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Abstract
Quantification of non-Gaussianity for water diffusion in brain by means of diffusional kurtosis
imaging (DKI) is reviewed. Diffusional non-Gaussianity is a consequence of tissue structure that
creates diffusion barriers and compartments. The degree of non-Gaussianity is conveniently
quantified by the diffusional kurtosis and derivative metrics, such as the mean, axial, and radial
kurtoses. DKI is a diffusion-weighted MRI technique that allows the diffusional kurtosis to be
estimated with clinical scanners using standard diffusion-weighted pulse sequences and relatively
modest acquisition times. DKI is an extension of the widely used diffusion tensor imaging
method, but requires the use of at least 3 b-values and 15 diffusion directions. This review
discusses the underlying theory of DKI as well as practical considerations related to data
acquisition and post-processing. It is argued that the diffusional kurtosis is sensitive to diffusional
heterogeneity and suggested that DKI may be useful for investigating ischemic stroke and
neuropathologies, such as Alzheimer’s disease and schizophrenia.
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INTRODUCTION
Molecular diffusion is a random process, and as such, it may be described by probability
distributions. The most basic of these is the probability of a molecule moving a given
displacement over a given time interval. For simple, homogeneous liquids (e.g., a glass of
water), this displacement probability distribution function (PDF) is Gaussian (1), and the
diffusion is referred to as Gaussian diffusion. However, in many biological tissues including
brain, the presence of barriers (e.g., cell membranes) and compartments (e.g., intracellular
and extracellular spaces) alter the water diffusion PDF so that it is, in general, no longer
precisely Gaussian and the diffusion is referred to as non-Gaussian. Quantification of the
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degree of diffusional non-Gaussianity can be useful in characterizing the associated tissue
structures on which the PDF depends.

The kurtosis is a dimensionless statistical metric for quantifying the non-Gaussianity of an
arbitrary probability distribution (2). If Mn is the nth moment of a distribution about its mean
value, then the kurtosis may be defined as

(1)

For any Gaussian distribution, K = 0. If a distribution has less weight on its center and tails
compared to a Gaussian with the same variance, then K < 0, and if the distribution has more
weight on its center and tails, then K > 0. One can prove the general lower bound K ≥ −2.

Recently, it has been shown how to estimate, in brain, the kurtosis of the water diffusion
displacement PDF with relatively simple diffusion-weighted imaging protocols that are
suitable for clinical MRI systems (3–5). This method has been referred to as diffusional
kurtosis imaging (DKI) and is a natural extension of diffusion tensor imaging (DTI) (6–10).
With DKI, one obtains estimates for all the standard DTI diffusion metrics, such as the mean
diffusivity (MD) and the fractional anisotropy (FA), and also for several additional metrics
related to the diffusional kurtosis. In this way, DKI provides for a more complete
characterization of water diffusion in brain. Here we review both the underlying theory of
DKI and practical aspects of its implementation.

DEFINITIONS
Let P(r,t) be the water diffusion PDF for a vectorial displacement r over a time interval t
(the diffusion time). The average of an arbitrary function A(r) can then be written

(2)

with the angle brackets being introduced as a shorthand for averaging over the PDF. The
diffusion coefficient in a direction n is then defined by

(3)

where we assume that |n| =1. The diffusion coefficient therefore quantifies the variance of
the PDF in a given direction. The diffusional kurtosis in the direction n is similarly defined
by

(4)

Eqn (4) is a direct application of the general formula for kurtosis of eqn (1) to molecular
diffusion.
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The MD corresponds to the average of the diffusion coefficient over all directions, which
may be formally expressed as the surface integral

(5)

with dΩn representing a solid angle element for the direction n. The mean kurtosis (MK) has
the analogous definition

(6)

and is a metric of primary interest for DKI.

In order to quantify diffusional anisotropy, it is useful to define the diffusion tensor

(7)

and the kurtosis tensor

(8)

where ri, i = 1, 2, or 3, is a component of the displacement vector r. Both of these tensors are
symmetric with respect to interchange of their indices. The diffusion tensor has 32 = 9
components, but because of symmetry only 6 are independent. The kurtosis tensor has 34 =
81 components, but because of symmetry only 15 are independent. With these two tensors,
the diffusion coefficient and diffusional kurtosis in an arbitrary direction can be calculated
from

(9)

and

(10)

As a consequence, the full angular variation for the diffusion coefficient is fixed by the 6
independent degrees of freedom for the diffusion tensor, and the full angular variation for
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the diffusional kurtosis is fixed by the 6 + 15 = 21 combined degrees of freedom for the
diffusion and kurtosis tensors.

It is natural to consider a frame of reference that diagonalizes the diffusion tensor. The
direction parallel to the diffusion eigenvector corresponding to the largest diffusion
eigenvalue is often referred to as the parallel direction, since in white matter this direction
would typically be aligned with axons. One can then define the parallel diffusivity and
parallel kurtosis by (11)

(11)

and

(12)

where n|| is a unit vector oriented in the parallel direction. One may also define the
perpendicular diffusivity and perpendicular kurtosis by

(13)

and

(14)

with δ(x) indicating the Dirac delta function. For isotropic diffusion, D|| = D⊥ = D ̄ and K|| =
K⊥ = K̄. An alternative, nonequivalent (but qualitatively similar) definition for K⊥ has been
proposed by Hui and coworkers (11).

Lätt and coworkers (12) have also considered a kurtosis for the Fourier transform of the
PDF. While this Fourier space (q-space) kurtosis also vanishes for Gaussian diffusion, since
the Fourier transform of a Gaussian is itself a Gaussian, it is otherwise physically distinct
from the diffusional kurtosis as defined by eqn (4).

SIMPLE MODELS
Both the diffusion coefficient and the diffusional kurtosis are model independent diffusion
metrics. This is an important advantage, in that it makes them physically well-defined.
However, as a consequence of not being tied to a specific tissue model, their interpretation
in terms of tissue structure is not always straightforward. For example, the precise
mechanism for the diffusion coefficient changes associated with cerebral ischemia in brain
has been extensively debated (13–15).

