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Diffusion magnetic resonance (MR) imaging is evolving
into a potent tool in the examination of the central nervous
system. Although it is often used for the detection of acute
ischemia, evaluation of directionality in a diffusion mea-
surement can be useful in white matter, which demon-
strates strong diffusion anisotropy. Techniques such as
diffusion-tensor imaging offer a glimpse into brain micro-
structure at a scale that is not easily accessible with other
modalities, in some cases improving the detection and
characterization of white matter abnormalities. Diffusion
MR tractography offers an overall view of brain anatomy,
including the degree of connectivity between different re-
gions of the brain. However, optimal utilization of the wide
range of data provided with directional diffusion MR mea-
surements requires careful attention to acquisition and
postprocessing. This article will review the principles of
diffusion contrast and anisotropy, as well as clinical appli-
cations in psychiatric, developmental, neurodegenerative,
neoplastic, demyelinating, and other types of disease.
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Described by Le Bihan et al (1) in
1986, diffusion-weighted (DW)
imaging has rapidly been adopted

into the radiologic armamentarium. The
most common application is the early
detection of ischemia, as manifested by
restricted diffusion in a territorial distri-
bution (2). Clinically, DW imaging is
nearly ideal for this purpose: It is highly
sensitive, highly specific, and noninva-
sive and provides a diagnosis within the
therapeutic window (3). However, the
scope of diffusion imaging extends be-
yond the detection of acute ischemia. By
incorporating directionality into a DW
measurement, diffusion-tensor (DT) im-
ages can be obtained. Rather than probe
cellular pathophysiology, DT imaging pro-
vides a means of investigating tissue mi-
crostructure and brain anatomy. This ar-
ticle will review the principles of diffusion
contrast and anisotropy, as well as clinical
applications in psychiatric, developmen-
tal, neurodegenerative, neoplastic, demy-
elinating, and other types of disease.

Principles

Diffusion contrast is based on the self-
diffusion of water molecules in tissue
(1,4). Although a variety of sequences are
now used to acquire DW images, all DW

sequences include two equal and oppos-
ing motion-probing gradients. As a result
of being subjected to opposing gradients,
the signal from a voxel will decrease expo-
nentially as a function of the strength of
the gradients (G), the duration of the gra-
dients (�), the amount of time passing
between the gradients (�), and the diffu-
sion coefficient of water molecules in the
voxel (D). The first three factors do not
vary from voxel to voxel and can be quan-
tified collectively with a b value, defined
as �2G2�2(� � �/3), where � is the gyro-
magnetic constant. Only intravoxel diffu-
sion (D) varies from voxel to voxel, and
thus contrast in a DW image is a function
of the apparent diffusion coefficient. The
relative contributions of T2 contrast and
diffusion contrast in the DW signal (S)
are governed by the Stejskal-Tanner
equation, S � S0 � e�bD, where S0 is the
signal measured without motion-probing
gradients that is used to form the image
with a b value of 0 sec/mm2 (hereafter, b0
image).

DW imaging is only sensitive for mo-
tion of water molecules that is aligned
with the motion-probing gradients. In
gray matter, changing the direction of the
gradient does not substantially affect the
signal since diffusion is roughly isotropic
(equally likely in all directions). On the
other hand, diffusion in white matter is
often strongly anisotropic and occurs
maximally in the same orientation as
white matter tracts (Fig 1) (5). Anisotro-
pic diffusion is an effect of the microstruc-
tural properties of the voxel, and de-
creased anisotropy is a common feature
of neuronal abnormalities. The relation-
ship between tissue microstructure and
anisotropy is probably multifactorial: Evi-
dence is mounting for the hypothesis that
the integrity of the myelin sheath and ax-
onal membrane is reflected by restriction
of diffusion orthogonal to the fiber,
whereas the integrity of intra-axonal
structures (such as microtubules) is posi-
tively correlated with diffusion parallel to
the fiber (6–12). However, anisotropy
may also be decreased from nonspecific
abnormalities such as vasogenic edema.

The tensor model was developed to
characterize diffusion in anisotropic vox-
els, where it cannot be represented by a
single value due to its directional depen-

dence. Several measures may be derived
from a tensor. For example, a three-di-
mensional principal eigenvector indicates
the direction of greatest diffusion within a
voxel. Likewise, scalar (directionless) eig-
envalues signify the magnitude of the dif-
fusivities along the principal eigenvector
and two orthogonal minor eigenvectors.

