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High Resolution Measurement of Cerebral Blood Flow 
using Intravascular Tracer Bolus Passages. Part I: 
Mathematical Approach and Statistical Analysis 
Leif Ostergaard, Robert M. Weisskoff, David A. Chesler, Carsten Gyldensted, 
Bruce R. Rosen 

The authors review the theoretical basis of determination of 
cerebral blood flow (CBF) using dynamic measurements of 
nondiffusible contrast agents, and demonstrate how paramet- 
ric and nonparametric deconvolution techniques can be mod- 
ified for the special requirements of CBF determination using 
dynamic MRI. Using Monte Carlo modeling, the use of simple, 
analytical residue models is shown to introduce large errors in 
flow estimates when actual, underlying vascular characteris- 
tics are not sufficiently described by the chosen function. The 
determination of the shape of the residue function on a re- 
gional basis is shown to be possible only at high signal-to- 
noise ratio. Comparison of several nonparametric deconvolu- 
tion1 techniques showed that a nonparametric deconvolution 
technique (singular value decomposition) allows estimation of 
flow relatively independent of underlying vascular structure 
and volume even at low signal-to-noise ratio associated with 
pixel-by-pixel deconvolution. 
Key words: cerebral blood flow (CBF); dynamic magnetic res- 
onance imaging (MRI); nonparametric deconvolution; suscep- 
tibility contrast. 

INTRODUCTION 

Onge of the main goals of functional NMR is noninvasive, 
high resolution determination of cerebral perfusion. 
With the development of rapid MR imaging sequences, 
dynamic imaging of concentration time curves after bo- 
lus-injection of purely intravascular contrast agents has 
become possible on time scales comparable with vascu- 
lar mean transit times (MTT). Using the central volume 
theorem (1,2) ,  these concentration time curves have been 
used to calculate regional cerebral blood volume (rCBV) 
using CT (3) and, more recently, MRI (4, 5). Attempts 
have been made to use bolus passages of intravascular 
contrast agents to calculate regional CBF (6-8) and myo- 
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cardial perfusion (9). This technique involves knowledge 
of vascular structure through the residue function, deter- 
mining how the observed tracer is retained in the vascu- 
lature. This has caused some to reject this as a method of 
determining blood flow since the vascular structure is 
not known a priori (lo),  whereas others have pursued 
mathematical and numerical deconvolution approaches 
to determine both flow and the necessary characteristics 
of the vascular bed a posteriori from measurements 
(model independent approaches) (7, 8). The latter ap- 
proach in turn may provide important information about 
the microvasculature. Other authors have proposed gen- 
eral analytical models to describe the shape of the resi- 
due function (model dependent approaches) (I I). 

In this study we seek to determine a robust mathemat- 
ical approach to determine flow and vascular tracer re- 
tention by deconvolution of dynamic MRI tissue concen- 
tration curves with noninvasively determined arterial 
input curves. We first review the theory and inherent 
mathematical problems of flow measurements with non- 
diffusible tracers. Two main categories of nonparametric 
deconvolution techniques are described and modified for 
use with MRI determination of rCBF. We then use Monte 
Carlo simulations to address the possibilities of deter- 
mining the shape of the vascular residue function using 
nonparametric deconvolution techniques. Finally, we 
analyze the errors on the estimated CBF values that may 
be involved in (i) using simple, analytical expressions to 
describe the vascular residue function and (ii) using non- 
parametric deconvolution techniques at signal-to-noise 
ratios (SNR) typical of dynamic MRI experiments. 

THEORY 

We briefly review the definitions of the MTT, CBV,and 
CBF as well as their inter-relationship given by the cen- 
tral volume theorem (1, 2). Given these definitions, we 
state and discuss the central equation in our approach to 
the determination of CBF using nondiffusible, paramag- 
netic MRI tracers. 

Consider a bolus of nondiffusible tracer given at time 
t = 0 in the feeding vessel(s) to a volume of interest (VOI) 
of tissue. The individual particles of the tracer follow 
different paths through the VOI and their transit times 
thus have a distribution characteristic of the flow and the 
vascular structure. The probability density function of 
these transit times is denoted h(t) ,  the transport function. 
When an arterial input C,(t) is given to the VOI, the 
concentration of tracer in the venous output, CJt), from 
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the region is thus given by 

Cdt) = CJt) @3 h(t) = C,,(r)h(t - r)dr [I] 1: 
where 63 denotes convolution. The MTT for the tracer 
particles is defined in terms of the density function: 

Th(r)dT 

[21 
I: 

MTT = 

h(r)dr 

This equation has been used to determine flow under 
different assumptions about the relationship between 
MTT and the observed passage time of an intravascular 
contrast bolus (6). As pointed out by Weisskoff et al. (12), 
the distinction between this MTT and the first moment of 
the concentration time curve obtained from imaging of 
intravascular bolus passages is, however, crucial in at- 
tempts to measure absolute flow using intravascular trac- 
ers. 
The amount of intravascular tracer in the VOI is deter- 
mined by 

