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Abstract
Parallel imaging has been the single biggest innovation in magnetic resonance
imaging in the last decade. The use of multiple receiver coils to augment the
time consuming Fourier encoding has reduced acquisition times significantly.
This increase in speed comes at a time when other approaches to acquisition
time reduction were reaching engineering and human limits. A brief summary
of spatial encoding in MRI is followed by an introduction to the problem parallel
imaging is designed to solve. There are a large number of parallel reconstruction
algorithms; this article reviews a cross-section, SENSE, SMASH, g-SMASH
and GRAPPA, selected to demonstrate the different approaches. Theoretical
(the g-factor) and practical (coil design) limits to acquisition speed are reviewed.
The practical implementation of parallel imaging is also discussed, in particular
coil calibration. How to recognize potential failure modes and their associated
artefacts are shown. Well-established applications including angiography,
cardiac imaging and applications using echo planar imaging are reviewed and
we discuss what makes a good application for parallel imaging. Finally, active
research areas where parallel imaging is being used to improve data quality by
repairing artefacted images are also reviewed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction and background

Parallel imaging (PI) or partially parallel imaging (PPI) has in the last few years translated
from a research topic to a widely used commercial product with significant impact on almost
every facet of practice of magnetic resonance imaging (MRI). PI makes use of spatially
separated receiver antennas to perform some of the spatial encoding required to turn the
nuclear magnetic resonance (NMR) phenomena into magnetic resonance imaging (MRI). PI’s
history is an interesting one, the theoretical foundations were laid in the late 1980s, but it
lay dormant for more than a decade, partly because appropriate hardware was not readily
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available and partly because whilst array coils had been developed, they were being used
in a different way; to provide high signal-to-noise ratio (SNR), large field of view (FOV)
images. The second wave of research interest in PI came in the late 1990s and within 5 years
was widely commercialized. However, the field is still an active area of research in its own
right, maintaining a rapid pace of development in both concepts and applications. The field
has drawn on many different aspects of hardware engineering and mathematics to improve
and expand the original concepts and to use the technology to help tackle many of the major
problems which exist in MRI.

1.1. Spatial encoding in MRI

To put PI in context and to enable the reader to appreciate the necessity of its development, we
need first describe how spatial encoding in MRI is performed in the absence of PI and introduce
some terminology. MRI is not actually an imaging method as it would be defined by imaging
physics. The image is formed by localizing the NMR signal by frequency. This frequency
dependent localization makes MRI a spectroscopic technique. The localization concept is
straightforward. The resonant frequency of the nuclear spin system is defined by the Larmor
equation (equation (1)) where ω is the resonant frequency and γ the gyromagnetic ratio of the
proton (42.58 MHz T−1), B is the external magnetic field strength at the proton position, and
so ω is directly proportional to the strength of the external magnetic field experienced by the
spin system:

ω = γB. (1)

The magnitude of the signal is dictated in part by the degree of polarization of the spin system
which is also proportional to the magnitude of the main magnetic field and also by the time at
which the system is measured after perturbation with an RF pulse. This is due to the relaxation
of the spin system back to its thermal equilibrium state. The governing equations for such a
system are the Bloch equations which can be simplified for a simple MRI experiment to:

S = S0
(
1 − e− T R

T 1
)

e− T E
T 2 (2)

where S is the signal detected, S0 is the maximum detectable signal, proportional to B and
to the density of protons (or spins), and the exponential terms describe both the transverse
and the longitudinal components of the magnetization as a function of time. This leads to
two key MRI parameters, the echo time (TE), time between excitation and detection and
the repeat time (TR) time between one excitation and the next. For a full description of the
governing principles and equations of MRI we suggest the book reference (Haacke et al 1999).
Equation (2) explains why there is a drive to ever higher main magnetic field strengths in MRI
to increase S0, while in equation (1) the dependence of the resonance frequency on B indicates
the spatial localization mechanism which we will now describe briefly.

During the NMR process we can separate signal from different locations within the sample
by applying a spatially varying magnetic field (a field gradient or commonly referred to in MRI
as just a ‘gradient’) during reception of the NMR signal. This shifts the resonant frequency
as a function of position. If the frequency changes linearly with position then the relationship
between the signal we detect (a superposition of all frequencies) and the spatial distribution
of signal is given by the Fourier transform. This localization method is known as frequency
encoding. The frequency encoding gradient is applied during reception of the NMR signal.
The gradient activity as a function of time on each orthogonal axis is typically represented,
along with RF activity, in a pulse sequence diagram. Such a diagram is shown in figure 1(a)
where the frequency encoding gradient can be seen on during the measurement.
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Figure 1. On the left-hand side is a pulse sequence diagram which describes the sequence of
events on the three orthogonal gradient axes, the RF excitation and the acquisition window. The
first action is the RF excitation along with a slice selecting gradient followed by its refocusing
gradient. The next step is phase encoding and readout pre-phasing gradient. Finally the readout
(frequency encoding) gradient is applied while the signal is collected. In order to fully encode
an image, this sequence is repeated for different amplitudes of the phase encode gradient. The
right-hand side shows a schematic representation of k-space. When the phase encode gradient is
zero the pre-winding gradient takes us to the left of k-space and the readout gradient sweeps across
k-space. When a phase encode gradient is applied, it shifts the readout line in k-space along the
phase encode direction by an amount �k. The magnitude of �k is inversely proportional to the
field of view (FOV) and the maximum extent of k-space is inversely proportional to the voxel size.

In MRI we generally do not collect data immediately after the RF pulse as we need
time to perform spatial encoding (to play out further gradients) in the orthogonal direction to
frequency encoding before data collection. A full description of this process can be found in
Haacke et al (1999).

Frequency encoding can localize signal in one dimension but for imaging a volume
we need 3D localization or 2D localization combined with slice selection to image a plane.
The distinction between 3D and multi-slice will be made later, here we will just consider single
slice imaging (which is easily generalizable to multi-slice as this is simply a repetition of the
same scheme at different locations in the magnet). Slice selection is achieved by applying a
strong linear gradient in the slice direction (orthogonal to the imaging plane) during excitation,
i.e. the delivery of the RF pulse. When a slice select gradient is applied, the Larmor frequency
changes as a function of position and as the RF pulse has a finite bandwidth, only the positions
within the body for which the Larmor frequency is within the bandwidth of the pulse are
excited, while the spins located in regions corresponding to a frequency outside this range
are not affected. Figure 1(a) shows the slice selection gradient being activated during the RF
pulse.

For this review it is localization along the other in-plane direction that is of most interest
as this is where MRI becomes time consuming. In effect the same principle is used as
in frequency encoding but encoding along the two directions must be done sequentially as
superimposed gradients suffer from non-unique spatial frequency allocation. This sequential
requirement imposes a significant time penalty. Frequency encoding can only be performed
during the sampling period and so encoding in the other direction must be done by a method
that has become known as phase encoding. A gradient is switched on for a period of time, so
that phase is accumulated in the sample as a function of position in space. After some time this
gradient is switched off and the signal is sampled. The effect of the phase encoding gradient
is to select a single spatial frequency in the phase encode direction. To sample all required
spatial frequencies needed to reconstruct an image of the required fidelity the experiment must
be repeated until all spatial frequencies are sampled, i.e. repeated experiments with varying
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phase encode gradients. To give a feeling for the time this process takes, consider that we
may typically use a repeat time of several hundred milliseconds, and hence if a final image
resolution of 256 samples in the frequency encode direction and 256 phase encodes is required
then the total imaging time may be several minutes. Imaging times of this length have obvious
implications. The subject is liable to move during imaging causing artefacts in the images,
and dynamic processes changing on a time scale shorter than this are difficult to capture.
We have now described most of the features of figure 1(a) covering the essential elements of
the simplest MR imaging sequence, the gradient recalled echo sequence (GRE). For a fuller
description of pulse sequences we again suggest reference book (Haacke et al 1999).