In the tensor model, it is assumed that
a water molecule undergoing diffusion for
a limited time will generally be con-
strained to a volume known as the diffu-
sion ellipsoid. This volume is spherical in
voxels with isotropic diffusion, where wa-
ter diffusion is completely symmetric. In
contrast, voxels with anisotropic diffusion
have oblate (flattened) or prolate (elon-
gated) diffusion ellipsoids, depending on
the relative magnitudes of the eigenval-
ues. Although it is possible to produce an
image that represents the diffusion ellip-
soid in every voxel, interpreting such an
image is cumbersome. For this reason,
properties of the tensor are often ab-
stracted by various indices to produce
gray-scale or color maps. For example,
the trace is a simple index of diffusion
determined by the sum of the principal
diffusivities. Similarly, fractional anisot-
ropy (FA) is an index ranging from 0
(isotropic) to 1 (maximally anisotropic)
and is defined as by using the following
equation:

FA � �2
3 �

���1 � ��	2 � ��2 � ��	2 � ��3 � ��	2

�1
2 � �2

2 � �3
2

for eigenvalues �1, �2, and �3 and mean
diffusivity ��. Anisotropy maps are often
color encoded to represent directional
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Essentials

� Diffusion-tensor (DT) imaging is
capable of demonstrating abnor-
malities in a variety of disorders,
ranging from multiple sclerosis to
neurodegenerative disease, poten-
tially with higher sensitivity and
specificity than conventional imag-
ing.

� The emerging field of clinical trac-
tography is poised to make sub-
stantial contributions to preopera-
tive planning in neuro-oncology
and epilepsy.

� Those who are armed with a
sound understanding of the prin-
ciples of DT imaging and tractog-
raphy will likely find DT imaging
to be a useful tool in investigating
the relationships between struc-
ture and function in the brain.
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information regarding the principal eig-
envector (Fig 2). Taken together, a
combination of these maps provides a
useful compromise between ease of in-
terpretation and clinical utility. Even at
low resolution, they can be used to seg-
ment white matter tracts by visual in-
spection, thus allowing a radiologist to
evaluate “white-white” contrast.

Acquisition

To construct a map of apparent diffu-
sion coefficients, images must be ob-
tained by using at least two b values.
Typically, a DW image with a b value
ranging from 700 to 1200 sec/mm2 is
used with an accompanying b0 image
(13–17). The diffusivity trace map is de-
rived from the three principal diffusivi-
ties and requires four measurements: a
b0 image and DW images with motion-
probing gradients applied in three or-
thogonal directions (14). To produce
anisotropy maps or perform tractogra-
phy, the full tensor must be determined
for each voxel. In theory, this can be
accomplished by using b0 image and
DW images acquired with six different
motion-probing gradients. In practice,
however, more than six DW images are
often obtained to improve reliability, ei-
ther by repeating the acquisition or by
using additional motion-probing gradi-
ents. The optimal number of motion-
probing gradients and their orientation
are under debate, but diffusion-encod-
ing schemes making use of 12 or more
motion-probing gradients are not un-
usual (14,18,19).

The signal from tissue that under-
goes gross motion may be misinter-
preted as increased diffusivity, there-
fore scan times are generally kept short
by using large voxel sizes and fast acqui-
sition techniques such as echo-planar
imaging (20). However, DT imaging
with spin-echo echo-planar imaging and
(less commonly used) gradient-echo
echo-planar imaging is associated with
several forms of artifacts. Some, such as
eddy current distortion, are amenable
to correction during postprocessing and
can further be reduced with a modified
acquisition (21–27). Likewise, artifacts
induced with cardiac pulsation can be

decreased with cardiac gating (28). Ce-
rebrospinal fluid, which has a very high
apparent diffusion coefficient, can con-
taminate measurements in nearby vox-
els; this can be addressed by decreasing

voxel size or using fluid-attenuated in-
version-recovery DW imaging (29–33).

On the other hand, susceptibility ar-
tifact at air-bone interfaces in the skull
is more difficult to correct. Single-shot

Figure 1

Figure 1: Multiple transverse DW images (b value, 800 sec/mm2; repetition time msec/echo time msec,
6500/99; matrix, 128 � 128; field of view [FOV], 220 � 220 mm; section thickness, 3 mm) of same brain
slice with diffusion gradients applied in different directions demonstrate anisotropic diffusion. Signal inten-
sity of white matter varies with direction of diffusion gradients, most conspicuously in corpus callosum (ar-
rows). Signal is strongest when diffusion gradient is oriented orthogonally to white matter fiber tracts, as in
two panels on right.

Figure 2

Figure 2: Common types of coronal DT images (12 directions; b value, 800 sec/mm2; 6500/99; ma-
trix, 128 � 128; FOV, 220 � 220 mm; section thickness, 3 mm) in a healthy subject. A, Mean diffusivity
maps, B, fractional anisotropy maps, and C, color-encoded maps of the principal eigenvector (red, left to
right; blue, cranial to caudal; green, anterior to posterior).
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stimulated-echo acquisition mode, or
STEAM, MR imaging has shown prom-
ise in reducing susceptibility artifact
(34). Several multi-shot diffusion proto-
cols have also been used to reduce sus-
ceptibility artifact without introducing
phase errors from subject motion (35).
For example, line-scan imaging is rela-
tively insensitive to motion, and al-
though used mainly in the spine, it has
also been applied to DT imaging of the
brain (36,37). Alternately, navigator in-
formation can be acquired during a
multi-shot sequence to account for mo-
tion during reconstruction. One such
approach is periodically rotated over-
lapping parallel lines with enhanced
reconstruction, or PROPELLER, DT
imaging, which acquires data in a ro-
tating blade of k-space (38–40). Simi-
larly, self-navigated interleaved spiral,
or SNAILS, DT imaging acquires data
through a spiral in k-space (41). In
both cases, the oversampled center of
k-space provides the navigator data.
Finally, parallel imaging has proved
useful in reducing susceptibility arti-
fact in both single-shot and multi-shot
acquisitions (42–44).