In the case of brain tissue with an intact blood brain 
barrier (BBB), the distribution space of common para- 
mag,netic NMR contrast agents is equal to the intravascu- 
lar, extracellular space, i.e., the plasma volume. The frac- 
tion of tissue available for tracer distribution is thus 
(1-Hct,) . CBV,, where Hct, is the microvascular hemat- 
ocrit and CBV, is the cerebral full blood volume. Hct, is 
a ccimplicated function of vessel size, flow, and patho- 
physiological conditions but is generally 40-100% of the 
systemic blood hematocrit (13). The discussion of these 
effects is outside the scope of this paper. Throughout our 
simulations, values of CBF and CBV will refer to full 
blocid flow, assuming a macrovascular to microvascular 
hematocrit ratio of 213 (13), independent of flow. 

With the definition of MTT and CBV above, the central 
volume theorem (1, 2) states that the relationship be- 
tween these and tissue flow, F, 

The central quantity in bolus-passage experiments is 
the Fraction of injected tracer still present in the vascu- 
lature at time t, described by the residue function R(t),  

Note that by the definition of h(t) as a probability density 
function, R (0 )  = 1 and R(t) is a positive, decreasing 
function of time. 

The concentration Cvo,(t) of tracer within a given VOI 
can now be written 

Equation [6] is the central equation in our approach to 
determine flow using nondiffusible tracers. It states that 
the initial height of the deconvolved concentration time 
curve equals the flow, F,. It is important to note that the 
arterial input function in Eq. [6] may undergo dispersion 
during its passage from the point of measurement to more 
peripheral tissue. This dispersion can be described math- 
ematically as a convolution with a vascular transport 
function h*(t) (cf. Eq. [I]). If the residue function deter- 
mined by using an arterial input that is subsequently 
dispersed is denoted R*(t] and the "true" residue func- 
tion R(t),  using Eq. [6] would consequently yield R*(t) = 
h*(t) 63 R(t). The initial height of the deconvolved curve 
will thus be underestimated by the spread in R*(t). This 
underlines the importance of measuring the arterial in- 
put values close to the observed tissue to avoid disper- 
sion. 

Equation [6] is not straight forward to solve for Ft 
because R(t) is an unknown function dependent on local 
vascular structure (10). This type of so-called inverse 
problems (14, 15), where integral equations are solved 
with respect to an unknown kernel, appears frequently in 
the biomedical literature, mainly in the context of venous 
output measurements (Eq. [I]). The basic principles in 
solving these equations are, however, generally applica- 
ble and in the following we will apply and refer to them 
in the context of vascular residue functions. 

The approaches to deconvolve Eq. [6] are divided into 
two main categories. In model dependent techniques, we 
assume a specific analytical expression or the shape of 
R(t). Assuming a specific shape for R(t) imposes assump- 
tions on the tissue microvasculature. For this reason, 
some have argued that Eq. [6] cannot be used to deter- 
mine flow by deconvolution with an arterial input func- 
tion in part since R(t) cannot be known a priori with 
sufficient precision (10). This problem can, at least in 
theory, be circumvented by performing nonparametric 
deconvolution without a priori knowledge of R(t). The 
latter model independent approach, where the flow and 
the shape of R(t) are determined from the experiment by 
nonparametric deconvolution, forms the other main cat- 
egory of approaches to solve Eq. [6] for F, and R(t). 

The goal of this work was to find the optimal decon- 
volution approach to allow determination of R(t) and 
tissue flow from Eq. 161. In the following, we describe 
how we modified and compared general model-depen- 
dent as well as model-independent approaches for the 
special requirements of CBF measurements using nondif- 
fusible susceptibility tracers in MRI. 
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DECONVOLUTION TECHNIQUES 
Model-Dependent (Analytical) Deconvolution 

One reason for describing R(t) with an analytical function 
is partly that it makes the deconvolution in Eq. 161 more 
stable since it reduces the degrees of freedom for the 
resulting shape or the shape of R(t). To clarify the divi- 
sion of approaches in this paragraph, we use the term 
“deconvolution” to describe the determination of CBF 
and MTT from arterial and tissue concentration time 
curves by nonlinear least squared fitting, although this 
terminology should perhaps be reserved for the model- 
dep’endent approaches below. This approach introduces 
the assumption that the actual vascular structure can be 
described by a particular function. 

Exponential decrease has been proposed as a general 
model for tissue residue functions. This is based on a 
simple model of the vascular bed as one single, well- 
mixed compartment. For such a system, the residue func- 
tion is an exponential (16, 17). Taking into account more 
cornlplicated models of capillaries including the effects of 
“plug” flow (the fact that the red blood cells fill the 
capillary lumen completely and thus to some extent pre- 
vent mixing), it has been argued that a linear combina- 
tion of a finite number of exponentials still may be an 
appropriate model for the residue function (11). 

We used a single exponential as a first-order model to 
describe the residue function: 

I 

R(t, MTT) = e-MTT [71 

We used general nonlinear least squared minimization to 
fit for MTT and Ft (15). 