So far the discussion has been limited to single- or multi-slice imaging, however volume
encoding is also often used in MRI. Here we do not excite a single slice but a larger volume
(which can be considered a fat slice) and then spatially encode along the width of the slice using
a second direction of phase encoding, so that now we have two orthogonal directions of phase
encoding. 3D encoding has advantages over multi-slice encoding in both SNR (enhanced by
additional Fourier averaging) and enabling isotropic resolution.

Because image information is not encoded directly, but is encoded in frequency space,
we refer to this native data domain as k-space (the k is by analogy to wave-number). This is
a reciprocal domain and it is related to the image domain by a 2D or 3D Fourier transform,
which naturally translates from the time domain in which we measure (time evolves during
the sampling of the echo and a pseudo-time evolves during phase encoding) to the frequency
domain (which in MRI is our image domain). The effects of gradients are best described in
k-space where we can see that the readout gradient (or frequency encode gradient) allows us
to sample along a line in k-space (from negative to positive values due to echo formation),
while the phase encode gradient allows us to position this line in the orthogonal direction in
k-space (figure 1(b)).

1.2. k-space

The resolution of the final image is determined by the highest spatial frequency sampled (the
extent over which k-space is sampled), kmax, while the field of view is dictated by the frequency
range we can sample and so is determined by the sampling rate �k (see figure 1(b)). k-space
is discreetly sampled. In the frequency encode direction the sampling rate is limited by the
analogue-to-digital converter (ADC) used on the receiver boards of the scanner. Typically
this sampling rate is high and so we rarely need to consider the usual limitations of discrete
sampling (aliasing etc) in this direction. However, in the phase encode direction the sampling
rate is dictated by the magnitude of the k-space shift imposed by the phase encode gradient
lobe. As each phase encoding step takes a significant amount of time, it is beneficial to
minimize the number of steps required to traverse a fixed extent of k-space (to maintain a fixed
resolution). This drives us to take as large a step in k-space as possible, i.e. as small a field of
view as possible. However, if a field of view is chosen which does not wholly contain the object
to be imaged, then this discrete sampling results in aliasing (a consequence of violation of the
Nyquist criteria in sampling). In the image this manifests itself as the parts of the object which
fall outside the field of view set by the phase encode sampling interval ‘wrapping’ into the
image. Figure 2 shows the effect of three different k-space sampling strategies where (a) shows
the fully sampled k-space, while (b), (c) and (d) have half the number of samples and therefore
took half as long to acquire. The 2D Fourier transforms of (a), (b), (c) and (d) are shown in
(a′), (b′), (c′) and (d′) respectively. In (b) the resolution was reduced (kmax reduced) while in
(c) the FOV was reduced to half, in (d) a random sub-sampling of k-space was performed. The
role of parallel imaging in its simplest form is to allow larger sampling intervals in k-space
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Figure 2. (a) and (a′) the k-space and corresponding image are shown for a fully sampled data set.
The two are related by the 2D Fourier transform; (b) and (b′) k-space sub-sampled by a factor of 2,
with the edges being set to zero. The effect is to reduce the image resolution as can be seen in the
magnified images; (c) shows k-space also sub-sampled by a factor of 2 but with every other line set
to zero. This halves the supported FOV, producing an aliased image (c′); (d) has half the k-space
lines missing but removed randomly. This no longer produces coherent image domain aliases as
shown in (d′).

(violation of the Nyquist criteria) but then to recover the sampling to the Nyquist rate using
additional information from array coils. The obvious benefit is an increase in acquisition speed
as less phase encode steps are required to complete an acquisition. Sub-sampling schemes
(c) and (d) can be recovered using PI. However the centrally weighted scheme (b) cannot be
recovered using PI alone, it requires additional encoding. For the majority of this review the
examples we will show describe the recovery of uniformly sub-sampled Cartesian k-space
(example (c)). Example (c) can be reconstructed using any PI algorithm due to the coherent
nature of the image domain aliasing, while (d) requires generalized approaches. Not shown in
figure 2 is what is known as non-Cartesian k-space (although the non-uniform sub-sampling is
a close relative of these schemes). In non-Cartesian sampling k-space is traversed typically in
radial lines, spiral trajectories or other more exotic schemes. These strategies have particular
implications for PI but, as these are largely shared with scheme (d), this is used as an exemplar.
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Figure 3. The left-hand side shows a typical image produced by the sequence described in
figure 1. The right-hand side shows how, with the addition of more refocusing gradients interleaved
with phase encoding gradients, multiple k-space lines can be measured with one single excitation.
In echo planar imaging (EPI) the whole image is acquired with a single echo train. There are
penalties in image quality as shown in the typical (location matched) EPI image.

Non-Cartesian data are generally interpolated onto a Cartesian grid before the usual
Fourier transform reconstruction.

The two Fourier transforms to move from k-space to image space are applied sequentially,
so if we wish to look at the spatial frequency content of the object in one column of the image
then a single Fourier transform can be applied. This space is often referred to as hybrid space.
In one direction we are traversing space and in the other spatial frequency. We may refer to
this space as (kx, y) space or (x, ky) space. This space is sometimes useful to occupy during
the image reconstruction processes we will see later.

1.3. Non-PI strategies for accelerated acquisition

A primary goal of MRI research has been to accelerate the acquisition. Before launching into
a description of PI methods we should acknowledge alternative strategies for acceleration.
There are many ways to achieve this. The simplest sequence modification is to minimize TR
by increasing gradient strength. Whilst fast acquisitions can be done in this way (for example
Hasse et al (1989)), limits are quickly reached. Increasing gradient strength is an expensive
engineering challenge. More powerful amplifiers are needed and gradient coils capable of
taking the increased current and voltage are also needed both of which add significantly to
the cost of the scanner. More importantly, even if costs were no barrier, physiological limits
associated with the rate of switching of such gradients are eventually reached. When the
human nervous system is exposed to a time dependent magnetic field, spontaneous nerve
firing may occur; this is known as peripheral nerve stimulation (PNS).

A second complementary approach is to modify the nature of the acquisition to acquire
more than one phase encode line per TR. This approach has led to a family of sequences
broadly described as echo train imaging. Figure 3 shows the pulse sequence for a GRE variant
known as EPI. Such sequences have attracted widespread use due to their favourable temporal
properties. However, such methods not only compromise contrast but also resolution and in
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some cases lead to image distortion; the example images in figure 3 demonstrate the loss in
quality between GRE and EPI images. These image artefacts can all be reduced significantly
by reducing the number of echoes in the echo train, an important observation we will return
to in the PI applications section.

Another strategy is to localize the region of excitation which will enable reduction of the
field of view without aliasing. The aliasing seen in figure 2 can be suppressed if only the portion
of the object that exists within the reduced field of view is excited. Unfortunately, long pulse
trains are needed and if the pulse length is long compared to the relaxation times of the sample
then the region of excitation will be ill defined. Because of this limit, localized excitation has
remained a niche method. However it is interesting to note that recent developments which
have spun out of PI, known as parallel transmit (PT) may now be making this possible on
realistic time scales (Katscher et al 2003).