In order to better understand the physical meaning of the diffusional kurtosis, it is helpful to
consider idealized diffusion models. Here we consider three basic types: multiple
compartment models without water exchange, a two-compartment model with water
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exchange, and a one-dimensional model with equally spaced semi-permeable barriers.
Multiple compartment models are the simplest and most widely applied models for water
diffusion in brain, with the compartments representing, for example, intracellualler spaces,
extracellular spaces, distinct white matter tracts, and/or cerebrospinal fluid (CSF). The other
two types of models are utilized to better understand the effects of water transport between
compartments and of diffusion barriers (e.g, cell membranes and organelles), which are not
explicitly included in elementary multiple compartment models.

Multiple compartment models
For a single compartment with Gaussian diffusion, the PDF is given by

(15)

where D represents the diffusion tensor. One may verify that eqn (15) is consistent with eqn
(9) and that it implies K(n) = 0 for all directions. For N Gaussian compartments, eqn (15) is
generalized to

(16)

where D(m) is the diffusion tensor for the mth compartment and fm is the corresponding
water fraction. The water fractions are normalized so that

(17)

From eqns (9) and (16), one finds

(18)

with

(19)

being the diffusion coefficient for the mth compartment in the direction n. Thus the total
diffusion coefficient is the weighted sum of the compartmental diffusion coefficients. For
the diffusional kurtosis, eqns (9), (10), and (16) lead to (4)
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(20)

where δ2 D(n) is the diffusion coefficient variance defined by

(21)

The diffusional kurtosis is then simply three times the square of the coefficient of variation
for the distribution of compartmental diffusion coefficients. So qualitatively, the kurtosis is
a measure of the heterogeneity of the diffusion environment. Note also that eqn (20) shows
that K ≥ 0 for any multiple compartment model.

Since two-compartment models have been frequently used to study water diffusion in brain,
it is of interest to examine this special case in greater detail. Let D1 ≡ D(1) (n), D2 ≡ D(2)

(n), and f ≡ f1. Assume further that D1 ≥ D2, so that the m = 1 compartment corresponds to
the fast diffusing component. Eqns (18) and (20) then reduce to

(22)

and

(23)

Solving eqns (22) and (23) in terms of D1 and D2 yields

(24)

and

(25)

The physical condition D2 ≥ 0 then implies that

(26)
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Hence knowledge of the kurtosis gives an upper bound on the water fraction for the fast
diffusing component of a two-compartment model. The inequality of eqn (26) becomes an
equality in the limit D1/D2 → ∞. As is suggested by eqn (26), a knowledge of D and K does
not uniquely determine the two-compartment model parameters of D1, D2, and f.

The parameters D1, D2, and f in various brain regions have been estimated by Maier and
Mulkern (16) for four normal volunteers. These are reproduced in Table 1 together with
values for D, K, and fb obtained by applying eqns (22), (23), and (26). Note that K ≈ 1 and
that in most regions fb exceeds f by no more than 20 to 30%.

Kärger model
The multiple compartment models discussed above do not allow for water exchange
between compartments. A two-compartment model with water exchange has been proposed
by Kärger (17–19) and is often referred to as the Kärger model. The independent model
parameters are those for the previously discussed two-compartment model (D1, D2, and f)
plus a residence time, τ1, for the fast diffusing compartment. The residence time for the slow
diffusing compartment is given by τ2 = (1 − f)τ1/f, and an exchange time can be defined by τ
≡(1 − f) τ1 = fτ2. While highly simplified, the Kärger model yields reasonable results for cell
suspensions (20) and has been applied to the study of water diffusion in brain (21).

The diffusion coefficient for the Kärger model is given by eqn (22), as for the case without
exchange, and is therefore completely independent of the diffusion time. The diffusional
kurtosis, in contrast, is given by (4, 22)

(27)

with K0 = K(0) being equal to the kurtosis value of eqn (23). As a consequence, the kurtosis
decreases with diffusion time on a scale set by the exchange time. Figure 1 shows a plot of
K(t)/K0 as a function of the ratio t/τ. In order to emphasize the distinct time dependencies of
D and K, also plotted in Fig. 1 is the trivial line for D/D0 = 1, where D0 is the initial
diffusion coefficient. For very long diffusion times, the kurtosis approaches zero, in
consistency with a Gaussian PDF.

The Kärger model thus represents a clear example where the diffusion coefficient and
diffusional kurtosis have sharply different behaviors. It also suggests that the kurtosis could
be more sensitive to water exchange effects in brain than the diffusion coefficient, although
there is as yet no direct empirical evidence for this.

One-dimensional model with barriers
The PDF for one-dimensional diffusion with equally spaced semi-permeable membranes can
be determined analytically (23–25). Such a model is of interest because semi-permeable
membranes are a primary source of diffusion restrictions in brain as well as other biological
tissues. The parameters for the model are the free diffusion coefficient Df, the spacing
between membranes L, and the membrane permeability κ.

For short diffusion times, this model leads to
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(28)

and

(29)

Eqn (28) was derived directly from the one-dimensional diffusion PDF by Sukstanskii and
coworkers (25) and is a special case of a more general short time formula for diffusion in
restricted media (26,27). The short time expression of eqn (29) for the kurtosis is also a
special case of a general result (28). The growth of the kurtosis with diffusion time can be
viewed as resulting from an increased diffusional heterogeneity caused by the restriction of
water molecules that are initially closest to membranes. The permeability κ does not affect
the short time behaviors for either D or K, but does enter into the O(t) corrections.

In the limit of long diffusion times, one may show that,

(30)

and for κ > 0,

(31)

The first term on the right side of eqn (30) corresponds to the famous result of Crick (29),
and the second term is also given in the review by Yablonskiy and Sukstanskii of this
journal issue. Both the diffusion coefficient and the kurtosis decrease with increasing
diffusion time, but the kurtosis approaches zero while the diffusion coefficient approaches a
constant. This vanishing of the long time kurtosis is, as for the Kärger model, an indicator
that the diffusion PDF becomes Gaussian in this limit. The short time growth and long time
reduction for the kurtosis, implied by eqns (29) and (31), show that the kurtosis has a
maximum for some intermediate value of the diffusion time.