Model-Independent (Nonparametric) Deconvolution 

In this approach, R(t) is determined along with Ft. Equa- 
tions [I] and [6] are, with respect to R(t),  both Fredholm 
integral equations of the first kind (14, 15). These equa- 
tions are generally unstable in the sense that infinitesi- 
mal changes (in our case noise) in C,,, (f) give rise to 
finite changes in R(t). The techniques described below 
mainly differ in the way they moderate the effects of 
noise in the measurements. The techniques fall into two 
subcategories: In the first, transform approach, the con- 
volution theorems for the Fourier, Z,  or Laplace trans- 
forms are used to deconvolve Eq. 161. In the second, 
algebraic approach, Eq. [6] is rewritten as a matrix equa- 
tion and solved. 

These techniques have mainly been applied at high 
SNR to find residue or transport functions with long 
MTTs compared with the temporal resolution of the ex- 
periments. In the following, we will focus on modifica- 
tions necessary for our applications, finding CBF using 
dynamic MRI of bolus passages. 
Transform Approach. In this approach, the convolution 
theorem of the Laplace, Z,  or Fourier transform (FT) is 
used (7, 8, 18-21). Denoting by F() the Fourier transform 
(FT), the convolution theorem states that F{) is multipli- 
cative to convolution. Equation [6] thus becomes: 

or in other words, 

[91 

where F--’{) denotes the inverse FT. The residue function 
and flow can thus be determined by taking the inverse FT 
of the ratios of two transforms at every time point of the 
known arterial input and tissue time-activity curve. This 
approach is-in this form-very sensitive to noise. The 
FT of the arterial and cerebral curves, however, yield a 
frequency representation of the data where noise is rep- 
resented at high frequencies, whereas “real” physiologi- 
cal signal has higher power at lower frequency. This 
allows one in principle to apply a filter that retains 
“physiological” frequencies but damps noise before per- 
forming the inverse Fourier transform to determine 
F t .  R(t). We implemented an automated filtering proce- 
dure described by Gobbel and Fike (7), which is a mod- 
ified version of the Wiener filter (15), increasing the 
stength of the filter until a global constraint on the degree 
of oscillations was fulfilled. Rempp et al. (8) also re- 
ported using an optimal Wiener filter for deconvolution 
of tissue concentration time curves to determine flow. 
Algebraic Approach. This approach is based on an alge- 
braic reformulation of the convolution integrals in Eqs. 
[I] and [6] and has been used extensively in the analysis 
of tracer transport functions (22-26). 

Assume that the arterial and cerebral concentrations 
are measured at a set of equally spaced time points 
fl,t2,. . . .try. Assume that, over small time intervals t ,  the 
residue function and arterial input values are constant. 
The convolution in Eq. [6] can then be formulated as a 
matrix equation (22): 

1=0 J 0 

or 

In the following we shall use the short-hand vector 
notation 

A - b = c  [121 

for this equation, where b contains the elements of R(t,), 
i = 1,2,. . . ,N, and c are the measured cerebral tracer 
concentrations (22-26). Note that Eq. [11] can be solved 
iteratively for the elements of b. This approach is, how- 
ever, extremely sensitive to noise, causing R(t) to oscil- 
late. Solving Eq. 1121 thus involves minimizing the ef- 
fects of noise and at the same time minimizing 

where ] ] denotes the vector norm. 
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The algebraic approach has been used extensively in 
the analysis of tracer transport functions and residue 
functions in organs with relatively long MTTs. The tech- 
nique assumes that arterial and tissue concentrations are 
constant between measurements. In the context of rCBF 
measurements using dynamic MR imaging of intravascu- 
lar bolus passages, both the arterial input function and 
the residue function are expected to vary over small time 
scales compared with the temporal resolution of the mea- 
surements (1-1.5 s for typical spin-echo EPI imaging). 
The constancy of these functions between measurements 
is thus a poor approximation. In our approach we as- 
sumed that CJt) and R(t) both vary linearly with time. It 
can be shown that the elements a,, of the matrix A in Eq. 
[II] become 

At(C,(t ,-,. + 4 - Ca(t,-J + Ca(t,-,+1))/6 0 5 j 5 i 
0 else a,, = 

1141 

In our work, then, this matrix was used for A when 
solving Eq. [13]. 
Regularization. A widely used approach to solve Eq. 1131 
is regularization, minimizing 

/A .  b + f(b) - CI [I51 

rather than Eq. [13], where fib), the regularization term, is 
a function of b. By appropriately choosing f, the solution 
b can be constrained to be mathmatically “well-behaved” 
and at the same time be physiologically meaningful. Reg- 
ularization, in a biological context, has mainly been ap- 
plied to determine transport functions (cf. Eq. 111). Exist- 
ing regularization approaches are thus not applicable for 
our purpose, determining residue function. The major 
drawback of regularization is that, like analytical decon- 
volution, it creates a result that matches a priori expec- 
tations of the shape of b at the expense of the the quality 
of the fit to the actual data (15). 