Finally we can replace fully or partially the Fourier encoding with some other basis set:
singular value decomposition (SVD) (Zientara et al 1994), wavelet (Panych and Jolesz 1994)
or Hadamard (Panych et al 1997) for example. These other basis sets may be able to more
compactly describe the contents of a medical image than a Fourier basis set but these methods
are limited due to the complexities of selecting the appropriate basis set given a target. Again,
PI has renewed interest in some of these methods to augment coil encoding, the centrally
weighted sub-sampling scheme shown in figure 2(b) can only be recovered with PI if it is
augmented with another encoding scheme (Kyriakos et al 2006).

A wide range of acquisition methods have been proposed where full k-space is not sampled.
These methods differ from PI, where k-space is also undersampled, in that sparse methods aim
to exclude redundant data. For example, the theoretical conjugate symmetry of k-space can
be exploited with part of k-space remaining uncollected and then repopulated using various
methods (Margosian et al 1986). When multiple time point imaging is being performed, for
example to track the effect of a contrast injection, then there have been many proposals for
improving the temporal resolution, most of which are based on updating different parts of
k-space at different frequencies (the centre more often than the edges for example van Vaals
et al (1993)). More recently, a new family of acceleration methods for time course data have
been proposed. These have specific k-space sampling patterns which produce aliases in x–f
space (where x is image domain and f is frequency, the Fourier transform of the time series of
images). The specific details of the sampling pattern dictate the location of these aliases and
provided there is rapidly changing information only in part of the field of view, the overlap
of these aliases can be made very small and highly accurate reconstructions can be performed
(Tsao et al 2003, Malik et al 2006).

All these strategies are successful to a greater or lesser degree. All have limits which have
already been met but all can be complemented with coil encoding.

1.4. Why parallel imaging?

If design criteria were written for a method for image acceleration the key features would be
that it:

• is applicable to all pulse sequences without affecting image contrast;
• is complementary to all existing acceleration methods;
• does not introduce artefacts or adversely affect SNR.

Coil encoding scores full marks on the first two bullet points. The last is a complex point
deserving of its own section. In general PI does not introduce significant artefacts but it does
reduce SNR and this is its weakness. However, as we will see, the benefits are large and when
applied intelligently far outweigh this limitation.
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Figure 4. A typical spine coil which uses an array of four coils arranged linearly which reflects the
extended anatomy of the spine. Each coil element C, produces a separate image shown as C1–C4,
the bottom image is an optimal combination of these images performed on a pixel by pixel basis
using equation (3).

One might also add from a commercial perspective that any method should be easily
implemented with little or no change to existing hardware. Again PI scores well on this point
and this is a significant factor in the early success of PI, although as we will see scanners have
now changed as a result of PI. The main hardware requirement for PI is array coils, multiple
element receiver coils. These are not a requirement for basic MRI and indeed most early
systems used a single coil for both transmission of the excitation RF pulse and reception of
the small NMR signal generated by it. However, as we will see, there was a strong motivation
other than PI to move to local receiver systems. Figure 4 shows a typical spine array coil.
Prior to such coils the transmit coil integral to the bore of the magnet would have been used
for reception (body coil). Typically gains in SNR of a local array over the built-in coil can be
as much as an order of magnitude.

1.5. The history of array coils in MRI

Array coils were already widely available by the late 1990s when PI was demonstrated. They
had first been developed for use in MRI in the late 1980s. The classic text on their design and
use was written by Roemer (Roemer et al 1990). The motivation for such coils was to increase
SNR. Generally a simple but adequate picture is that noise in an MR image is dominated
by thermal noise in the subject, a consequence of the relative magnitude of the energy gap
between spin-up and spin-down states of the proton and kBT.

The signal localization methods we use in MRI, frequency encoding, phase encoding
and slice selection, all rely on a coherent resonant response of the spin system and so do not
apply to spatially incoherent noise. Whilst we can restrict signal to come from only one voxel
(a three-dimensional pixel), the noise source is potentially the whole body. A mechanism to
reduce our sensitivity to noise but not to signal would clearly be beneficial and this is why
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localized receiver coils are important. This can be illustrated by considering two simple loop
antennas: a small one and a large one. For the purposes of this discussion, we shall assume
for the sake of simplicity that the signal sensitivity at a given voxel positioned above their
centrelines is the same for both coils. The contribution to the signal measured by a given
coil is stronger for spins located close to it, and becomes weaker the further they are from
the coil. This property is designated by coil sensitivity and it is determined by the amount
of magnetic flux generated at the voxel captured by the coil. In an imaging experiment the
signal is localized via the MRI process and so because the coils sensitivities are the same at
this location, both receive the same signal from this voxel. However the noise that each coil
sees is proportional to the integrated sensitivity of the coil over the whole sample, which is
larger for the larger coil. The SNR performance of this coil at this voxel is therefore less good
than that of the small coil.

The benefit of the large coil becomes apparent if we consider a second voxel some distance
from the first. In this case the sensitivity of the large coil exceeds that of the small coil and so
the SNR at this location is more favourable for the large coil. The development of the array
coil stems naturally from this discussion. To have the SNR benefit of the small coil with the
spatial coverage of a large coil independent multiple small elements are needed, i.e. an array.
Array coils were developed to facilitate large field of view high SNR imaging. Each element of
an array coil must be attached to a separate independent receiver system to minimize coupling
between elements, which would reduce the SNR benefit. So for a given imaging experiment
multiple full images, one for each coil element, can be reconstructed. We are then left with
the problem of how to combine these images for optimal SNR. Again Roemer explored this
problem for us (Roemer et al 1990). Simple addition of the images produces a non-optimal
reconstruction as the same voxel in each image has varying signal but the same level of noise.
An optimal combination was shown by Roemer to be:

Sopt = wi

S1

C1
+ wi

S2

C2
+ wi

S3

C3
+ · · · where wi = C2

i∑
C2

j

. (3)

At a given voxel location the signal from each coil is weighted by the coil sensitivities (C)
at this location. Here we used the convention that C2 = C∗ · C, where the asterisk denotes
complex conjugation. From this we can see that to optimally reconstruct array coil images we
need to explicitly know the coil sensitivities at all pixel locations. The sensitivity of a given
coil varies from voxel to voxel in three dimensions and its knowledge plays a crucial role in PI.
However, when Roemer wrote this paper, the requirement that sensitivities had to be known
(and therefore measured) was perceived to be onerous (probably because at that time gradient
performance was much lower than it is at present and so scan times were significantly longer,
coil calibration would have taken minutes rather than the 30s or so it now takes) as it implies
acquiring a separate coil reference scan. For this reason Roemer went on to demonstrate that
for almost all situations where SNR is intrinsically high a simple approximation of the sum of
squares (SOS) provides a close to optimal reconstruction. This astute observation may well
have been inadvertently responsible for slowing the rate of adoption of PI. Roemer’s paper
was written in 1990, shortly after the first parallel imaging proposals. The SOS approach
was widely (almost universally) adopted meaning that coil sensitivities were not routinely
measured. If the SOS approximation had not been adopted, then all the tools for PI would
have been in place: the use of array coils and reference scans. As it was, calibration was not
explored until the emergence of PI in the late 1990s. Since then it has been demonstrated
that optimal reconstruction can be achieved even without explicit coil sensitivity maps by
extracting this information from the images themselves (Bydder et al 2002a). Figure 4 shows
a four-element spine array coil in its enclosure, the four individual images produced from
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Figure 5. In this example two local receiver coils are used for spatial discrimination. If an object
is imaged with these two coils located as illustrated, then the two full field of view images shown
are produced. If these are sub-sampled uniformly in k-space then the half field of view images
shown are produced instead. Rearrangement of these images with no further processing produces
the image on the right-hand side. The role of PI is to resolve the artefact present in such images.

each element and the final optimally combined image showing high signal to noise over the
whole spine.