Although the tensor model can rep-
resent most white matter regions, it
does not adequately describe voxels
with crossing, diverging, or converging
white matter tracts (45–47). These fiber

Figure 3

Figure 3: (a) Abstract representation of tensors in a 5 � 5 grid, with two regions of interest (ROIs) (red and
green). Strongly anisotropic voxels are dark blue, whereas weakly anisotropic voxels are light blue. (b) Streamline
tractography propagates a fiber tract in the direction of principal eigenvector, preserving voxel-to-voxel directional
information. (c) Probabilistic tractography produces a likelihood map of the diffusion path between two ROIs. Rather
then delineate a single best path, the likelihood map shows the probability that a particle diffusing between ROIs
traverses each voxel. Coronal images of internal capsule in healthy adults demonstrate (d) diffusion ellipsoid
maps (principal eigenvector is denoted by color: red, left to right; blue, cranial to caudal; green, anterior
to posterior), (e) streamline tractography of corticospinal tract (red), and (f) probabilistic tractography
of corticospinal tract (color denotes index of probability that voxel is included in tract) (12 directions;
b value, 800 sec/mm2; 6500/99; matrix, 128 � 128; FOV, 220 � 220 mm; section thickness, 3 mm).

Figure 4

Figure 4: (a) Tractography of corticospinal tract performed by iteratively extending streamlines (green) from a
seed ROI in the direction of principal eigenvector by using the fiber assignment by continuous tracking, or FACT,
algorithm (63,64). Images are superimposed on sagittal fractional anisotropy map. (b) Volume-rendered probability
map of corticospinal tract produced by generating several thousand tracts from each seed voxel (69). Rather than
follow the same path, since each track is extended it may overlap or depart from the rest at random. The probability of
deviating from principal eigenvector in a traversed voxel reflects its diffusion properties, with increased divergence
in voxels of low anisotropy. Probability map is formed from superposition of all tracts from all voxels in the seed ROI
tract (color denotes index of probability that voxel is included in tract) (DT imaging: 12 directions; b value,
800 sec/mm2; 6500/99; matrix, 128�128; FOV, 220�220 mm; section thickness, 3 mm).

Figure 5

Figure 5: Tractography (12 directions; b value,
800 sec/mm2; 6500/99; matrix, 128 � 128; FOV,
220 � 220 mm; section thickness, 3 mm) of a
healthy right-handed subject demonstrates fronto-
temporal fiber tracts corresponding to arcuate
fasciculus (red), superimposed on a sagittal b 0
image. This white matter tract connects motor and
receptive speech centers and has greater relative
fiber density in the left hemisphere.
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tracts theoretically could be resolved
with improved voxel resolution, per-
haps by using high-field-strength imag-
ing (48). Presently, however, multiple
directions of diffusion within a single
voxel are modeled with higher order
vectors (49–51). Higher order methods
generally involve examining q-space,
which contains the Fourier transform of
diffusion properties just as k-space in
conventional MR imaging contains the
Fourier transform of magnetic proper-
ties (52–54). DT imaging is based on a
very limited sampling of q-space, and
the resulting ellipsoids rely on several
assumptions regarding the properties of
diffusion in a voxel (49,55). High angu-
lar resolution diffusion imaging, or
HARDI, methods, while more time con-
suming than DT imaging, use increased
sampling in q-space to produce an im-
proved diffusion profile (49,56–58). Dif-
fusion spectrum imaging, for example,
uses data throughout all of q-space to
reconstruct a complete diffusion profile
(50,59). In contrast, q-ball imaging sam-
ples points that are arranged on the sur-
face of a sphere in q-space, reducing
acquisition times by focusing on the dif-
fusion parameters that are most rele-
vant to tractography. Q-space tech-
niques have proved useful in resolving
multiple white matter orientations in re-
gions such as the centrum semiovale,
where DT imaging generally performs
poorly (60–62). However, their steeper
technical requirements have limited
their clinical use.

Once fiber orientations have been
determined for a sufficient number of
voxels, tractography can be used to
draw inferences regarding the overall
geometry of white matter in the brain.
A wide variety of algorithms are used
for this purpose (Fig 3). Generally,
streamline (deterministic) tractography
connects neighboring voxels by propa-
gating the ends of fiber tracts from user-
defined seed voxels until termination
criteria are met, such as excessive angu-
lar deviation of the fiber tracts or sub-
threshold voxel anisotropy (46,63–68).
Although the seed voxels define the ori-
gin of all fiber tracts under examination,
additional regions may be designated to
restrict the output to a tract of interest.