VVe implemented a regularization term modified for 
finding residue functions without significantly affecting 
the fit to experimentally determined data. The regular- 
izaiion term fib) imposes a mild constraint on R(t) of 
being a decreasing function of time: 

where PREG is a free parameter. Increasing PREC’s size 
allows one to strengthen the constraint on R(t) of being a 
decreasing function of time relative to that of solving Eq. 
(91. This regularization term has the advantage of disap- 
pearing when R(t) is a decreasing function of time and 
thus will not affect the quality of the fit as long as this 
single physiological constraint is fulfilled. We solved Eq. 
1151 €or the elements of R(t,) by least squared minimiza- 
tion (15). 
Singular Value Decomposition (SVD). Another technique 
to solve Eq. [I21 uses the SVD. Apart from changing the 
matrix A in Eq. [I11 for the use with rapidly varying 
functions of time, we did not modify the SVD technique. 
We will thus restrict ourselves to a brief general descrip- 
tion of the technique. 

The SVD constructs matrices V, W, and UT so that the 
inverse of A in Eq. [12], A-l ,  can be written: 

1171 

where lili is a diagonal matrix (i.e., off-diagonal elements 
are zero). V and UT are orthogonal and transpose orthog- 
onal matrices (i.e., have orthogonal, unit length col- 
umns), respectively. Given this inverse matrix, b, and 
consequently R(t), is found simply as 

A-1 = V. W .  u?‘ 

b = V- W-(UT-c) [I81 

The main force of the SVD is that the diagonal elements 
in W are zero or close to zero corresponding to linear 
equations in Eq. [11] that are close to being linear com- 
binations of each other. This fact thus allows one to 
identify elements in the matrix A that causes the solution 
b to oscillate or otherwise be meaningless in a biomedical 
modeling context. In terms of sampling data from bolus 
passage experiments, the fact that equations in Eq. [11] 
are close to being linear combinations of each other 
means that data are being sampled at time points where 
changes in arterial or cerebral concentration time curves 
over time are small relative to the noise. By eliminating 
(setting equal to zero) diagonal elements below a certain 
threshold in W, one can consequently minimize these 
effects before calculating b. The resulting b (after elimi- 
nation of diagonal elements) can be shown to be the best 
possible solution of Eq. [13] in a least squared sense (15). 
For more detail, see Press et al. (15) and Van Huffel et al. 
(26) and references therein. 

SIMULATION SCHEME 

We performed a series of Monte Carlo simulations to 
determine the performance of the deconvolution tech- 
niques under different physiological characteristics and 
SNRs. We first describe the arterial input and the phys- 
iological characteristics of the vascular bed used in our 
simulations, and then describe how the nonparametric 
deconvolution techniques used were optimized at each 
SNR before our simulations. 

Simulated Arterial Input 

For our simulations, we used an arterial input with a 
shape and size that could typically be obtained using a 
standard injection scheme. This was done by adjusting 
the parameters of a gamma variate function combined 
with a dispersion term to resemble the averaged arterial 
bolus size and shape observed around large vessels in six 
normal volunteers participating in clinical testing (27) of 
Sprodiamide (Nycomed Inc., Princeton, NJ, and Ny- 
comed Imaging AS, Oslo, Norway). The resulting analyt- 
ical expression was: 

where to is the tracer arrival time. The subsequent recir- 
culation was modeled to have a delay of 8 s and a dis- 
persion with a time constant of 30 s. This was achieved 
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by convolving the gamma variate with an exponential 
with these time constants. 

Simulated Tissue Signal 

To test how well the deconvolution techniques repro- 
duce the shapes and initial heights of Ft * R(t) in Eq. [6] 
we applied them to cases of known residue functions 
R(t). These were chosen to represent extremes of poten- 
tial residue shapes to test the robustness of the deconvo- 
lution techniques applied. We used three different mod- 
els [or the tissue residue function: 
Box-shaped 

This residue function is described by 

1 t s M T T  
0 t>MTT 

R(t) = 

Thi:s residue function describes a vascular bed with 
“plug” flow where the capillaries are in parallel with 
equal length and mean transit times. 
Triungle 

The residue function is in this case described by 

t 
t l 2 - M T T  
t > 2 .MTT [’ - 

R(t) = 

Exponential 
Thi.s residue function is described by 

t 
R(t) = e-MT 

As inentioned above, this residue function describes the 
vasculature as a single, well-mixed compartment. 

C,,,, was calculated with TR = 1000 ms by Eq. [5] for 
range of CBV values ranging from 1-5%. Combinations of 
CBI; in the range 10-60 m1/100 m l h i n  and MTT in the 
range 2-12 s were chosen to yield the corresponding 
CBV. In the following, we descibe how these time con- 
centration curves were converted into dynamic MRI sig- 
nal time curves. 