2. The parallel imaging concept

It is intuitive that localized coils provide some degree of spatial encoding. If we look at a
simple two-coil imaging system where one coil is placed at the left of the head and a second
placed at the right, we can see from figure 5 that there is some redundancy in the spatial
encoding performed. If the phase encode direction is left to right, then in this experiment we
have performed 256 NMR experiments to encode the 256 voxels required to span the whole
object in this direction. The imaging time is 256 × TR. If we look at the image obtained from
coil 1 there is very little signal from the right-hand side of the brain and vice versa for coil 2.
This indicates that we may not need to encode these regions. In this particular example, we
could reduce the acquisition time by a factor of 2 by encoding only 128 voxels. This would
produce the two images shown in the third column of figure 5. These images can be combined
to produce an image of the full head in half the time albeit with serious artefacts. This method
was proposed as a possible reconstruction method (Griswold et al 2000). The problem with
this approach is that the final image is artefacted by intensity modulation and aliasing. The
role of all PI reconstruction algorithms is to perform accurate reconstructions from such data
and so remove the aliasing.

2.1. History of parallel imaging

Before moving on to look at the methodology of the current PI proposals we should review the
very first proposals. Starting with Carlson (1987), there have been a number of proposals that
suggested completely replacing phase encoding with spatial localization by coils (Hutchinson
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and Raff 1988, Kwiat et al 1991). Such methods are sometimes referred to as ‘massively
parallel’ methods. The ‘partial’ in PPI is used to clearly distinguish it from these early
methods, which apply inverse source procedures to reconstruct an image of the object from
the signals received by a large number, typically 128 coils. There are a number of problems
with such a proposal. Manufacturing large coil arrays holds major challenges and scanners
at this time rarely had more than one receiver channel. It would be another almost two
decades before 128 channel machines even hit the drawing board. A much more significant
impediment to such non-phase encoded imaging is SNR. Whilst Fourier encoding via phase
encoding is time consuming, it has benefits as the SNR increases with the square root of the
number of phase encodes. This is known as Fourier averaging and is essential to obtain the
SNR we require for high quality imaging. If Fourier encoding is abandoned altogether, then
for a 128 × 128 image matrix the SNR drops by an order of magnitude. (We will see that this
dependence of the SNR on the number of phase encoding steps becomes critical in assessing
suitable applications for PI.) In addition to this, the number of reconstructed pixels is fixed by
the number of coils. This severely limits the radiologists who need to be able to determine the
resolution of the acquisition based on the anatomical detail they require, and not to be limited
by the coil number to these low resolutions. Such limitations have not deterred some recent
researchers lured by the incredible imaging speeds possible with single echo acquisition (SEA)
from rising to the formidable engineering challenges inherent in trying to construct such a
system (McDougall and Wright 2005). Presently, these systems remain very much in the
research arena with only very limited potential applications.

The first partially parallel imaging proposals, where coil encoding was used as an
augmentation to Fourier encoding, came in 1993 (Carlson and Minemura 1993). Neither
were experimentally realized in vivo, with results limited to phantom objects. It was not until
Sodickson’s seminal abstract at the 1997 meeting of the International Society of Magnetic
Resonance in Medicine (ISMRM), and his follow-up paper (Sodickson et al 1999), that the
community really embraced the potential of these methods. The reason was simple. Not
only did Sodickson propose a method but he implemented it in one of the most challenging
applications of all: cardiac imaging. Cardiac imaging had until this point been limited
severely by gradient performance and the desire for whole heart free breathing imaging
was not realizable without breaking this limit. Sodickson’s paper was received with great
excitement amongst the few that realized its implications. One such group, Pruessmann
et al, realized, with hindsight, that the rather clumsy formulation proposed by Sodickson
could be made much simpler if the problem were stated in the image domain rather than
in k-space, as Sodickson had proposed. This leads to the sensitivity encoding (SENSE)
method which was presented the following year at ISMRM and eventually published in 1999
(Pruessmann et al 1999). Following these two pioneers, a slew of reconstruction methods
were proposed. It is beyond the scope of this review to give a detailed review of all of these as
there are great similarities and overlap. However, the next section will explore four methods
which represent a good cross-section of the types of methods available. Allied methods will
be referenced in each section.

2.2. Reconstruction algorithms

Firstly we look at an image domain method (SENSE) where both the coil reference data
and the sub-sampled target data are operated on in the image domain. The second method
(SMASH) keeps the coil information in the image domain but operates on the target data in
k-space. The third approach (generalized-SMASH) keeps both reference and target data in
k-space. In the final method presented (GRAPPA) all data are again in k-space but there are
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Figure 6. A pictorial representation of equation (4). The aliased pixel in the image from coil 1,
marked by a white square, S1 contains the sum of the spin density at location 1 multiplied by the
coil sensitivity at location 1 and the spin density at location 2 multiplied by the coil sensitivity
at location 2, likewise for coil 2. If the coil sensitivities are known (the maps shown) then these
equations are soluble for the spin density at both locations. A different set of equations can be
constructed for each pixel location in the sub-sampled images.

significant differences to the previous methods which warrant its inclusion. Both SENSE and
generalized SMASH produce exact solutions, SMASH and GRAPPA produce an approximate
solution.

2.2.1. Sensitivity encoding (SENSE). In its simplest form, SENSE (Pruessmann et al 1999)
is applicable to regularly sub-sampled Cartesian data, where the extent of k-space is kept the
same, maintaining the image resolution, but the distance between adjacent k-space lines is
increased by a factor r. As explained in the background section, the result is that the signals
from r locations, equally spaced along the sub-sampled direction, overlap in the image, see
figure 5. Provided that the coil sensitivity is not the same at those different locations, the
weight given to each of the signal components will be different, and different for each coil.
To illustrate, the case of an acceleration factor of 2 and a set of two coils will be considered.
For a pixel at location (x, y) in the aliased image, the signal measured by each of the two coils
is given by:

S1(x, y) = C1(x, y)ρ(x, y) + C1

(
x, y +

FOV

2

)
ρ

(
x, y +

FOV

2

)
(4)

S2(x, y) = C2(x, y)ρ(x, y) + C2

(
x, y +

FOV

2

)
ρ

(
x, y +

FOV

2

)
.

Here S denotes the signal intensity in a pixel in the sub-sampled image (an aliased signal). C
are the coil sensitivities at the locations of the two aliased pixels and ρ is the signal from the
object at these two pixel locations, (x, y) and (x, y + FOV/2). ρ is sometimes referred to as
the spin density of the object.

This system of equations is shown pictorially in figure 6. By considering both equations
simultaneously, and assuming that the coil sensitivities are known at the two locations, it is
possible to solve for the two intrinsic signal components. For now we will simply assume
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that the coil sensitivities are known. Later on we will describe how coil sensitivities can be
measured experimentally through a reference scan.