RELATIONSHIP TO NMR SIGNAL
So far we have discussed the diffusional kurtosis without reference to its measurement with
diffusion-weighted NMR/MRI, and it is important to appreciate that the diffusional kurtosis
is a well-defined quantity independent of any specific measurement procedure or model.
However, the method of estimation for any physical quantity is central to its applications,
and in this section, we discuss the relationship between the diffusional kurtosis and the
diffusion-weighted NMR signal. For the diffusion-weighted signal, we shall have in mind
that obtained for water with the canonical Stejskal-Tanner sequence (1,30), although the
essential considerations can be readily extended for many of the other related sequences.
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Q-space approach
The most conceptually straightforward approach for measuring the diffusional kurtosis is to
first use the NMR signal to calculate the PDF and then determine the kurtosis from eqn (4).
The PDF may be calculated from the NMR signal by using established q-space imaging
methods (1,30–32), and these have been explicitly applied to the calculation of the kurtosis
in brain by some researchers (12,32,33). However for human imaging, q-space methods can
be demanding both in terms of hardware requirements and imaging time. In particular, q-
space imaging methods typically utilize large maximum b-values of several thousand s/mm2

or more. Therefore, they are often difficult to incorporate into clinical imaging protocols.

Series expansion
DKI attempts to build upon the widespread application and success of DTI by extending the
familiar DTI approach to the calculation of the diffusional kurtosis and related diffusion
metrics. To see how this is done, let us first review some of the basic principles of DTI. The
diffusion-weighted signal intensity, S, can be regarded as a function of the “b-value,” which
for a Stejskal-Tanner sequence is defined by b ≡ (γδg)2 (Δ − δ/3) where γ is the proton
gyromagnetic ratio, g is the amplitude of the diffusion sensitizing magnetic field gradient
pulses, δ is the duration of the gradient pulses, and Δ is time interval between the centers of
the gradient pulses (1,30). One can then consider the Taylor series (23,34)

(32)

where Dapp is the “apparent” diffusion coefficient and S0 ≡ S(0). In carrying out the
expansion of eqn (32), it is assumed that both Δ and δ are fixed so that b is varied by
changing g. In the short pulse duration limit δ → 0, Dapp approaches the true diffusion
coefficient D for a diffusion time t = Δ. For the special case of multiple, non-exchanging
Gaussian compartments, Dapp = D for arbitrary δ. More generally if we assume the
dependence on δ is small, we have the approximation

(33)

for b-values that are sufficiently small so that the O(b2) terms of eqn (32) are negligible.
Here the precise meaning of “sufficiently small” depends on the sample being studied. The
validity of eqn (33) also requires the assumptions of zero net flow (i.e., 〈r〉 = 0) and
homogeneous T2 relaxation within the region of interest (e.g., a voxel). For Gaussian
diffusion, eqn (33) is exact, and it can be rewritten in the familiar form

(34)

By fitting eqn (33) to signal intensity data for a range of b-values, an estimate for D may be
obtained. These data should all be for the same gradient direction, which then determines the
diffusion direction for D. For any single direction, at least two b-values are needed, since
eqn (33) has two unknowns. If exactly two b-values, b1 and b2, are used, we then have the
closed-form solution
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(35)

Of course, in applying eqns (33) or (35), it is important to choose the range of b-values
appropriately. If the maximum b-value is too low, then the variation of the signal intensity
will be small and estimates for D will be extremely sensitive to noise. If the maximum b-
value is too high, then there will be systematic errors in measured D values due to the
neglecting of the O(b2) term of eqn (33). For brain, experience has shown that a maximum
b-value of about 1000 s/mm2 provides a reasonable compromise between precision and
accuracy, and this value is now a widely used standard.

DKI is based on similar logic with the key difference being that eqn (32) is replaced with the
expression

(36)

which now explicitly includes the O(b2) term (3,4). Eqn (36) corresponds to a cumulant
expansion for the diffusion NMR signal, as has been discussed in several prior studies
(23,34–36). Here Kapp is the apparent diffusional kurtosis, which approaches the true
kurtosis K in the limit of short pulse durations. Also, for multiple, non-exchanging Gaussian
compartment models, Kapp = K for arbitrary δ, in analogy with the diffusion coefficient. The
DKI extension of eqn (33) is then

(37)

for b-values that are sufficiently small so that the O(b3) terms of eqn (36) are negligible. As
for DTI, the meaning of “sufficiently small” is, in general, sample dependent, but will
typically include a larger range of b-values than for eqn (33) due to the inclusion of the
higher order term. With this approximation, one can estimate both D and K by fitting to the
diffusion-weighted signal intensity data with three or more b-values (since there are now 3
unknowns) in any given gradient direction. For exactly three b-values, b1, b2 and b3, the
closed-form expressions are (37)

(38)

and

(39)

where
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(40)

Note that D(12) and D(13) correspond to the DTI estimates of the diffusion coefficient for the
b-values pairs of (b1,b2) and (b1, b3), respectively. Figure 2 gives a comparison of the DTI
and DKI fits for a simulated data set.

Maximum b-values for DKI
In order to obtain accurate parameter estimates with DKI, it is necessary, as for DTI, to be
careful in choosing the maximum b-values. These will typically be larger than for DTI, since
for DKI we do not want the O(b2) terms to be negligible.

If we make the assumption that S(b) is a monotonically decreasing function of the b-value,
then one can derive the upper bound of (38)

(41)

as a necessary condition for the validity of eqn (37). This assumption of a monotonically
decreasing signal intensity is empirically true for brain and most other biological tissues, but
it can fail to hold for certain specially structured media (39). As Table 1 indicates, typical
values in brain are roughly D ≈ 1 μm2/ms and K ≈ 1. These then imply the upper bound of b
≤ 3000 s/mm2.

While eqn (41) is quite general and a useful guide, it is not sufficient to guarantee that eqn
(37) will yield accurate estimates for D and K. To more precisely determine a suitable b-
value range, we exploit the observation that signal intensity data in brain are well
approximated with biexponential curves up to b-values of about 5000 s/mm2 (16). Thus as a
representative model, it is reasonable to take

(42)

This is precisely the signal decay form for a non-exchanging, two-compartment Gaussian
diffusion model, which we have already discussed, with one compartment having a diffusion
coefficient D1 and a water fraction f and the other compartment having a diffusion
coefficient D2 and a water fraction 1 − f. As before, we may assume without loss of
generality that D1 ≥ D2. For this model, the exact values for D and K are given by eqns (22)
and (23).