Throughout our simulations, tissue and arterial tracer 
levels were assumed to be measured by observing the 
susceptibility effect due to compartmentalized paramag- 
netic tracer (28). We used the linear relationship between 
vascular concentration of paramagnetic contrast agent 
and the observed susceptibility contrast (29, 30). The 
tissue concentration time curves were consequently con- 
verted into signal enhancement using the relation 

s(t) ~ ~ ~ ~ - k . C v o i ( t ) . T E  [a01 

with CvoI(t) from Eq. [5] and where So is the baseline 
signal intensity and k a constant dependent on the rela- 
tionship between the susceptibility effects and paramag- 
netic contrast agent concentration in tissue and around 
arteries. The constant k was fixed by matching a typical 
pea.k drop in signal intensity in white matter (17% in our 
perlusion protocol with a typical contrast agent dose] to 
the simulated peak signal drop at a full blood flow of 20 
mll100 ml/min assuming a box-shaped residue function 
and an MTT of 4 s, a typical finding in our clinical 

studies (31). This corresponds to a full blood volume of 
2.0% in white matter as observed by our spin-echo se- 
quence. This is roughly 40% of the actual full blood 
volume of white matter (32), due to the sensitivity of the 
spin-echo sequence to very small vessels (30). S,, was set 
to the typical baseline intensity of brain tissue. Simu- 
lated signal time curves (Eq. [XI]) were generated in the 
form of images, and Gaussian noise was added to gener- 
ate a SNR between 5 and 1000. For typical clinical dy- 
namic imaging, SNR is in the lower end of this range, 
with single pixel SNR typically varying between 8 and 
10. Before analysis, a 3 by 3 uniform smoothing kernel 
was appLied to mimic the approach used in actual image 
analysis. For each combination of parameters, 1024 sim- 
ulations were performed. 

Small delays between the bolus arrival in the artery 
and the peripheral tissue may occur. Delays can be cor- 
rected using analytical techniques by introducing and 
subsequently fitting a delay in the expression describing 
the convolution in Eq. [6]. In the case of nonparametric 
deconvolution, this is less straight forward. Although in 
the absence of noise, these techniques should theoreti- 
cally yield zero elements for R(t] until the arrival of the 
bolus, this is not generally the case in the presence of 
noise. We consequently simulated the effects of these 
delays on the fitted flow values by temporally shifting 
the arterial input relative to the simulated signal time 
curves. 

Optimization of Nonparametric Deconvolution 
Techniques 

Before using the SVD and regularization deconvolution 
technique, the corresponding free parameters PsvD and 
PREG had to be optimized at a given SNR. This was done 
by determining the choice of these parameters that em- 
pirically yielded the best reproduction of F, and R(t] at a 
set of standard conditions. In all subsequent simulations, 
the parameters were then kept fixed at this value. We 
chose the standard conditions to be a MTT of 2 and 4 s 
and flows of 20 and 40 m1/100 ml/min with underlying 
triangular, box-shaped and exponential residue func- 
tions, respectively. For these 1 2  physiological condi- 
tions, theoretical signal time curves were generated in 
the form of synthetic images. Noise was subsequently 
added to yield the specified SNR to optimize PsvD and 
P,,,. After addition of noise, nonparametric deconvolu- 
tion was performed using SVD and regularization. 

For every map, the average and standard deviation of Ft 
and the chi-square of the fit of the experimentally deter- 
mined (deconvolved] R(t) to the underlying “true” R( t ]  
(tringle, box, or exponential) was determined. The choice 
of free parameter (PREC, and P,,,, respectively] that op- 
timized the fit of R(t) and minimized the difference be- 
tween the fitted and actual flow simultaneously for all 
combinations of MTT and CBF and underlying residue 
functions was subsequently chosen. In cases where a 
large range of choices of Psv, and PREG reproduced cor- 
rect flow, the choice that minimized the standard devia- 
tion of Ft was chosen. In some cases, no choice of Psvr, 
and PRE(; reproduced Ft and R(t] well for all choices of 
residue functions and hemodynamic parameters simul- 
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taneously. The choice that brought the average F ,  as close 
as possible to the actual value was then chosen. 

The optimization of the FT approach was chosen ac- 
cording to the simulations of Gobbel and Fike (7). Their 
simulations showed that a choice of 0.1 for their oscilla- 
t o y  index was optimal to reproduce flow at different 
volumes and MTTs for nonpermeable vessels. This 
choice was consequently used in our simulations. 

RESULTS 

In the following, we describe our simulation results in 
two main sections: In the first, we describe the repro- 
duction of flow for model-dependent and model-inde- 
pendent deconvolution techniques. In the second, we 
describe the capability of model-independent decon- 
volution techniques to determine the shape of the res- 
idue function R(t). 