The equation above can be written in matrix form as:

S = Cρ (5)

where C is a matrix with N rows, corresponding to the number of coils, and r columns for the
number of overlapping pixels. The problem can be generalized to any number of coils and
acceleration factor. In order for this set of equations to be solvable, it is therefore necessary
to collect data with at least as many different coils as the acceleration factor r. The intrinsic
signal may be obtained through a least-squares approach, by calculating the general inverse
of the coil sensitivity matrix. To take into account possible differences in noise levels and the
noise correlation between different coil channels, the receiver noise matrix � is included in
the reconstruction:

ρ′ = (CHΨ−1C)−1CHΨ−1S. (6)

Here ρ′ indicates the reconstructed estimate of ρ. The matrix Ψ can be estimated through
the analysis of data acquired in the absence of MR signal. Letting ηi denote the noise sample
acquired by coil i, the Ψij entry of the noise matrix is given by:

Ψij = ηiη
∗
j (7)

with the bar indicating time averaging.
Reducing the number of phase encode lines leads in itself to a reduction in SNR of

√
r

due to reduced Fourier averaging. Also the SNR at each pixel in the reconstructed image will
depend on how easily this matrix inversion can be performed, i.e. on how different the coil
sensitivities are at the aliased pixels. There is therefore an extra term which needs to be taken
into account when comparing the SNR measured with reduced phase encoding, compared to
when full encoding is done: the so-called geometry factor or g-factor, which is dependent on
the particular geometry of the coil array. For a pixel p the relationship can be written in the
following way:

SNRred
p = SNRfull

p

gp

√
r

. (8)

The g-factor has become a standard method of assessing any parallel imaging algorithm.
When applying the SENSE algorithm, the g-factor at pixel p can be directly calculated
from

gp =
√

[(CH�−1C)−1]p,p[(CH�−1C)]p,p. (9)

We will discuss the g-factor further in the limits section.
When regular sub-sampling is used, only pixels located along the phase encode direction

and at well-determined distances from each other (related to the distance between sampled
points in k-space) will overlap in the undersampled image. This allows breaking down the
general problem into a series of small equations solved separately for each aliased pixel group
as explicitly described in (4). The solution comes from the inversion of small matrices. For
a reduction factor of r, it would be necessary to invert N/r r × r-sized matrices. This pixel
group by pixel group approach is the simplest PI reconstruction method and is sometimes
referred to as ‘simple SENSE’.

If sub-sampling along the phase encode direction is no longer regular, as in the example
seen in figure 2(d), every pixel within a row of the image may potentially alias with each
other. In this case the problem is only separable for pixels located at different positions along
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the read direction and so larger matrices are required to be inverted, increasing computational
complexity and therefore reconstruction time.

In the general case of variable sub-sampling in all directions in k-space, every pixel can
potentially alias with all the others and there is no alternative but to try and invert the whole
encoding matrix. Given the very large size of this matrix (N2 × N2 for a square image sized
N × N), the memory requirements and the time needed to solve this problem would be too
large to be practical. Fortunately there are numerical methods which enable us to solve
the problem in an iterative way, without having to explicitly calculate the inverse matrix.
The conjugate gradient (CG) approach, for instance, can be used to solve linear systems of the
form Ax = b, provided that the matrix A is positive definite (Hestenes 1952). Although this is
not generally the case, the original set of equations (5) can be altered so that the matrix to be
inverted (CHΨ−1C) obeys this requirement (Pruessmann et al 2001b):

(CHΨ−1C)ρ = CHΨ−1S. (10)

A further simplification is possible, whereby modifying both the encoding matrix and the
sampled data, the noise matrix can be removed from the equation above (Pruessmann et al
2001b).

In practice this inversion problem can be solved more efficiently by replacing some of
the steps implicit in the encoding matrix with their equivalent functional forms. Fourier
transforms, for example, can be applied using the fast Fourier transform algorithm (FFT),
instead of having to build a matrix containing the required Fourier terms. This approach can
also be applied to non-Cartesian schemes provided that forward and reverse gridding steps are
introduced (Pruessmann et al 2001b).

2.2.2. Simultaneous acquisition of spatial harmonics (SMASH). Although it was the
introduction of SENSE that really pushed the field of parallel imaging forward, the use
of multiple receivers coils to speedup acquisition had already been demonstrated in vivo
by Sodickson and Manning (1997). The reconstruction technique they developed is called
SMASH. In this case the reconstruction is performed with the target data in the k-space domain,
while the coil sensitivities are kept in image space. In order to understand how k-space-based
methods work, it is important to bear in mind the signal equation, relating the k-space signal
sampled by a coil j with sensitivity Cj(x, y) to the spin density of the object being imaged
ρ(x, y):

Sj (kx, ky) =
∫ ∫

Cj(x, y)ρ(x, y) exp(−ikxx) exp(−ikyy) dx dy. (11)

Here the Fourier relationship between image domain and k-space is written explicitly as the
integral over x and y.

In SMASH the coil sensitivities are used to explicitly perform the omitted phase encoding
steps. Figure 3 shows that a field of view reduction increases the spacing between samples in
k-space. Each phase encoding gradient applied imparts a sinusoidal phase modulation across
the whole object. It is this modulation that ‘shifts’ the measured data in k-space. In SMASH
the coil sensitivities are fitted to idealized phase encode shift functions which are then applied
to repopulate missing lines in k-space. The coil sensitivities are linearly combined so as to
approximate the required spatial harmonics. For a speedup factor of r, this means that all
spatial harmonics from the 0th (a constant) till the rth order need to be synthesized. The
weight given to each coil to generate each of these harmonics can be determined through a
least-squares fit. For the mth spatial harmonic this is equivalent to determining the weights
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wm
j in the equation below, where j is the coil index counting from 1 to the number of coils N,

Cj represent the coil sensitivity for the jth coil and �ky = 2π
FOVy

.
∑

j

wm
j Cj (x, y) = exp(−im�kyy). (12)

An example of how spatial harmonics can be generated by combining coil sensitivities is
shown in figure 7.

These weights can then be used to combine the signals measured for each coil and generate
a composite signal at both sampled and originally un-sampled locations. This is equivalent to
combining together (11) and (12):
∑

j

wm
j Sj (kx, ky) ≈

∫ ∫
ρ(x, y) exp(−ikxx) exp(−ikyy) exp(−im�kyy) dx dy

= S(kx, ky + m�ky). (13)

The problem with this approach is that it is not valid for general coil geometries. In order for
SMASH to work, it must be possible to construct good approximations to the spatial harmonics
required. While this may be reasonable for a linear coil array provided that the coil structure
is adequately related to the image FOV, it is difficult to achieve good results in many cases.

2.2.3. Generalized-SMASH (g-SMASH). Although the introduction of both SMASH and
simple SENSE represented a major breakthrough, it was clear that new algorithms needed to
be developed in order to try and overcome their limitations. Two important goals were to enable
the use of general coil geometries, as in SENSE, and also to be able to sub-sample k-space
along the phase encode direction in a non-regular way if so desired. The second requirement
was not applicable to SENSE in its initial implementation but, as already explained, a more
general approach was later developed which allows for the use of arbitrary k-space sampling
schemes (Pruessmann et al 2001b).

Two schemes developed to overcome these problems were g-SMASH (Bydder et al 2002c)
and ‘Sensitivity profiles from an array of coils for encoding and reconstruction in parallel’
SPACE-RIP (Kyriakos et al 2000). In the case of g-SMASH, the reconstruction is performed
with the coil data in k-space. This is the main difference between this method and SPACE-RIP,
in which case the coil data are kept in the image domain. Due to their similarity, only the first
method will be examined here and the modifications required to implement the second one
discussed.

g-SMASH is based on a similar expression to (12) for SMASH. In this case, however, the
equation is reversed and the sensitivity of each coil expressed as a sum of Fourier terms along
the phase encode direction:

Cj(x, y) =
q∑

m=−p

am
j exp(−im�kyy). (14)

Given that the data are fully sampled along the read direction, it is possible to take the Fourier
transform of the signal equation (11) along the read direction, taking the data into hybrid
space:

Sj (x, ky) =
∫

Cj(x, y)ρ(x, y) exp(−ikyy) dy. (15)

By replacing the coil sensitivities in the above equation with the expression in (14) it is possible
to relate the coil modulated signal, which is measured, with the intrinsic MR signal which is
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Figure 7. If we take the example of the four coil elements from the spine coil in figure 4 then
the sensitivity profiles plotted along the long axis are seen on the left-hand side of the figure. The
individual profiles can be seen as a thin line and the summed profiles as the solid line. In the
simplest form of SMASH this sum is assumed to be constant over the field of view and as such
represents the weights required for the zeroth term in k-space. An example of a higher order term
is seen on the right. Here the coil combination weights have been set as shown and a sinusoidal
modulation has been constructed across the image. This combination produces a shift in k-space
allowing missing lines to be filled in.

unknown:

Sj (x, ky) =
q∑

m=−p

am
j

∫
ρ(x, y) exp(−ikyy) exp(−im�kyy) dy =

q∑
m=−p

am
j S(x, ky + m�ky).