Now let us consider applying eqn (37) to estimate D and K for the signal intensity of eqn
(42) with the b-values chosen, for sake of simplicity, to be: b1 = 0, b2 = bmax/2, and b3 =
bmax. Since there are exactly three b-values, we can apply eqns (38) and (39) to find

(43)

and
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(44)

where we have added a subscript “fit” to indicate that these estimates are based on a fit for
the series approximation of eqn (37). These “fit” values may then be compared to the exact
values from eqns (22) and (23) in order to assess the accuracy obtained by the use of eqn
(37).

In Fig. 3a, the ratio Kfit/K, with K being the exact kurtosis, is plotted for K = 1, 0 ≤ f ≤ fb,
and Dbmax = 1, 2, and 3. For given values of D, K, and f, D1 was calculated from eqn (24),
D2 was calculated from eqn (25), and fb was calculated to be 3/4 from eqn (26). We have
made the choice of K = 1, since this is a typical value for brain. The curve for Dbmax = 3
corresponds, for K = 1, to the bound of eqn (41). At this upper limit, the Kfit values are
accurate to within about 20% for 0.6 ≤ f ≤ fb. For Dbmax = 2, this 20% accuracy interval
grows to 0.52 ≤ f ≤ fb, which covers the range for most brain regions with a bit of a margin
(see Table 1).

A similar plot for Dfit/D is shown in Fig. 3b. For Dbmax = 3, the accuracy is about 10% or
better for the full range of f values, while for Dbmax = 2, the accuracy is better than 7%. As a
comparison, Fig. 3c shows the corresponding plot for DDTI/D, where DDTI is calculated
from the usual DTI formula of eqn (35) with b1 = 0 and b2 = bmax. The DTI approximation
is accurate to within about 20% for Dbmax = 1.

Since D ≈ 1 μm2/ms in brain, DKI with bmax = 2000 s/mm2 should, based on this
calculation, yield estimates for the diffusional kurtosis with an accuracy of roughly 20% or
better and for the diffusion coefficient with an accuracy of roughly 7% or better. This is
comparable to the 20% accuracy found for the DTI-based diffusion coefficient estimates
with bmax = 1000 s/mm2. The accuracy of Kfit is, however, more strongly dependent on f
than for either Dfit or DDTI. These conclusions are, of course, all dependent on the
correctness of our assumption that biexponential signal decay is a reasonable approximation
for brain.

That the series approximation of eqn (37) is fairly accurate for brain up to b-values of 2000
to 3000 s/mm2 is consistent with prior studies that have directly studied fits to brain signal
intensity data (4,5,40). Most prior DKI brain studies (4,5,11,37,38,41–45) have been
confined to this b-value range, although a few have used somewhat larger maximum values
(12,46,47).

In practice, the optimum choice of maximum b-value, for both DTI and DKI, is a
compromise between precision and accuracy. The effects of diffusion on the signal intensity
increase with increasing b-value, but the accuracies of eqns (33) and (37) decrease. For MRI
of the brain, empirical evidence indicates that maximum b-values of about 1000 s/mm2 for
DTI and of 2000 to 3000 s/mm2 for DKI are appropriate. For tissues other than brain, for
fixed brain tissue, or for phantoms, it is crucial that an appropriate b-value range be
independently established before applying eqn (37). Otherwise, significant errors in
parameter estimates may occur (48).

Other signal intensity models
Eqn (36) demonstrates that the diffusional kurtosis is determined by the small b-value
behavior of S(b). It is for this reason that a full q-space imaging approach is not necessary to
estimate the kurtosis, which allows for the acquisition of a reduced data set and for a
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simplified analysis method. In addition, eqn (36) suggests the previously discussed fitting
model based on eqn (37), which is usually employed as a part of DKI. However, eqn (36)
can also be applied to other S(b) models, which may at times offer some advantages over
eqn (37).

The key requirement is that the model for S(b) be analytic in the b-value about b = 0. The
model parameters can be related to the kurtosis by carrying out a Taylor series for ln[S(b)]
and comparing the coefficients for the O(b) and O(b2) terms with eqn (36). For example,
applying this procedure to the biexponential signal decay of eqn (42) leads directly to the
expressions of eqns (22) and (23).

Besides the two-compartment (biexponential) model, other proposed models for S(b) in
brain include a statistical model of Yablonskiy and coworkers (49), a random cylinder
model of Jespersen and coworkers (50), and Pearson distribution models of Poot and
coworkers (51). Such models may be of interest either because they are motivated by a
microscopic model of water diffusion in brain (49,50) or because they have desirable
numerical properties (51).

As a simple further illustration, consider the statistical model based on a gamma distribution
of diffusion coefficients. This corresponds to a multiple compartment model where the water
fraction density for a compartment with diffusion coefficient D′ is given by

(45)

with Γ(α) being Euler’s gamma function. The parameters α and β set the mean (α/β) and
variance (α/β2) of the gamma distribution, and normalizability requires that both α and β be
positive. A closely related model has been previously discussed by Jian and coworkers (52).
If the individual compartments are assumed to have Gaussian diffusion, the total signal
intensity is then

(46)

Expanding eqn (46) in powers of the b-value and comparing with eqn (36) leads to the
identifications α =3/K and β = 3/KD. The signal intensity for this model then takes on the
form

(47)

The requirement α > 0 means that the kurtosis must also be positive for this model. The
Taylor expansion for ln[S(b)] is

(48)
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Thus if b ≪ 27/(6DK), then the O(b3) term is dominated by the lower order terms and fits
for the model of eqn (47) will give similar results for the kurtosis as fits for the model of eqn
(37). It is also interesting to note that the radius of convergence for the expansion of eqn
(48) is 3/DK, which is exactly the upper bound of eqn (41).

So for sufficiently small b-values, models such as that of eqn (47) will be effectively
equivalent to the standard DKI fitting form of eqn (37), and eqn (37) may be preferable in
practice because of its simplicity and because it allows one to avoid nonlinear fitting
procedures (37). However, for larger b-values, alternative models may well provide a better
description of the signal intensity data, and they may be convenient and useful if high b-
value data are acquired.