For instance, tractography of the corti-
cospinal tract may include fiber tracts if
and only if they pass through both the
internal capsule and the cerebral pe-
duncles (Fig 3a). Tract selection and
seed placement are typically highly in-
teractive, which can result in strong op-
erator dependence.

Other algorithms emphasize quan-
tification of the probability of connec-
tion between two points, sometimes
omitting the linear structures gener-
ated in streamline tractography (Fig
3b) (69,70). To improve the depiction
of regions of fiber crossing, tractogra-
phy algorithms have been developed

that propagate a wavefront of varying
size rather than a line, allowing fiber
tracts to diverge and recombine (61,71–
73). Probabilistic (distributed) tractog-
raphy produces a global map that may
be analyzed independently from other
DT imaging measures; the value of each
voxel in the map is the likelihood that
the voxel is included in the diffusion
path between two ROIs (Fig 4). Proba-
bilistic methods are especially useful for
tracking through regions of lower an-
isotropy, including gray matter (69).

Although tractography corresponds
well to classic neuroanatomy, it is vexed
by the problem of validation: the degree

Figure 6

Figure 6: Images in 17-year-old boy with left-side motor seizure. A, Equivocal finding (arrow) on
transverse T2-weighted image(4000/100; matrix, 352 � 352; FOV, 230 � 230 mm; section thickness, 5
mm). B, Transverse fast inversion recovery with myelin suppression image (repetition time msec/echo time
msec/inversion time msec, 4500/22/300; section thickness, 3 mm; matrix, 256 � 256; FOV, 230 � 230 mm)
shows focal cortical dysplasia in right precentral gyrus (arrow). C, Transverse fluorine 18 fluorodeoxyglucose
positron emission tomography reveals decreased metabolism in right precentral area. D, Whole-brain white
matter tractography (blue-green) depicts decreased subcortical fiber connectivity in right precentral area
and adjacent cortex (DT imaging: 32 directions; six-channel sensitivity encoding; sensitivity encoding
factor of two; b value, 600 sec/mm2; 6599 – 8280/70; matrix, 96 � 96; FOV, 220 � 220 mm; section
thickness, 2.3 mm).

REVIEW: Brain Diffusion-Tensor MR Imaging and Tractography Nucifora et al

Radiology: Volume 245: Number 2—November 2007 371



to which its results differ from those
of anatomic methods such as dissec-
tion (75). A one-to-one correspondence
would be optimal, as tractography could
then serve as a substitute for other
methods. But even divergence between
tractography and traditional anatomic
methods would not necessarily diminish
its utility; if its findings in disease are
reproducible, then tractography evi-
dently measures something that varies
according to pathologic features and
therefore may be valuable. Thus, it is
encouraging to find that tractography
has properties appropriate to useful
clinical and research tools, such as high
interobserver and intraobserver reli-
ability (76,77).

Analysis

DT imaging produces numerous mea-
sures ranging in dimension from scalars
to tensor fields, which calls for a wide
variety of statistical techniques to per-
form group analyses. Specific methods
for the statistical analysis of full tensors
remain under development (78,79).
Currently, scalar DT imaging measures
(including but not limited to anisotropy,
diffusivity, and probability maps) are
most commonly compared by using his-
togram, ROI, or voxel-based analysis.
To establish confidence intervals in
these measures, bootstrap methods re-
peatedly sample data from multiple ac-
quisitions (80–83).

Histogram analysis does not require
any presuppositions regarding anatomy
or pathologic features, making it suit-
able for widespread diseases such as
multiple sclerosis or small vessel ische-
mic disease (74,84–86). The brain is
considered globally, and the frequencies
of particular DT imaging values in dif-
ferent individuals are evaluated. Conse-
quently, only global conclusions can be
drawn regarding the composition of
white and/or gray matter, which may be
a disadvantage when considering le-
sions in the brain, as their effects are
often dependent on location.

ROI analysis is used to test hypothe-
ses regarding specific regions where dis-
ease is suspected. If motor symptoms
are present, for example, DT imaging

Figure 7

Figure 7: Images in 18-year-old woman with band heterotopia. Transverse T2-weighted (left) (4000/100;
matrix, 352 � 352; FOV, 230 � 230 mm; section thickness, 5 mm) and T1-weighted (middle) (450/12; ma-
trix, 256 � 256; FOV, 230 � 230 mm; section thickness, 5 mm) images demonstrate thick band heterotopia
(arrow) with homogeneous signal intensity to gray matter, a so-called double cortex. This band shows high
anisotropy (arrow) on fractional anisotropy map (right), suggesting its radial orientation and arrested neuro-
nal migration (32 directions; six-channel sensitivity encoding; sensitivity encoding factor of two; b value,
600 sec/mm2; 6599 – 8280/70; matrix, 96 � 96; FOV, 220 � 220 mm; section thickness, 2.3 mm). It is also
consistent with passage of intact white matter tracts through the abnormality.