Estimates of f ,  

Figure 1 summarizes the estimates of flow for all four 
deconvolution techniques for high SNR (150) and low 
SNR (10) for different underlying residue functions. In all 
cases, the vascular volume was kept constant at 3.0%. 
Sutisequently, we discuss the dependence of F, on the 
underlying vascular volume. 
Model-Dependent Deconvolution. Model-dependent de- 
convolution yielded a good estimate of absolute flow 
when the underlying (true) residue function is described 
by the chosen function, in this case an exponential (See 
Fig la). For other underlying residue models, fitted flow 
was still proportional to the actual flow rate and the 
approach will consequently yield correct relative flow 
values if the shape of the residue function is uniform 
across the brain. In comparing regions with different 
residue functions, however, even relative flow values 
could be in substantial error. Note, for example, that, 
assuming an exponential residue model, an area with a 
triangular or box-shaped residue function will have the 
same fitted flow rate as that of an area with a “true” 
exponential residue function but 50% higher actual flow. 
Model-Zndependent Deconvolution. The FT (Figs. I c  and 
Id)  approach yielded reasonable estimates of F, for low 
flow rates at both high and low SNR. However, we found 
F, to be substantially underestimated at high flow rates. 
This effect was somewhat worse at low SNR compared 
with higher SNR. We found the underestimation to be an 
effect of short MTTs (2-3 s) at the high flow rates in Figs. 
1c and Id. The estimate of F, was thus improved when it 
was. associated with a longer MTT (results not shown). 
The flow estimates all showed some dependency on the 
underlying residue function. We will discuss this failure 
to reproduce flow at short MTTs and the dependency on 
underlying residue function in greater detail below. 

The regularization approach (Figs. l e  and If) yielded 
good reproduction of F, over a wide range of flow values 
with only a slight dependence on the underlying residue 
model. The dependence on the underlying residue func- 
tion was far smaller than that of the model-dependent 
approach. Also, notice that standard deviations at each 
point are only slightly larger than those of the model- 
dependent, analytical deconvolution. There is some 
overestimation of absolute flow values using this decon- 
volutiori technique, especially for low flow values. 

The SVD approach (Figs. l g  and 1h) also yielded re- 
production of flow relatively independent of the under- 
lying residue function. In this case, fitted flow tends to be 
somewhat underestimated at high flow rates. The stan- 
dard deviations at each point are about 10-15% of the 
absolute value, somewhat lower than the corresponding 
values for the regularization approach. 

Figure 2 shows results of a set of simulations similar to 
those shown above at low SNR (10) for the regularization 
and SVI) deconvolution techniques at a higher vascular 
volume (4.5%). For the regularization approach [Fig. 2a), 
the change in volume results in a large change in fitted 
flow, especially in case of an underlying box shaped 
residue model. We discuss the cause of this change in the 
section below. For the SVD technique (Fig. 2b), fitted 
flow values remain relatively constant with a tendency 
for high flow rates to be less underestimated than in Fig. 
1h at the higher vascular volume. This is probably a 
result of the better definition of the bolus shape relative 
to the underlying noise due to the larger vascular vol- 
ume. 

Table 1 summarizes the simulation results. Figure 3 
shows the effect of a 2-s delay of the measured tissue 
signal relative to the arterial input on the fitted flow rates 
using SVD. Note that, as flow rates increase, fitted flow 
values become increasingly underestimated. However, 
flow values are less sensitive to delays when assessing 
flow values less than 20 m1/100 ml/min. 

Reproduction of R(f)  

Figures 4a and 4b show the shape of the residue function 
determined using SVD and regularization. The underly- 
ing residue function was a box with MTT = 1 2  s and 
tissue flow 10 m1/100 ml/min. Means of 1024 simula- 
tions are shown. This example was chosen for the pur- 
pose of illustration. The conclusions were, however, 
valid for other combinations of F,. The standard devia- 
tion at each point of the curve was generally about 10% 
of the absolute value for SNR = 150 and 4006 of the 
absolute value for SNR = 10. 

For the SVD approach (Fig. 4a), note that the shape of 
the residue function becomes less detailed with decreas- 
ing SNR. The initial and maximum points on the repro- 
duced residue curves, however, still remains constant. It 

FIG. I. Reproduction of flow using model-dependent fitting (exponential residue model) and model-independent deconvolution (FT, 
regularization, and SVD) with different underlying residue functions. SNRs were for each technique 150 and 10, respectively, and the CBV 
3%. (a) and (b) show model-dependent fitting of flow using an exponential residue model. Note how the resulting flow is heavily dependent 
on the underlying residue function except when the underlying residue function is described by the chosen model. (c) and (d) show the 
same simulation scheme for the FT at S N R  = 150 and SNR = 10. Note that flow is poorly reproduced. For the regularization approach 
((e) shows SNR = 150 and (9 SNR = 10) and the SVD ((9) is again SNR = 150 and (h) S N R  = 10) reproduction of flow is relatively 
independent of the underlying residue function. The SVD somewhat underestimates high flow values. Error bars indicate 1 SE. 
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- no sudden loss of the degree to which the fitted curves 
reflected the underlying true residue function. Rather, 
the shape changed from that of the true underlying resi- 
due function to a smooth curve with only few of the 
details of the underlying residue function. 

The regularization approach (Fig. 4b) generally 
showed a tendency to change the fitted residue function 
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into a triangular shape when going toward lower SNR. 
This is probably due to the constraint imposed by the 
regularization term, favoring this shape. Also, each point 
of the fitted R(t) was determined with increased uncer- 
tainty at the lower SNR. We believe this bias toward a 
triangular shape is the cause of the overestimation of 
flow noticed for regularization approach in Fig. 2a. 