A comparison of exemplary Gaussian, two-compartment, and gamma distribution diffusion
models is given in Fig. 4. For all three models, the parameters have been chosen so that D =
1 m μ2/ms. For the Gaussian model K = 0, while for both the two-compartment and gamma
distribution models K = 1. The water fraction for the fast diffusing component of the two-
compartment model is f = 2/3, which is similar to the values for brain listed in Table 1. The
water fraction densities F(D′) for all three models are given in Fig. 4a, and the
corresponding signal intensities and PDFs are given in Figs. 4b and 4c. Also shown in Fig.
4b is the DKI signal intensity of eqn (37) for D = 1 μm2/ms and K = 1. The DKI signal
intensity matches within 20% that for the two-compartment model up to a b-value of about
3400 s/mm2 and that for the gamma distribution model up to a b-value of about 2000 s/mm2.
The PDFs of Fig. 4c are for a diffusion time of t = 100 ms and assume isotropic diffusion.
Note that these are three-dimensional PDFs with dimensions of inverse volume cubed, rather
than one-dimensional PDFs for a particular diffusion direction. The PDF for the Gaussian
model was calculated from eqn (15), the PDF for the two-compartment model was
calculated from eqn (16) with N = 2, and the PDF for the gamma distribution model was
calculated by applying standard q-space imaging techniques (31) to the signal decay form of
Eq. (47).

One model that is inconsistent with DKI is the stretched-exponential, which has also been
applied to describe diffusion-weighted signal intensity data and uses the form

(49)

where DDC represents a “distributed diffusion coefficient” (53). For non-integer values of α,
ln[S(b)] has a singularity at b = 0 and the expansion of eqn (36) is not possible. So for this
model, neither the diffusion coefficient nor the diffusional kurtosis is well-defined.

DATA ACQUISITION
In order to fully characterize the directional dependence in anisotropic tissues, such as white
matter, for both the diffusion coefficient and the diffusional kurtosis, one must determine the
diffusion and kurtosis tensors. Since the diffusion tensor has 6 degrees of freedom and the
kurtosis tensor has 15 degrees of freedom, there are a total of 21 parameters to be estimated.
This implies that at least 22 diffusion-weighted signal intensity images must be acquired for
DKI, as there is also one degree of freedom associated with S0. It can be further shown that
there must be, in general, at least 3 distinct b-values and at least 15 distinct diffusion
(gradient) directions. Consistent with these basic constraints, a wide range of DKI data
acquisition protocols are possible. While it is valuable to consider a formal optimization of
the choice of b-values and directions (54), here we confine ourselves to recommendations
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based on our experience with performing DKI on a Siemens Trio 3T MRI scanner using a
body coil for transmission and a twelve-element phase array head coil for reception.

Early investigations of DKI utilized 6 b-values ranging from 0 to 2500 s/mm2 in increments
of 500 s/mm2 (4,5). An advantage of using more than 3 b-values is that this permits the
fitting model’s goodness-of-fit to be assessed. However, if the model (i.e., eqn (37)) is
considered valid, then we have found it more efficient and convenient to simply use the 3 b-
values of 0, 1000, and 2000 s/mm2 (37). This is a minimal extension of the usual DTI choice
of b = 0 and 1000 s/mm2, and we now consider a 3 b-value protocol to be the standard in our
laboratory for DKI of brain.

Although the minimum number of diffusion directions is 15, we typically use 30 directions
for two primary reasons. First, oversampling of the diffusion directions makes the final
estimates for the DKI metrics less sensitive to motion artifacts, such as those caused by
cardiac-induced brain pulsation. Second, by using more directions, one effectively averages
over some of the higher angular frequencies associated with the neglected terms of the series
expansion of eqn (36) for ln[S(b)]. In addition, 30 directions is a particularly convenient
choice, because the diffusion directions can then be chosen to lie on the vertices of a
truncated icosahedron (buckyball); this shape is an Archimedean solid with 60 vertices that
are all equivalent up to a rotation. Since the diffusion-weighted signal is invariant with
respect to a reflection of the diffusion directions through the origin, only half of these
vertices need be employed.

With these choices for b-values and directions, we are able to acquire acceptable whole
brain DKI data with a vendor supplied diffusion-weighted pulse sequence (software version:
VB13; sequence name: ep2d_diff) and the imaging parameters: voxel size = 3×3×3 mm3,
field of view = 222×222 mm2, acquisition matrix = 74×74, number of slices = 39, inter-slice
gap = 0, TE = 96 ms, TR = 5100 ms, averages = 1, partial Fourier encoding = 3/4, parallel
imaging acceleration (GRAPPA) factor = 2, and b = 0 averages = 10. The total acquisition
time for this protocol is 6 min and 37 s. The data are acquired in two blocks; a main block
(acquisition time = 5 min 26 s) with 3 b-values and 30 directions and a secondary block
(acquisition time = 1 min 1 s) with the 9 additional b = 0 images. The reason for this
partitioning is that the diffusion-weighted sequence is designed to give just one b = 0 image
per average so that this is all that is obtained from the main block. Altogether 10 b = 0
images are acquired, which allows for a sufficient amount of signal averaging. The relatively
short acquisition time is, in part, a consequence of the 100% duty cycle achievable for this
sequence on the Siemens Trio system.

In order to obtain a better resolution, we also utilize a similar protocol, but with 2.7×2.7×2.7
mm3 voxels, acquisition matrix = 82×82, 45 slices, TR = 5900 ms, and two averages for the
main block. The total acquisition time for this variant is 13 min 47 s.

The application of partial Fourier encoding in the above DKI protocols is helpful in reducing
TE, thereby increasing the effective signal-to-noise ratio (SNR) and reducing the acquisition
time. However, one recent study has reported significant artifacts in diffusion-weighted
images associated with partial Fourier encoding (55). These were shown to result from
motion induced by mechanical vibrations and could be eliminated by using full Fourier
encoding. Such artifacts have not been evident with our DKI protocols, but their origin
suggests that they may be strongly dependent on both imaging protocol details and the
particular mechanical properties of the MRI scanner.
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POST-PROCESSING
Just as for DTI, there are a variety of post-processing methods for DKI data. As an example,
we describe here one approach based on a 3 b-value data acquisition. It differs from a
previously proposed method (5) mainly in that it exploits the use of exactly 3 b-values and
in that it applies some new analytic formulae for K̄, K||, and K⊥.

