicate that US elastography or MR elastography 
may play a potential role in screening for NASH and/or 
advanced fibrosis in patients with NAFLD.

CONClUSION
US is a well-established and cost-effective imaging tech-
nique for screening subjects at risk of  NAFLD with a 
reasonable sensitivity and specificity in detecting moder-
ate and severe hepatic steatosis, despite its limited accu-
racy for mild hepatic steatosis and operator dependency. 
CT is inaccurate in detecting mild hepatic steatosis and 
involves a potential radiation hazard, making it inap-
propriate for assessing hepatic steatosis, especially for 
longitudinal follow-up of  patients with NAFLD. CT, 
however, may be effective in specific clinical situations, 
such as the evaluation of  hepatic donor candidates for 
transplantation. MRS is currently the most accurate im-

aging method used to diagnose hepatic steatosis. MRI, if  
performed and analyzed correctly, has a comparable ac-
curacy to MRS, is more practical, and can cover the en-
tire liver. Technical optimization of  MRS and MRI may 
result in accurate and unbiased hepatic fat quantification. 
Both MRS and MRI are very reproducible and accurate 
in quantifying hepatic fat and may replace liver biopsy as 
the reference standard for research studies. US elastogra-
phy and MR elastography can diagnose liver fibrosis as-
sociated with NAFLD and may play a role in identifying 
NASH or NAFLD patients who are at greater risk of  
progressive liver disease.
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