Figure 8

Figure 8: Tractography in
patient with periventricular leu-
komalacia demonstrates degener-
ation of posterior thalamic radia-
tion (PTR), with intact fiber tracts
(arrows) in the posterior limb of
internal capsule (ICPL) (six direc-
tions; b value, 600 sec/mm2;
5000 – 6000/92; matrix, 64 � 51;
FOV, 120 � 96 mm; section thick-
ness, 3 mm). lv � lateral ventricle,
tv � third ventricle. (Reprinted,
with permission, from reference
131.)
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measures may be calculated only in vox-
els believed to contain the internal cap-
sule. Any significant differences that are
detected can be ascribed to the ROI,
thus offering a possible correlation
between structure and function. Po-
tential pitfalls include bias in ROI se-
lection, which can partially be ad-
dressed by automation (87–90). In ad-
dition, ROIs drawn on DT images may
suffer from artifact and decreased res-
olution, whereas those drawn on higher
resolution images must be accurately
registered to the DT images. Intersub-
ject registration can be used to reduce
error by standardizing ROIs on every
subject. However, registration of full
tensor datasets must be performed
carefully; in registered tensor maps, un-
like scalar maps, corresponding voxels
do not have the same values since the
operations used to map voxels during
registration should change the orienta-
tion of the tensors. For instance, a
shear deformation should cause tensors
to realign in the direction of the shear.
Thus, conventional registration should
be followed by proper reorientation of
tensors (91–93).

Finally, DT imaging measures can
be compared on a voxel-by-voxel basis
to localize differences between groups
without a priori assumptions regarding
the location of pathologic features (al-
though voxels near each other are often
assumed to be correlated to mitigate the
problem of multiple comparisons) (94).
Voxel-based analysis is usually less op-
erator dependent and more easily auto-
mated than ROI analysis, but it can only
be performed after intersubject regis-
tration (91–93). Statistical packages
originally developed for blood oxygen
level–dependent (BOLD) functional MR
imaging have been adopted for DT im-
aging measures, including scalar maps
of anisotropy and diffusivity (95). Nev-
ertheless, it is important to be aware of
the limitations of these methods when
interpreting results, particularly when
statistically significant voxels or clusters
are detected that do not have a reason-
able anatomic correlate (96,97).

Tractography is still in its infancy,
and no consensus has emerged re-
garding the best means of analyzing its

output. It is often used to segment
white matter into specific tracts; the
corpus callosum, for example, has
been segmented according to the cor-
tical destination of its fiber tracts, with
correlation of callosal lesions to clini-
cal presentation (98,99). One of the
more promising methods of analysis is
to examine a DT imaging measure
such as anisotropy along the course of
a selected fiber tract, which can either

be performed during tractography or
by defining a specific reference frame
afterward (100–102). Finally, proba-
bilistic tractography has been used to
generate a connectivity matrix de-
scribing the relationships between ev-
ery pair of voxels; by examining pat-
terns within the matrix, clusters of
white matter with homogeneous con-
nectivity can be determined (103). It
is important to bear in mind that trac-

Figure 9

Figure 9: A, Transverse T2-weighted image (3000/20, 80) demonstrates alobar holoprosence-
phaly. B, Transverse color-encoded DT image depicts absence of corticospinal tracts (red, left to right;
blue, cranial to caudal; green, anterior to posterior). C, Transverse color-encoded DT image depicts normal
corticospinal tracts in healthy subject (DT imaging: six directions; b value, 600 sec/mm2; 5000–6000/92; matrix,
64�64; FOV, 120�120 mm; section thickness, 3 mm). (Reprinted, with permission, from reference 133.)

Figure 10

Figure 10: Transverse color-encoded DT images (red, left to right; blue, cranial to caudal; green, anterior
to posterior) of middle cerebellar peduncle (arrows) in patients with alobar (right), semilobar (middle), and
lobar (left) holoprosencephaly demonstrate manifestation of increasing severity of holoprosencephaly (six
directions; b value, 600 sec/mm2; 5000 – 6000/92; matrix, 64 � 64; FOV, 120 � 120 mm; section thickness,
3 mm). (Reprinted, with permission, from reference 133.)
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tography findings can be affected by
any process that alters diffusion an-
isotropy, including those external to
the axon such as vasogenic edema.
Thus, interpretation of tractography
requires an appreciation of the dis-
tinction between anatomy and physiol-
ogy.

Applications

Normal Brain
All of these types of analyses have been
used to demonstrate the relationship
between white matter structure and
function. For example, IQ has been pos-
itively correlated with anisotropy in

white matter association tracts (104).
Reading ability has been correlated with
anisotropy of the left temporoparietal
white matter, where tractography has
localized the white matter circuitry con-
necting Broca and Wernicke language
areas (Fig 5) (105–110). In visual path-
ways, increased anisotropy has been
correlated with improved reaction time,
and tractography can be used to dem-
onstrate topographically ordered fiber
tracts in normal subjects (intriguingly,
these fiber tracts are disorganized in the
blind) (111–114).