Let us assume we have a set of images that, following the usual steps of co-registration,
averaging, and (optionally) smoothing, consist of one b =0 image and, for each of N (≥15)
diffusion directions, two b > 0 images. We then calculate for each direction, on a voxel-by-
voxel basis, a diffusion coefficient and a diffusional kurtosis by applying eqns (38)–(40)
with b1 = 0. For the two b > 0 b-values, b2 and b3, we assume b3 >b2.

Because of noise, motion, and/or imaging artifacts, it is likely that some fraction of the
calculated diffusion coefficients and diffusional kurtoses will lie outside a range considered
physically acceptable. We typically require that the diffusion coefficients be positive and
that the kurtoses lie between a predefined minimum value, Kmin, and a predefined maximum
value, Kmax. Any outlier values are systematically brought into this range. For example, if
the diffusion coefficient is calculated to be less than zero, then both the diffusion coefficient
and the kurtosis are reset to zero. In this manner, the effect of noise, motion, and imaging
artifacts on the final diffusion metric maps can be substantially reduced. The parameter Kmin
is always between −2 (the theoretical kurtosis minimum) and 0, with 0 being the standard
choice. The parameter Kmax is set to C/(b3D), where C ≥ 3 and D is the diffusion coefficient
for the given direction. The constant C is normally set to a value of 3 in order to be
consistent with the condition of eqn (41).

The next step is to calculate the diffusion tensor, for each voxel, using the N calculated
diffusion coefficients. This is performed exactly as for DTI by solving a linear system for
the tensor components (6). The diffusion tensor and eqn (9) are then applied to determine,

for each direction, a recalculated diffusion coefficient, , i = 1, 2, …, N, with the subscript
i indicating the direction. From these, a recalculated diffusional kurtosis is found from

(50)

so as to be consistent with the recalculated diffusion coefficients. Any of the recalculated
diffusion and kurtosis values outside the specified physical range for these parameters are
again corrected. This recalculation procedure helps to further suppress the effects of noise.

The kurtosis tensor is then found from the diffusion tensor and the set of N recalculated
kurtosis values by the solving a linear system (5). This linear system has N equations, which
determine the 15 degrees of freedom for the kurtosis tensor.

In order to calculate the diffusion metrics of most interest, it is convenient to first rotate each
voxel’s coordinate system so that the diffusion tensor is diagonal, with the eigenvalues λ1 ≥
λ2 ≥ λ3. As is well known (9), the MD and FA are then given by

(51)
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and

(52)

In addition, the axial and radial diffusivities can be calculated from

(53)

and

(54)

These four DTI metrics are not all independent since D ̄ = (D|| + 2D⊥)/3.

Similar, albeit more complicated formulae, can also be given for the mean, axial, and radial
kurtoses. For the MK, we have

(55)

where W ̃ijkl are components of the kurtosis tensor in the frame of reference that diagonalizes
the diffusion tensor,

(56)

and
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(57)

In eqns (56) and (57), RF and RD represent Carlson’s elliptic integrals (56, 57). The
derivation of eqns (55)-(57) may be accomplished by explicitly performing the surface
integral of eqn (6) with the help of eqns (9) and (10). The functions F1 and F2 have
removable singularities when two or more of the eigenvalues coincide; these should be
carefully treated in any numerical implementation.

For the axial kurtosis, the corresponding expression is

(58)

and for the radial kurtosis, it is

(59)

where

(60)

and

(61)

We emphasize again that this radial kurtosis differs from that defined by Hui and coworkers
(11). Note the removable singularities for G1 and G2.

By applying the eqns (55)–(61), DKI provides three metrics of diffusional non-Gaussianity,
in addition to the diffusion metrics routinely found with DTI. In principle, DKI can provide
even more new metrics, since the kurtosis tensor has 15 degrees of freedom. In fact, the
components of the kurtosis tensor in the frame of reference that diagonalizes the diffusion
tensor can all be regarded as rotational invariants and hence as possible metrics of interest.
Alternatively, one may define “eigenvalues” for the kurtosis tensor, which are also
candidates for useful diffusion measures (58–60). However, for isotropic diffusion, such as
is a good approximation for gray matter, the only two independent diffusion measures that
can be obtained with DKI are the MD and the MK.

Sample parametric maps obtained with the above procedure are shown in Fig. 5. The
diffusion-weighted imaging data for these maps were obtained on a Siemens 3T scanner
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using the protocol described under Data Acquisition with 2.7×2.7×2.7 mm3 voxels and two
averages. The subject gave informed consent and the protocol was approved by the New
York University School Medicine Institutional Review Board. Post-processing used Kmin =
0 and C = 3. In Fig. 6, the corresponding whole brain parametric distribution plots are
shown. Voxels with MD values above 1.5 μm2/ms were excluded since they were presumed
to contain substantial amounts of CSF. The distribution plot for the MK appears bimodal,
reflecting the different kurtoses for gray and white matter. The average MD and MK values
of Fig. 6 are similar to the ones listed in Table 1, even though they were derived using
different signal intensity models.

CONFOUNDING FACTORS
It is important to bear in mind that there are a number factors that can lead to errors in
diffusional kurtosis values as estimated with DKI, which are essentially the same those that
can lead to errors for DTI (61). These include inhomogeneous T2 relaxation, gradient pulse
duration effects, motion, imaging artifacts, perfusion, CSF contamination, inaccuracy of
fitting model, not fully accounting for imaging gradient contributions to b-values, and noise,
and the influence of these factors may depend on the diffusion time. So the moniker
“apparent” is well-deserved for both MRI-estimated diffusion coefficients and diffusional
kurtoses. Although the accuracy of DTI or DKI parameter estimates may be modest, the
precision can be relatively high for carefully performed experiments. The reproducibility the
DKI measures of non-Gaussianity is similar to that for standard DTI metrics.