FIG. 2. Reproduction of flow values for different underlying resi- 
due functions for the  regularization (a) and SVD (b) approaches, 
respectively, at S N R  = 10. In this case, vascular volume was 
4.50/0. Note that t h e  flows fitted by regularization approach show 
a strong dependence on CBV, whereas this was less prominent 
with the SVD approach (compare with Figs. If and 1 h). The high 
flow values seem to be less underestimated at this volume than in 
the case of a CBV of 3.0% (Fig. 1 h). 
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termine the shape of the residue function. 

Our simulations clearly demonstrate the potential dan- 
gers of using simplified assumptions when modeling the 
vascular residue function. Assuming a simple, mono- 
exponential residue function will thus introduce large 
systematic errors when flows in two regions with differ- 
ent residue functions are compared. This is in line with 
the conclusions made by Lassen (10) and Weisskoff et al. 
(12). We performed simulations to evaluate if using a 
multi-exponential residue model improved the repro- 
duction of flow. The introduction of extra parameters, 
however, did not change this general conclusion. This 

Model dependent (exponential) + 
Fourier transform + 
Regularization + + 
SVD + + + 

- 

- 

Flow estimate independence of a given quantity is indicated by f, depen- 
dence by +. 

_ _  - -  
qualitatively analyze other simple, analytical expres- 
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FIG. 3. Reproduction of flow at a CBV of 3.0% and t h e  SVD 
model-independent deconvolution approach. The tissue concen- 
tration time curve was delayed by 2 s relative to the arterial input. 
Note how this causes substantial underestimation of flow at high 
flow values, whereas low flow rates are still well reproduced. 
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FIG. 4. (a) Optimized reproduction of the underlying residue function for the SVD nonparametric deconvolution technique at two different 
noise levels, S N R  = 150 and SNR = 10. The solid line indicates the true, underlying residue function. Note that the shape gradually looses 
reseinblance to the  underlying residue function going toward lower S N R .  CBV was 3.0%. (b) Optimized reproduction of the underlying 
residue function for t h e  regularization nonparametric deconvolution technique at two different noise levels, S N R  = 150 and SNR = 10. 
The :solid line indicates the true, underlying residue function. Note that the shape tends to become more triangular as the S N R  decreases, 
reflecting the underlying regularization term. CBV was 3.0%. 

sions to characterize the cerebral residue function. Mod- 
els jncluding very detailed models of vascular transport 
and exchange have been proposed (33). Further work is 
needed to provide operators that describe a wide variety 
of vascular residue functions in the brain. 

Of nonparametric deconvolution techniques evalu- 
ated, the Fourier transform failed to reproduce F, at short 
MTTs just as it showed a dependency on the the under- 
lying residue function. These facts are both reflections of 
the properties of the FT in the physiological context in 
which we applied it. Even in the absence of noise, the FT 
gives approximately Ft /2  at the initial point of the re- 
sponse function. The flow is thus estimated from the 
following point on the response curve. This has two 
effects. First, for relatively short MTTs compared with 
the sampling rate, the impulse response function will 
have decayed substantially at the first sample of the 
residue function, leading to underestimation of flow as 
we found in our simulations. Secondly, the degree of 
decay of the response function before the second sample 
is dependent on the residue model. In agreement with 
this. flow was most severely underestimated for the most 
rapidly decreasing residue model, namely the exponen- 
tial. Furthermore, applying filters to improve the SNR of 
the measurement introduces a blurring in the time do- 
main, causing the maximum point on the response curve 
to be further underestimated. This was demonstrated in 
our simulations by the more severe underestimation of 
flow at low SNR where more powerful filtering had been 
applied. 

The underestimation of flow for short MTTs relative to 
the sampling rate has severe implications for determina- 
tion of flow using FT. In comparing two regions with 
equal actual flow, the region with the highest CBV (and 
thus longest MTT) will appear to have a higher flow rate 
using the FT, making the estimates biased by the rCBV. 
The FT approach is thus misleading in evaluating states 

of high flow and short MTT unless the sampling rate can 
be improved relative to the MTTs in question. Interest- 
ingly, the use of an unmodified Wiener filter, may not be 
optimal in finding residue functions. The Wiener filter is 
designed to minimize the mean square error over all time 
whereas we, for estimates of flow, wish to minimize the 
errors in just the initial value of the residue function. 
Because of these differences, the use of a true Wiener 
filter would produce large underestimations flow. In 
light of these theoretical concerns, we compared simula- 
tion results obtained with the modified Wiener filter (6) 
to similar results obtained with a Hanning filter after 
optimization to yield similar standard deviations of the 
flow estimates. We got comparable reproduction of flow 
rates for the two approaches, demonstrating that the 
modifications to the Wiener filter approach by Gobbel et 
al (6) compensate for the theoretical draw-backs men- 
tioned above. 