Tractography findings have shown
excellent correlation with functional
data. For example, probabilistic trac-
tography has been used for segmenta-
tion of the thalamus according to its cor-
tical connectivity, which corresponds
well to segmentation of the thalamus at
BOLD functional MR imaging (69,115).
Likewise, probabilistic tractography of
the medial frontal cortex has demon-
strated an anatomic boundary that cor-
responds to the functional boundary be-
tween supplemental motor cortex and
presupplemental motor cortex (103).
Throughout the brain, regions with
similar tractographic features tend to
be functionally co-activated, infor-
mally validating the axiom that “neu-
rons that fire together, wire together”
(103,115,116).

Developmental Abnormalities
In premature newborns, increased an-
isotropy is found in developing cortical
gray matter rather than in unmyelinated
white matter, and cortical anisotropy
steadily decreases during the first few
months of life (99,117–125). This likely
reflects the radial anisotropy of the glial
scaffolding that guides the migration of
neurons to the cortex (126,127). Unsur-
prisingly, a spectrum of migrational ab-
normalities and other developmental
brain disorders has been demonstrated
with DT imaging. For example, DT im-
aging has identified cortical dysplasia
with greater sensitivity than did conven-
tional MR imaging (Fig 6) (128). In pa-
tients with band heterotopias, tractog-
raphy has been used to suggest potential
connectivity between regions of hetero-
topic gray matter and normal cortex

Figure 11

Figure 11: Tractography (12 directions; b value, 800 sec/mm2; 6500/99; matrix, 128 � 128; FOV, 220 �
220 mm; section thickness, 3 mm) in (a) a patient with amyotrophic lateral sclerosis and (b) a healthy subject.
Tractography is superimposed on sagittal b0 image. In the right(R) hemisphere, descending fiber tracts con-
necting the cortex and brainstem are shown in purple and the corticospinal tract is shown in green. The ratio of
the number of fiber tracts in corticospinal tract to the total number fiber tracts is decreased in amyotrophic
lateral sclerosis. (Reprinted, with permission, from reference 145.)

Figure 12

Figure 12: A, Transverse b0 image demonstrates focus of signal abnormality (arrow) in the right corona
radiata in 38-year-old woman with multiple sclerosis. B, Transverse fractional anisotropy map of lesion (ar-
row) demonstrates decreased anisotropy (DT imaging: 12 directions; b value, 800 sec/mm2; 6500/99; matrix,
128 � 128; FOV, 220 � 220 mm; section thickness, 3 mm).
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(Fig 7) (129). In lissencephaly, tractog-
raphy of the grossly abnormal subcorti-
cal and deep white matter has demon-
strated incomplete development of the
fornix and cingulate tracts (130). Trac-
tography in patients with periventricu-
lar leukomalacia has supported the
hypothesis that spastic paralysis may
involve extrapyramidal and sensory
pathways (Fig 8) (131,132). DT imaging
in patients with alobar holoprosen-
cephaly has demonstrated absent corti-
cospinal tracts (Fig 9) (133). Many
white matter tract structures, such as
the middle cerebellar peduncles, were
found to be smaller in alobar holo-
prosencephaly than in semilobar holo-
prosencephaly or lobar holoprosen-
cephaly (Fig 10). Furthermore, the size
of the corticospinal tracts and middle
cerebellar peduncles in all three vari-
ants was correlated with neurodevelop-
mental status.

Aging and Neurodegenerative Disease
Although mild decreases in anisotropy
are a normal result of aging, DT imag-
ing has shown additional abnormali-
ties in patients with several types of
dementia and neurodegenerative dis-
ease (134–137). For example, a study
of patients with early Parkinson disease
demonstrated decreased anisotropy in
the substantia nigra but normal anisot-
ropy in the putamen and caudate nu-
cleus (138). Increased diffusivity and
decreased anisotropy were found in the
corpus callosum and the frontal, tempo-
ral, and parietal white matter in both
patients with Alzheimer disease and
those with Lewy body dementia, but the
occipital lobes were involved only in the
latter—possibly reflecting the greater
incidence of visual hallucinations in Lewy
body dementia (139–141). Asymptom-
atic carriers of apolipoprotein E ε4, a
susceptibility marker for Alzheimer dis-
ease, demonstrated abnormal diffusiv-
ity and decreased anisotropy in the
parahippocampal white matter, a find-
ing that may be valuable in early diagno-
sis (142). Likewise, DT imaging in pa-
tients with asymptomatic Huntington
disease demonstrated decreased an-
isotropy in several regions of white
matter (143). Finally, multiple groups

have demonstrated decreased anisot-
ropy and increased diffusivity in the
internal capsule and cerebral pe-
duncles of patients with amyotrophic
lateral sclerosis (Fig 11) (144–151).
Throughout the corticospinal tract,
anisotropy decreased as amyotrophic
lateral sclerosis progressed, and de-
creased anisotropy was correlated
with slowed nerve conduction time
(152–154).