(16)

Given that for samples taken at neighbouring points there is an overlap between the involved
S(x, ky − p�ky) to S(x, ky + q�ky) terms, all the equations corresponding to the same value
of x can be combined. The different versions of (16) for each coil can also be considered
simultaneously. Solving these sets of linear equations will thus be equivalent to inverting a
large encoding matrix E, where the N matrices corresponding to each of the individual coils
are vertically stacked.

S1(x)

· · ·
SN(x)


 =


E1(x)

· · ·
EN(x)


 S(x). (17)

Given that the product of Ej(x) and S(x) represents a convolution, each matrix Ej(x) is formed by
cyclic permutations of a vector containing the Fourier terms aj

m(x). This gives the encoding
matrices a very particular appearance as shown in figure 8 for the simpler case of regular
sub-sampling.

To obtain the equivalent expression for SPACE-RIP, it is only necessary to insert a Fourier
transform F and its inverse between the Ej and S matrices:

Sj = Ej (F−1F)S = (Ej F−1)(FS). (18)

By doing so the coil matrix (Ej F−1) and the reconstructed data (FS) will no longer be in the
(x, ky) hybrid space, but in the image domain. It is important to note, however, that because
coil data can be represented more compactly in k-space, the encoding matrix is sparser in this
representation which means that its inversion is more efficient in the case of g-SMASH.

The main benefit of either of these methods is that they are compatible with the use of
non-regular sampling schemes. This is advantageous in cases where it is possible to extract the
coil sensitivities from the data itself, without the need to perform separate reference scans and
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Figure 8. Construction of a g-SMASH encoding matrix. The example shown corresponds to
regular sub-sampling with an acceleration factor of 2 and two coils with phase-encoding in the
left–right direction (y). On the left of the figure the sensitivity maps of the two coils are shown in
the image domain. In order to construct the g-SMASH matrix, the sensitivities are transformed
into the hybrid (x, ky) space. To reconstruct the voxels in the object with a given coordinate x, the
corresponding coil Fourier terms (the two rows indicated) are required as shown in the middle.
The convolution operation is obtained by applying circular permutations to the coil’s Fourier terms
according to the used sampling scheme. The encoding matrix will display as many blocks as the
number of coils (two for this particular example).

also in artefact correction schemes where damaged lines of k-space are identified and rejected
leaving unpredictable holes in the data (Bydder et al 2002b). The main disadvantage of both
g-SMASH and SPACE-RIP is that, as already discussed in the SENSE section, by allowing
for more general sampling schemes, higher computational costs are incurred as it becomes
necessary to invert larger matrices.

2.2.4. Generalized auto calibrating partially parallel acquisition (GRAPPA). GRAPPA,
introduced by Griswold et al (2002) whilst being a pure k-space method like generalized
SMASH takes a rather different approach which leads to a rapid reconstruction method
allowing k-space reconstruction at small computational cost. As its predecessors Auto-
SMASH (Jakob et al 1998) and VD-AUTO-SMASH (Heidemann et al 2001) it derives from
SMASH.

In SMASH, the un-sampled k-space positions can be populated once the coil weights
relating the coil sensitivities to the relevant spatial harmonics have been determined. Originally
this was done by fitting the coil sensitivity data. In GRAPPA, reference data are referred to as
a calibration signal. Theoretically, for an acceleration factor of 2, only a single k-space line
is required, but in practice many more are used to improve the reconstruction. These k-space
lines can be collected separate or integral to the acquisition. When integral to the acquisition
they are known as auto-calibration signals (SACS). In Auto-SMASH, a fit is performed to
determine the weights relating the shifted auto-calibration signal to the main data acquired
with the same coil j:

∑
j

nm
j Sj (kx, ky) =

∑
j

SACS
j (kx, ky + m�ky). (19)
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Figure 9. A 5 × 4 GRAPPA reconstruction kernel is illustrated for an acceleration factor of 2
with three coils. The points in grey correspond to the normally acquired sub-sampled data, while
auto-calibration signal (ACS) lines are shown in black. The un-acquired points are not shown. In
order to estimate the signal at these points, the weights that relate the signal at a particular location
with that of its neighbours must first be determined. The fitting process is performed to the extra
ACS lines. Depending on the choice of kernel, the group of pixels considered in the fitting will
vary. For these particular dimensions (5 × 4), and to fit, for example, the ACS signal acquired by
coil 2 at location (kx, ky) as indicated by the white circle, all points within the three black boxes
shown would be used.

These weights are subsequently applied to construct the un-sampled lines. The difference
between Auto-SMASH and VD-AUTO-SMASH is that in the latter case more than the
minimum amount of k-space lines (r − 1, where r is the acceleration factor) are acquired
in order to determine the coil weights more accurately.

A feature of GRAPPA reconstructions is that separate images are reconstructed for each
coil. These can be combined finally by any means desired (typically SOS). In order to
determine the reconstruction weights the following expression is employed:

Sj (kx, ky + m�ky) =
∑

l

∑
b

n(j, b, l,m)Sl(kx, ky + br�ky) (20)

where r is the acceleration factor and b is an index that counts through the multiple lines used
in the reconstruction. The implementation of GRAPPA was later improved, and the size of
the kernel used for determining the coil weights extended so as to consider also points along
the kx direction (Wang et al 2005). For a 5 × 4 kernel the reconstruction could be written as

Sj (kx, ky + m�ky) =
N∑

l=1

2∑
a=−2

1∑
b=−2

n(j, a, b, l,m)Sl(kx + a�kx, ky + (br + 1)�ky). (21)

A kernel of this size is illustrated in figure 9.
The size of the kernel used in the reconstruction is chosen by the user. If all acquired

data points were used, a more exact reconstruction would be obtained. However, as the more
significant weights are the ones relating neighbouring points, smaller blocks can be considered
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without significant penalties in terms of image fidelity. This truncation is advantageous in that
it reduces the computational times required. The reason why it is possible to use small kernels
is that normally the coil sensitivities can be described by a small number of Fourier terms. The
extent of information in k-space is therefore contained within the immediate neighbourhood
of each k-space data point considered.

2.3. Discussion

It is important to note that if accurate coil sensitivity maps are available, it is preferable to use
full reconstruction methods such as SENSE (simple or generalized) or generalized SMASH as
the other methods discussed here, SMASH and GRAPPA, are approximate solutions resulting
from a least-squares optimized fit to spatial harmonics. However, there are cases when
obtaining precise coil sensitivity data may be difficult and in these cases the fitting procedure
can constrain the solutions to produce more benign errors in the final reconstruction.

A major difference between these methods is computation time. Simple SENSE, SMASH
and GRAPPA are rapid enough to be used ‘real time’ on scanners. The other methods all
have too high a computational cost to be available in real time. SMASH in its original form is
susceptible to severe artefacts but modified versions e.g. VD-AUTO-SMASH are more robust.