For DKI, noise is particularly important due to the use of higher maximum b-values than for
DTI, and an inadequate SNR tends to cause overestimation of kurtosis values. At 3T, the
globus pallidus provides a useful test of the SNR. If the SNR is adequate, its MK value in
normal brain should be similar to that of other gray matter regions (see Table 1). However
with a low SNR, the globus pallidus MK can become relatively elevated because the SNR
effect is enhanced by the comparatively short T2 for the globus pallidus. Noise correction
procedures that have been developed for diffusion-weighted imaging (62) should be
beneficial for DKI, although this has yet to be systematically explored.

Perfusion affects diffusion-weighted imaging through the intravoxal incoherent motion
(IVIM) mechanism (63). The IVIM effect is usually small in normal brain, due to low blood
volume and a short T2 for venous blood, but this is potentially not the case for some brain
tumors with high blood volumes. IVIM alters the diffusion-weighted signal intensity
primarily for b-values in the range of 0 to 300 s/mm2 (64,65), and diffusion-weighted data
for this range should be examined when applying DKI to tumors. If IVIM effects are
substantial for low b-values, then a DKI analysis could be applied with a minimum b-value
set to approximately 300 s/mm2 in order to reduce the influence of perfusion on estimates
for DKI diffusion metrics.

APPLICATIONS
DTI is a mature imaging technique with several established brain applications, including
ischemic stroke, brain tumors and fiber tracking (66–69). DKI, on the other hand, is still in
an early stage of development, and its practical utility remains to be proven. However, since
DKI is an extension of DTI and enables the calculation all the usual DTI metrics, it is
natural to speculate that DKI will be useful for many of the same applications as DTI. The
potential advantage of DKI over DTI is that the added metrics quantifying diffusional non-
Gaussianity may supply new information to better characterize both normal and pathological
brain tissue. This may be particularly important in gray matter, since gray matter diffusion is
nearly isotropic which limits the value of the FA and other metrics of diffusional anisotropy
obtainable with DTI.

Jensen and Helpern Page 19

NMR Biomed. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Diffusional kurtosis metrics may complement diffusion coefficient metrics in at least two
general ways. First, the diffusional kurtosis can potentially be more sensitive to some tissue
properties, such as heterogeneity, or as illustrated by the Kärger model, water exchange.
Second, the diffusional kurtosis may be less sensitive to certain confounding effects and
thereby serve as a more robust biomarker. One study, for example, has found that the MK in
gray matter is altered substantially less by CSF contamination than either the MD or FA
(70).

A few studies have already given encouraging, if very preliminary, results for the
application of DKI to ischemic stroke (3,71,72), aging (42), Alzheimer’s disease (73),
schizophrenia (74), and attention deficit hyperactivity disorder (75). In addition, it has been
shown that the extra information provided by DKI can be used to resolve intravoxel fiber
crossings (38), which is not possible with DTI; as a consequence, DKI could be used to
improve upon standard DTI-based fiber tracking.

Key advantages of DKI relative to other methods of quantifying diffusional non-Gaussianity
are that its diffusion metrics are model independent and that it can be readily applied to
clinical scanning. Q-space imaging methods can, in principle, calculate the same diffusion
metrics as DKI, but the acquisition times and hardware requirements are substantially higher
(32). In particular, q-space imaging methods typically utilize much larger maximum b-
values than DKI. Multiple compartment models often provide a good fit to diffusion-
weighted signal intensity data (16), but the interpretation of the model parameters may not
always be clear (40). However, multiple compartment models are compatible with DKI and
can be used to calculate the diffusional kurtosis as suggested by eqn (20). Stretched-
exponential fits to diffusion-weighted signal intensity data (53), in contrast, are inconsistent
with DKI and do not lead to meaningful kurtosis estimates.

CONCLUSION
DKI is a clinically feasible extension of DTI that allows for quantification of diffusional
non-Gaussianity. With DKI, one obtains all the usual DTI diffusion metrics plus additional
metrics related to the diffusional kurtosis. These new metrics can help to better characterize
the water diffusion properties of brain tissue and, in particular, are sensitive to diffusional
heterogeneity. Implementation of DKI is similar to DTI, except that at least 3 distinct b-
values and 15 distinct diffusion directions are needed. A whole brain DKI dataset with
3×3×3 mm3 isotropic voxels can be acquired with clinical 3T MRI scanners in less than 7
min.
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Abbreviations