Psychiatric Disease
Since schizophrenia may involve dis-
ordered brain connectivity, many in-
vestigators have used DT imaging to
demonstrate a variety of white mat-
ter abnormalities, often correlated
with performance on neuropsychiatric
tests (155–163). For example, de-
creased anisotropy in the white matter
subserving language centers has been

correlated with the presence of auditory
hallucinations (160). However, a con-
sensus has not yet emerged regarding
the appearance of schizophrenia by us-
ing DT imaging, possibly due to differ-
ences in methods (96,164–166). Never-
theless, DT imaging continues to be
used in psychiatric illnesses with sus-
pected disruption of brain connectivity.
For example, decreased anisotropy has
been described in the arcuate fasciculus
of children with behavior disorders, in
the prefrontal white matter of patients
with bipolar disorder, and in the right
superior frontal gyrus of elderly patients
with depression (167–169). Moreover,
several regions of white matter demon-
strate abnormal anisotropy in children
with attention deficit disorder, obses-
sive-compulsive disorder, and autism
(170–172). Finally, decreased anisot-
ropy in the corpus callosum has been

Figure 13

Figure 13: Images in 55-year-
old man who complained of sud-
den onset of left-sided weakness.
Transverse, A, fluid-attenuated
inversion-recovery (9000/90/
2000; matrix, 288 � 288; FOV,
230 � 230 mm; section thick-
ness, 5 mm) and, B, DW (six direc-
tions; six-channel sensitivity en-
coding; sensitivity encoding factor
of two; b value, 1000 sec/mm2;
3300/60; matrix, 128 � 128;
FOV, 230 � 230 mm; section
thickness, 5 mm) images show
acute infarction in right basal
ganglia. C, Fiber tractography
with superimposed transverse b 0
image (32 directions, six-channel
sensitivity encoding; sensitivity
encoding factor of two; b value,
600 sec/mm2; 6599 – 8280/70;
matrix, 96 � 96; FOV, 220 � 220
mm; section thickness, 2.3 mm)
clearly shows the relationship
between infarction and corticospi-
nal tract. The infarct is anterior to
the course of corticospinal tract
(arrows). The patient experienced
complete recovery of motor
function.
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demonstrated in ethanol dependence
and may also be a trait of cocaine de-
pendence (173,174).

Demyelinating Disease
The specificity of DT imaging measures
for white matter abnormalities has
spurred its use in demyelinating dis-
eases, particularly multiple sclerosis.
Several groups have demonstrated in-

creased diffusivity and decreased an-
isotropy in demyelinating lesions (Fig
12) (175–179). In some studies, diffu-
sivity and anisotropy varied with the de-
gree and type of contrast enhancement
(177,179,180). However, DT imaging
has also demonstrated abnormalities in
normal-appearing white matter and
normal-appearing gray matter; it is un-
clear whether the latter represents an

inflammatory lesion in gray matter or
the effects of retrograde axonal degen-
eration (181–183). Patients with pri-
mary or secondary progressive multiple
sclerosis demonstrated increased gray
matter diffusivity, compared with pa-
tients with relapsing-remitting multiple
sclerosis or healthy controls (184). In
patients with clinically isolated syn-
dromes (considered a precursor to mul-
tiple sclerosis), tractography has de-
fined the corticospinal tracts and dem-
onstrated higher lesion volume within
them than in other white matter, al-
though the correlation between disease
progression and DT findings is less con-
crete (185).

Ischemic Disease
The use of diffusion imaging in ischemic
disease is expanding well beyond its
proved role in detection of early acute
ischemia into the domain of prognosis
and long-term management of ische-
mic sequelae. Initial uses of tractogra-
phy in stroke have demonstrated in-
volvement of sensorimotor pathways
by acute ischemic insults with strong
correspondence to clinical symptoms
(Fig 13) (186–191). Tractography has
also demonstrated anatomic reorgani-
zation of language pathways after an is-
chemic insult, concordant with BOLD
functional MR findings of reorganized
language activation (192). Finally, pa-
tients with cerebral autosomal domi-
nant arteriopathy with subcortical in-
farcts and leukoencephalopathy, or
CADASIL, syndrome demonstrated de-
creased anisotropy and increased diffu-
sivity in normal-appearing white mat-
ter, likely representing early ischemia.
Interestingly, DT imaging abnormalities
in the frontal lobes and cingulate fascic-
ulus have been associated with specific
types of cognitive impairment in this
disease (193,194).

Neoplasms
As well as improving sensitivity, DT im-
aging may also play a role in improving
specificity, particularly in radiologically
ambiguous lesions such as T2 hyperin-
tense peritumoral voxels. Hyperintense
white matter voxels surrounding glio-
mas, which presumably were partly tu-

Figure 14

Figure 14: Transverse (A–C, E) and coronal (D, F) color-encoded DT images (red, left to right; blue,
cranial to caudal; green, anterior to posterior) demonstrate displacement (A–C), infiltration (D–E), and
destruction (F) of white matter tracts (arrow) by tumor (�). G, Tractography with superimposed sagittal b 0
image demonstrates displacement of white matter tracts (red) by tumor (green) (12 directions; b value, 800
sec/mm2; 6500/99; matrix, 128 � 128; FOV, 220 � 220 mm; section thickness, 3 mm).
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mor infiltrated, demonstrated lower
anisotropy than did hyperintense white
matter voxels of equal diffusivity sur-
rounding metastases and meningiomas,
which presumably were merely edema-
tous (195–198). This may have impor-
tant implications in the delineation of
tumor margins beyond what is currently
demonstrated with conventional imag-
ing (199,200). Eventually, changes in
the diffusivity pattern of a tumor might
be used to predict tumor response to
chemotherapy and radiation (201,202).