3. Implementation

In MRI the raw data that we acquire are complex (have a magnitude and a phase component).
Generally we ignore the phase component when viewing images and in the examples shown
in figures in this review only the magnitude components of both target and coil reference data
have been shown for simplicity. However, phase plays a crucial role in the reconstruction
process in PI. The coil sensitivity varies in space in both phase and magnitude and so keeping
the phase information is required to make accurate reconstructions. All the linear algebra
described in the algorithms section is performed on complex data sets. The final reconstructed
image can then be displayed conventionally as magnitude only images. For this reason even the
image domain reconstruction processes have to intercept raw data on the scanner rather than
be applied post the usual image production process. Coil reference data, if acquired separately
also have to be stored in its complex form to be used in subsequent image reconstructions.

3.1. Coil calibration

The majority of algorithms for image reconstruction are robust and have well-defined
properties. However, the final image is in general only as good as the data that are input into
it (we will look at some cases where PI can improve the quality of the image reconstruction in
the final section). In PI there are two types of data used, the image data and the coil reference
data. In a practical implementation of PI the acquisition and subsequent treatment of the coil
reference data is of crucial importance. The impact of the reference data on the final image
should be completely benign, which requires the coil reference data to be ideally noiseless
and perfectly accurate. Such requirements are almost achievable in practice if care is taken in
the measurement.

For all the image reconstruction methods described in this review, low resolution reference
data is required but the domain in which it is used varies (a slight variant on this is GRAPPA
which does not explicitly extract coil information from object information, we will return to
this later in this section). Subject dependent calibration is required for reasons discussed later
in section 3.4.2.
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Figure 10. On the left is a k-space representation of coil calibration data. It is low resolution
as kmax is reduced but full field of view, as �k is small. This low resolution full field of view
data can provide coil reference data to reconstruct the data next to it (in the middle), which is full
resolution but half field of view. An auto-calibration (or self-calibrating) acquisition interleaves
the calibration k-space lines with the main acquisition, as shown on the right.

Reference data can be acquired as a separate scan (pre-scan) or as an integral part of the
acquisition (auto-calibration). Both methods generally result in a low resolution fully sampled
(full field of view) image of the target object. Pre-calibration has the advantage of having
flexible contrast (the contrast in the image is removed and so the only criteria for setting TE
and TR are to maximize SNR) and allowing multiple averages to be used to maximize SNR.
It also provides greatest efficiency if multiple accelerated scans are required. On the other
hand, integrated calibration has the advantage that the reference data and the target data are
locked together in time more closely, so that the reconstruction is less susceptible to change
(e.g. motion). The price for this comes in lower temporal efficiency and low SNR reference
data. Any reconstruction method can use pre or integrated calibration (including GRAPPA).
It is generally accepted that the advantages of pre-calibration outweigh those of integrated
calibration except in the presence of motion where the closer registration of the reference data
to the target data may yield better results. It has nevertheless also been shown that averaging
the pre-calibration acquisition also produces significant robustness to motion (Larkman et al
2001). Figure 10 illustrates the k-space acquisition schemes used for both pre-calibration and
auto-calibrated Cartesian acquisitions.

The coil sensitivity maps cannot be directly extracted from these calibration scans, as they
still contain anatomical information. The next step is to remove this anatomy by dividing the
images by some linear function of the same anatomy. By this we mean divide by an image
with the same contrast or a linear combination of images with the same contrast.

Figure 11 shows this process in images. There are many possibilities here, but typically
a body coil image, the square root of the sum of the squared coil images or the image
corresponding to one of the coil elements is used. In this process all data must remain
complex. The choice of denominator dictates the final modulation in the reconstructed image.
For example in SENSE, the driving equation (modified from (5)) then becomes

S = Cα

Fα
ρ′ (22)

where the coil sensitivities are now contaminated by the anatomy α. An image containing the
same anatomy (and contrast) with a spatial modulation F is now used as a denominator for all
elements of the matrix C. To make this equation consistent we solve for ρ ′ which is given by:

ρ′ = ρF. (23)
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Figure 11. To extract coil sensitivity data from MR images the anatomy must be removed. This
is achieved by dividing the native coil images with, in this case, the sum of squares combination
of these two images. The result is seen in the third column: anatomy free coil maps. Usually low
resolution images are used which results in higher SNR and extrapolation of the coil information
as seen in the final column.

The final reconstructed image is modulated by the sensitivity function used as the denominator
in generating the reference data. If a single coil is used as the denominator, then solutions are
found for each coil sequentially and the results combined.

The calibration scans can be acquired rapidly due to the low resolution required. This is
because the spatial variation in coil sensitivity is low, and an image with a spatial resolution
of ∼5–10 mm is enough to capture most coil profiles currently used. This has the additional
benefit of extrapolating the coil reference data into regions of low signal intensity and extending
it beyond the boundaries of the object. The final column of figure 11 shows low resolution
coil sensitivity data. Comparing this to the high resolution example shown in the same figure
we can see that the signal void between scalp and brain is now filled. It is worth noting here
that as coil elements get smaller and increase in number, enabling higher acceleration factors,
the reference data will be required to be of higher resolution so as to capture all the spatial
harmonics contained within the coils. Once coil maps are obtained, additional smoothing,
filtering, extrapolation and surface fitting may be applied to reduce noise, but generally this is
not required provided that the source data are of high SNR.

GRAPPA uses coil information in a slightly different way, in that it is not extracted
explicitly. The reconstruction weights are calculated by fitting k-space to calibration data
directly, where both include object structure. This approach still allows both auto- and
pre-calibration approaches (despite the somewhat misleading ‘auto’ in the name). Whilst
small numbers of reference data lines have been used to generate reconstructions, practical
implementations use a similar number of lines to other methods to improve the quality of the
reconstruction.

A problem specific to auto-calibration methods is that the reference data cannot be
averaged over multiple repeats, and the contrast is locked to that of the target acquisition.
Because of this its SNR may be too low and result in the introduction of noise artefacts in



R36 Invited Topical Review

the reconstructed image. For auto-calibration methods where the coil information is extracted
directly, smoothing and fitting of the coil data is recommended to reduce sensitivity to noise.

A final stage in the production of coil data is to threshold out the background. This
excludes pixels which do not contain the object from processing. This reduces ill conditioning
of the reconstruction by including the prior knowledge that the correct signal value for these
locations is zero. However, when performing this step it is important to ensure that the mask is
not too harsh as otherwise regions at the edge of the object may also be erroneously excluded
(Haselgrove and Prammer 1986). Artefacts can appear in the reconstructed images if very
aggressive masks are used. This type of problem can be avoided by lowering the threshold
while increasing the level of smoothing. Additional extrapolation of the original mask can also
be performed (Pruessmann et al 1999). The optimal choice of threshold, smoothing levels
and size of the extrapolated regions results in a compromise. On one hand the amount of
noise in the reference data should be reduced as much as possible but on the other hand, one
has to ensure that no object regions are excluded from the sensitivity data due to excessive
thresholding.

3.2. Intrinsic limits

PI acceleration is achieved at a cost in SNR. As shown in (8) the loss in SNR is due to two
factors: firstly, a reduction proportional to the square root of the speedup factor which occurs
due to reduced temporal averaging. The remaining term, the g-factor, measures the level of
noise amplification which occurs as a result of the reconstruction process. This value depends
on how different the coil sensitivities are at the aliased pixels, so as to be able to distinguish
the signal contribution from each location, and is therefore dependent on the number and
configuration of the coils. In general we use many more coils than the acceleration factor.
This provides us with a vastly overdetermined system of equations and improves the numerical
condition of the matrix inversion at the heart of the algorithms discussed.