Nonparametric deconvolution using regularization 
could be optimized to yield good reproduction of flow. 
However, subsequent use of the technique at a different 
rCBV showed some dependence on vascular volume. We 
believe this effect should be seen as a result of the fact 
that changing CBV effectively changes the SNR of the 
concentration time curve. Since the optimization of the 
regularization is dependent on the SNR, one choice of 
this optimization may not suffice to optimize the repro- 
duction of flow for all values of CBV, thus introducing 
the observed bias on flow rates. More optimal regulariza- 
tion terms than the one we used here may improve this 
technique. 

The SVD nonparametric deconvolution technique-in 
contrast to the other model-independent approaches- 
showed an excellent ability to reproduce flow with good 
accuracy independent of the underlying vascular struc- 
ture and volume. The bias of underlying residue function 
increased somewhat toward combinations of high flow 
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and short MTT. This should probably be seen as a reflec- 
tion of the fact that linear approximation to the underly- 
ing residue function between measurements assumed in 
this approach is poor under these conditions. This bias 
can be minimized by improving temporal resolution of 
the imaging sequence, making the linear approximation 
between measured points better. Also, the elements in 
the convolution matrix (Eq. [8]) can be further modified 
to produce a smoother interpolation of the residue func- 
tion between measured points. The SVD nonparametric 
deconvolution thus shows good promise as a nonpara- 
metric deconvolution technique for bolus passage stud- 
ies in the brain. 

];or all deconvolution techniques, flow estimates be- 
came more uncertain toward shorter MTT. This is an 
effect of the arterial input varying slowly compared with 
MTT, the characteristic time scale of the residue function 
that we want to sample. Note that the characteristic time 
scale of the arterial input used in our simulations is 
roughly 1.5 s (Eq. [19]). This general constraint can only 
be circumvented by using rapid bolus injections to create 
very sharp arterial input profiles. 

‘The ability of nonparametric deconvolution tech- 
niques to reproduce the shape underlying residue func- 
tion R(t) was generally poorer than the ability to repro- 
duce flow. Model-independent approaches in our 
simulations required high SNR (50-100 with a typical 
contrast injection, imaging sequence and resolution in 
the brain) to reproduce the tissue residue function. This 
should be compared with the pixel-by-pixel SNR of 
about 10 in our actual imaging experiments. Performing 
regional rather than pixel-by-pixel deconvolution will 
thus still provide mostly qualitative information on the 
shape of the residue function just as tissue heterogeneity 
will cause a loss of specific, localized information. This 
technique thus awaits the development of more potent 
contrast agents and ways of obtaining higher SNR in 
human studies of R(t). In an experimental setting, how- 
ever, animal experiments at high field using iron oxide 
contrast agents may provide sufficient SNR and contrast- 
to-noise ratio (CNR) to allow high resolution studies of 
R ( f )  with this technique. This may, in turn, provide im- 
portant information on vascular structure and reactivity 
in normal as well as pathological brain tissue. 

Our analysis shows that delays between arterial input 
and the tissue response are important in accurately de- 
termining flow. It is important to note that tracer arrival 
delays often occurs in states where flow is low, for ex- 
ample as a result of collateral circulation in  the periphery 
of stroke areas. In these situations, our simulations indi- 
cate that flow will only be slightly underestimated. In 
regions of high flow, high flow rate in the afferent vessels 
wiil tend to create a relatively shorter delay. On the other 
hand, understimation of tissue flow were shown to be 
more severe, and delays should consequently be cor- 
rected during image analysis by either fitting the delay as 
a free parameter (model-dependent approach) or inde- 
pendent determination of the tracer arrival delays (mod- 
el-j ndependent approaches). We are presently investigat- 
ing methods for performing this correction. Also, it 
should be noted that the pathologies mentioned above 
are examples where dispersion of the arterial input func- 

tion could potentially take place. Again, this dispersion 
will be dependent on the flow rate in the afferent vessels 
and thus on tissue flow. Correction for vascular disper- 
sion requires specific models for vascular transport and 
is the subject of on-going research ( 3 3 ) .  

CONCLUSION 

We have performed Monte Carlo simulations to test the 
ability of analytical (model-independent) as well as non- 
parametric (model-dependent) deconvolution tech- 
niques to reproduce flow in MRI bolus experiments at a 
range of SNRs. The use of model-dependent approaches 
may lead to large systematic error in comparing regions 
with different residue function. 

The model-independent approaches allowed good re- 
production of the true, underlying vascular residue func- 
tion only at high SNR. Toward lower SNR, the fitted 
residue functions were in mere qualitative agreement 
with the actual, underlying residue function. 

We demonstrated that SVD is able to reproduce flow 
with good accuracy relatively independent of the under- 
lying vascular structure even at the SNR typical of pixel- 
by-pixel deconvolution after 3-by-3 uniform filtering of 
the images. This approach thus shows promise as an 
approach to high resolution model-independent determi- 
nation of CBF using dynamic imaging of paramagnetic 
bolus passages in humans. 
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