As neurosurgeons increasingly con-
sider the degree to which tumors may
displace and disrupt white matter tracts
(Fig 14), the anatomic guidance pro-
vided by tractography is emerging as an
important part of preoperative planning
(203–205). This is particularly true of
eloquent white matter such as the corti-
cospinal tract, where tractography has
been a useful adjunct to intraoperative
fiber stimulation (206–208). Preopera-
tive tractography showing tumor in-
volvement of the corticospinal tract has
been correlated to motor deficits, even
when motor cortex was uninvolved
(209). Conversely, normalization at
postoperative tractography was predic-
tive of improvement in function, sug-
gesting a role for intraoperative tractog-
raphy (210,211). For inoperable tu-
mors, tractography may be helpful in
gamma knife planning, and it has al-
ready been used in the radiosurgical
treatment of arteriovascular malforma-
tions (212).

Epilepsy
Neurosurgical uses for tractography
are not limited to oncology; there are
multiple examples of the use of trac-
tography in surgical planning for epi-
lepsy (Fig 15). Intraoperative maps of
language centers in epilepsy have been
analyzed with tractography to suggest
locations of eloquent white matter
(213). Tractography has also been used
to determine whether seizure foci in-
volved the visual radiations, and find-
ings were concordant with cortical vi-
sual evoked potentials (214). Likewise,
probabilistic tractography of the Meyer
loop in epilepsy was performed with
sufficient accuracy to predict visual field

Figure 15

Figure 15: Images in 7-year-old boy involved in a vehicular accident 3 years before and suffering from
intractable seizure. Electroencephalography demonstrated persistent discharge of epileptic wave in the right
hemisphere. Functional right hemispherectomy was planned for treatment of the intractable seizure. However,
patient demonstrated right-side hemiplegia instead of left-side dysfunction. A, Transverse T2-weighted
(4000/100; matrix, 352 � 352; FOV, 230 � 230 mm; section thickness, 5 mm) images show cerebromalacia
of right hemisphere and atrophy. Precentral gyrus is relatively spared. B, Fractional anisotropy maps show
lack of high signal intensity of longitudinal pontine fiber tracts in the left-side cerebral peduncle, suggesting
axonal injury (arrows). C, Fiber tractography with superimposed transverse b0 image shows cutting off of left
corticospinal tract at the level of left cerebral peduncle due to axonal injury (arrows). Right corticospinal tract
is intact although atrophy and cerebromalacia are demonstrated in the remainder of the brain. Callosotomy
was performed instead of functional hemispherectomy on the basis of DT and fiber tractography findings,
because right hemispherectomy would have resulted in quadriplegia (DT imaging: 32 directions; six-channel
sensitivity encoding; sensitivity encoding factor of two; b value, 600 sec/mm2; 6599 – 8280/70; matrix, 96 �
96; FOV, 220 � 220 mm; section thickness, 2.3 mm).
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deficits after temporal lobe resection
(215). Although preoperative tractogra-
phy will probably be intended primarily
for the delineation of white matter anat-
omy, it has also found use in mapping
subservient gray matter such as pri-
mary motor cortex, particularly in pa-
tients unable to comply with the de-
mands of BOLD functional MR imaging
(216,217).

Conclusion

There is clearly a broad range of pos-
sible applications for DT imaging.
However, the clinical status of DT im-
aging today is somewhat analogous to
the status of DW imaging shortly after
its introduction: Although the initial
results appear promising, the pro-
spective clinical trials that can fully
establish its utility have yet to be com-
pleted. This will probably change in
the future as an increasing number of
long-term studies have begun to in-
corporate DT imaging into their pro-
tocols, while data regarding normal
variability in DT imaging measures
continue to accumulate (218). Never-
theless, the clinical use of DT imaging
calls for careful understanding of ac-
quisition and processing issues.

The full potential of DT imaging will
probably not be realized until it is inte-
grated with other modalities to obtain a
richer characterization of white matter,
in a manner analogous to the combina-
tion of perfusion and diffusion imaging
data used to demonstrate an ischemic
penumbra. Perhaps the most intriguing
application is the integration of tractog-
raphy with functional imaging. Activa-
tion maps are the natural complement
of tractography; a temporal relationship
between activated foci implies the exis-
tence of subservient fiber tracts, whereas
anatomic connectivity between two re-
gions of the brain suggests a functional
relationship. The excellent correlation
of BOLD functional MR data with trac-
tography findings in motor and visual
cortex may illustrate the future of struc-
ture-function investigations in the brain,
ultimately to culminate in a comprehen-
sive description of the “human connec-
tome” (219).
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