CSF cerebrospinal fluid

DKI diffusional kurtosis imaging

DTI diffusion tensor imaging

FA fractional anisotropy

FWM frontal white matter

GM gray matter

GP globus pallidus

GRAPPA generalized autocalibrating partially parallel acquisitions

ICWM internal capsule white matter

IVIM intravoxal incoherent motion

MD mean diffusivity

MK mean kurtosis

PDF probability distribution function

PU putamen

SNR signal-to-noise ratio

TH thalamus

WM white matter
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Figure 1.
Time dependence of the diffusion coefficient and diffusional kurtosis for the Kärger model.
The diffusion coefficient is independent of the diffusion time, but the kurtosis decreases on a
time scale set by the water exchange time τ.
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Figure 2.
Comparison of DTI and DKI fitting models. For DTI, the logarithm of diffusion-weighted
signal intensity (circles) as a function of the b-value is fit, for small b-values, to a straight
line. In brain, this fit is often based on the signal for b = 0 and b = 1000 s/mm2. For DKI, the
logarithm of the signal intensity is fit, for small b-values, to a parabola. In brain, this fit may
be based on the signal for b = 0, b = 1000, and b = 2000 s/mm2.
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Figure 3.
Plots showing the ratio of DKI estimates for (a) the diffusional kurtosis and (b) the diffusion
coefficient to the exact values for a two-compartment diffusion model with K = 1. For this
model, the water fraction f of the fast diffusing component can vary from 0 to 0.75, as
follows from eqn (26). The DKI fits are based on eqns (43) and (44). The dotted lines are
references to indicate the ideal estimate ratio of one. Plot (a) shows that the DKI estimate for
the kurtosis is accurate to within about 20% if f ≥ 0.52 and Dbmax = 2, and plot (b) shows
that the DKI estimate for the diffusion coefficient is accurate to within about 7% if Dbmax =
2. As indicated by Table 1, f ≈ 0.6 to 0.7 for normal brain, suggesting that DKI with Dbmax
= 2 should be reasonably accurate. As a comparison, also shown is (c) the ratio of the DTI
estimate for the diffusion coefficient to the exact value for the same two-compartment
model. The DTI fit is calculated from eqn (35) with b1 = 0 and b2 = bmax. The DTI estimate
is accurate to within about 20% if Dbmax = 1.
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Figure 4.
Plots showing (a) the water fraction densities for Gaussian, two-compartment, and gamma
distribution diffusion models together with the logarithms of the corresponding (b) signal
intensities and (c) PDFs. In (a), the vertical lines for the Gaussian and two-compartment
models indicate Dirac delta functions with weights proportional to the heights of the lines.
For the two-compartment model, the water fraction for the fast diffusing component is f =
2/3. All three models have a diffusion coefficient of D = 1 m μ2/ms, while the Gaussian
model has a diffusional kurtosis of K = 0 and the two-compartment and gamma distribution
models both have K = 1. Also shown in (b) is the DKI signal intensity of eqn (37) for D = 1
μm2/ms and K = 1, which agrees relatively well with both the two-compartment and gamma
distribution models up to b ≈ 2000 s/mm2 and with the two-compartment model up to b ≈
3400 s/mm2. The PDFs in (c) assume isotropic diffusion with a diffusion time of t =100 ms,
which yields a root-mean-square diffusion length of . The PDFs have been
normalized by multiplying with a volume element of (100 μm)3. The PDFs for the two-
compartment and gamma distribution models both deviate significantly from the Gaussian
PDF, as is reflected by their nonzero kurtoses.
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Figure 5.
DKI diffusion metric maps for a single axial slice together with a T2-weighted (b = 0) image
from one normal subject. The diffusion-weighted data were acquired at 3T with b-values of
0, 1000, and 2000 s/mm2. The maps for FA, D ̄, D ||, and D⊥ are similar to those typically
obtained with DTI. The maps for K̄, K||, and K⊥ provide additional information that quantify
diffusional non-Gaussianity. The calibration bars for the diffusivities are in units of μm2/ms,
while those for the FA and kurtoses are dimensionless.
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Figure 6.
Whole brain distribution plots for DKI diffusion metrics for the same subject as in Fig. 4.
The distributions were calculated from 45 axial slices each with a thickness of 2.7 mm.
Voxels with D ̄ > 1.5 μm2/ms were excluded, as they likely contained high amounts of CSF.
Each plot was based on 53,881 voxels, corresponding to a total volume of 1060.5 cm3, and a
bin size of 0.02 (in units of μm2/ms for the diffusivities). The values in the legends indicate
average values ± standard deviations.

Jensen and Helpern Page 30

NMR Biomed. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jensen and Helpern Page 31

Ta
bl

e 
1

Pa
ra

m
et

er
s f

or
 tw

o-
co

m
pa

rtm
en

t m
od

el
 o

bt
ai

ne
d 

fr
om

 fo
ur

 n
or

m
al

 v
ol

un
te

er
s.

R
eg

io
n

D
1 (
μm

2 /m
s)

D
2 (
μm

2 /m
s)

f
D

 (μ
m

2 /m
s)

K
f b

G
M

/C
SF

1.
47

9 
± 

0.
16

6
0.

46
6 

± 
0.

01
7

0.
49

0 
± 

0.
01

2
0.

96
2 

± 
0.

08
3

0.
83

1 
± 

0.
14

0
0.

78
3 

± 
0.

02
9

G
M

/W
M

1.
14

2 
± 

0.
10

6
0.

33
8 

± 
0.

02
7

0.
62

2 
± 

0.
03

8
0.

83
8 

± 
0.

07
3

0.
64

9 
± 

0.
11

7
0.

82
2 

± 
0.

02
6

TH
1.

32
0 

± 
0.

16
4

0.
27

1 
± 

0.
04

0
0.

61
7 

± 
0.

06
9

0.
91

8 
± 

0.
12

5
0.

92
5 

± 
0.

24
8

0.
76

4 
± 

0.
04

8

PU
/G

P
1.

06
9 

± 
0.

03
9

0.
25

7 
± 

0.
02

6
0.

64
8 

± 
0.

02
8

0.
78

3 
± 

0.
03

5
0.

73
6 

± 
0.

09
7

0.
80

3 
± 

0.
02

1

FW
M

1.
15

5 
± 

0.
04

6
0.

12
5 

± 
0.

01
4

0.
69

9 
± 

0.
05

0
0.

84
5 

± 
0.

06
1

0.
93

8 
± 

0.
20

6
0.

76
2 

± 
0.

04
0

IC
W

M
1.

21
5 

± 
0.

02
4

0.
18

3 
± 

0.
00

9
0.

63
7 

± 
0.

02
0

0.
84

0 
± 

0.
02

6
1.

04
6 

± 
0.

08
1

0.
74

1 
± 

0.
01

5

V
al

ue
s f

or
 D

1,
 D

2,
 a

nd
 f 

w
er

e 
ta

ke
n 

fr
om

 R
ef

. 1
6 .

 V
al

ue
s f

or
 D

, K
, a

nd
 f b

 w
er

e 
ca

lc
ul

at
ed

 u
si

ng
 e

qn
s (

22
), 

(2
3)

, a
nd

 (2
6)

. G
M

/C
SF

, g
ra

y 
m

at
te

r n
ex

t t
o 

ce
re

br
os

pi
na

l f
lu

id
; G

M
/W

M
, g

ra
y 

m
at

te
r n

ex
t t

o
w

hi
te

 m
at

te
r; 

TH
, t

ha
la

m
us

; P
U

/G
P,

 p
ut

am
en

 a
nd

 g
lo

bu
s p

al
lid

us
; F

W
M

, f
ro

nt
al

 w
hi

te
 m

at
te

r; 
IC

W
M

, i
nt

er
na

l c
ap

su
le

 w
hi

te
 m

at
te

r.

NMR Biomed. Author manuscript; available in PMC 2011 August 1.