In practice, by using carefully designed coil arrays with six to eight elements, it has been
possible to attain a speedup factor of 3 along one dimension with acceptable (this being a
somewhat arbitrary definition) g-factor penalties (mean g-factors of 1.4 or 1.6 and maximum
of up to 2.9) (Weiger et al 2001, de Zwart et al 2002). Unfortunately, the g-factor seems to
increase very abruptly if higher acceleration rates are attempted (Weiger et al 2001) and so
the g-factor is thought to represent an intrinsic limit to PI.

This assumption has led to the investigation of the intrinsic limits of PI. The question is
whether there is a fundamental limit to the achievable speedup factor, even when assuming
that an optimal coil array could be used. Ohliger et al (2003) and Wiesinger et al (2004a) have
analysed the problem looking at the electrodynamics of the detection process. They noted that
the signal and noise are necessarily coupled as they are associated with magnetic and electric
fields respectively, which are linked through the Maxwell equations. Further constraints are
imposed by the characteristics of the tissues, such as their conductivity and dielectric constants,
which in turn depend, through the resonance frequency, on the strength of the static magnetic
field. These studies concluded that provided that low or moderate reduction factors are used,
the minimum g-factor achievable does remain close to the ideal value of 1. However, for
reduction factors above a certain critical limit, the minimum g-factor increases exponentially
leading to prohibitively low SNR levels.

For field strengths up to 5 T, it was found that the maximum reduction factor, corresponding
to an arbitrary g-factor value of 1.2, is between 3 and 4 for undersampling along one dimension
(Wiesinger et al 2004a). These simulations were performed considering an idealized spherical
object with physical properties and dimensions close to those of a human head. However it
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was shown that higher total acceleration factors can be attained by distributing the aliasing
along multiple dimensions (Wiesinger et al 2004a, Ohliger et al 2003).

A further conclusion from these two theoretical studies, was that parallel imaging should
benefit from increased field strengths (Wiesinger et al 2004a, Ohliger et al 2003). As field
magnitude increases, the RF wavelength is reduced so that eventually a transition occurs
between the near-field (large wavelength) and far-field regimes (small wavelength). Given
that the coil sensitivities become more structured in the far-field regime due to propagation
and interference effects within the imaged object (Wiesinger et al 2006), the sensitivities of
the individual elements of an array become more dissimilar to each other as the field strength
increases. This results in an improved capacity to perform spatial encoding. The maximum
acceleration factor therefore increases with field strength once the critical field value has
been exceeded. The transition between the two types of regime occurs for a field strength
corresponding to a wavelength comparable to the size of the object. For a sphere of 20 cm
of diameter, taken as an approximation to the shape of the human head, the critical field is
between 4 and 5 T (Wiesinger et al 2006).

The benefits of increasing field strength were later confirmed experimentally, using the
principle of electrodynamic scaling (Wiesinger et al 2004b). This method mimics the effects
of increasing field strength without actually having to deal with the difficulties involved in
accessing systems across the required field strength range. This was achieved by modifying the
dielectric constant and conductivity of a phantom. The first is set by varying the proportions
of two miscible liquids with very different dielectric constants, whereas the conductivity can
be adjusted through the addition of different quantities of a soluble electrolyte.

Further support to the theoretical prediction that higher reduction factors can be attained
at higher fields has since been provided with the development of 7 T human systems. Initial
in vivo measurements at this field strength have resulted in g-factor values much lower than
those observed in comparable conditions at low field, with mean g-values of 1.26 for a reduction
factor of 4 (Adriany et al 2005).

Although it is now well established that increased field strengths should enable higher
reduction factors, the g-factor values observed experimentally are still higher than the predicted
minima. This means that there is still some margin for improvement in coil design for PI
applications. Unfortunately, by using improved set of coils one can only hope to reduce the
effective g-factor to values closer to, but not lower than, the intrinsic limits.

In response to these observed limits, some alternative strategies using prior information
or numerical tools have been developed to control the level of noise and artefact amplification
in the reconstructed image.

Reconstructing the image ρ′ from the measured data S requires the inversion of an
encoding matrix C as implied in (5). One way to understand how noise amplification occurs
in parallel imaging reconstruction is to consider the singular value decomposition (SVD) of
the m × n encoding matrix C:

C = U	VH (24)

where Σ is an m × n matrix containing the nonnegative singular values σ i in the diagonal and
zeros off the diagonal, and U and V are two square unitary matrices with dimensions m × m
and n × n.

When all the singular values have the same value, small changes in the measured data do
not have a significant impact on the reconstructed image. The encoding matrix is then said to
be well-conditioned and the condition number, the ratio between the largest and the smallest
eigenvalues, is in this case equal to the ideal value of 1.
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However if, for example, one of the singular values is much smaller than all the others,
the corresponding singular value of the inverse matrix will be much larger than all the rest.
Under these conditions, even a small amount of noise in the data, provided that it has some
component along the direction of the eigenvector associated with this particular eigenvalue,
will result in large differences in the reconstructed image. In this case a high condition number
will be associated with the encoding matrix.

One possible strategy to limit noise amplification is to set all the eigenvalues which are
lower than a certain threshold to zero (σ i = 0 for all i > k). In these circumstances, the
corresponding eigenvalues associated with the inverse matrix will now be null and the level of
noise in the reconstructed image is significantly reduced. The solution computed in this way
is called the truncated SVD solution and constitutes an approximation to the full solution. By
discarding the smallest singular values the noise in the image can be controlled at the cost of
losing some information regarding the object. Normally the threshold ε is chosen in a position
in the sequence of singular values where a large gap occurs: σ k > ε � σ k+1. This type
of strategy can be applied with reconstruction algorithms such as g-SMASH or SPACE-RIP
for which the matrices to be inverted (one per image column) are sufficiently large so that
the fraction of singular values retained still provides a reasonable approximation to the true
solution.

However, in the case of standard SENSE a set of small matrices, each associated with
a different group of aliased pixels, needs to be inverted instead. As the number of singular
values for each of these matrices is already very small, truncated SVD is not an adequate
approach. Traditionally the method most used here is to add an extra term to the minimum
least-squares formulation (King and Angelos 2001). When using the least-squares approach
to solve a set of linear equations, the goal is to minimize the error between the measured and
the predicted signal:

min
ρ′

‖Cρ′ − S‖2. (25)

To prevent large noise amplification, an extra term is added that penalizes solutions for ρ

having very large norms:

min
ρ′

‖Cρ′ − S‖2 + α2‖ρ′‖2. (26)

This method is known as damped least-squares or Tikhonov regularization. The factor α2 in
the equation above is known as Tikhonov factor (Tikhonov and Arsenin 1977). By adjusting
the value of this factor, more importance can be given to either of the two terms, with high
Tikhonov factors leading to reduced noise at a cost of increased aliasing artefacts in the
reconstructed image and vice versa (King and Angelos 2001). Using methods such as the
L-curve algorithm, an optimum regularization factor can be determined corresponding to a
good trade-off between the two effects (Hansen 1998). The second term in (26) can be further
modified so as to include prior information regarding the solution (Lin et al 2004).

An alternative approach to these regularization methods is to include prior knowledge of
the object into the reconstruction (Larkman et al 2006). These methods are currently confined
to research applications. An example of such a method uses image domain joint entropy
between the data being reconstructed and a second image of the object. This method can
be understood by looking at how noise in the measured data affects the reconstruction. By
choosing ρ and S to represent the image and measured signal in the ideal situation where no
noise is present, it is possible to see that the errors in the reconstruction (δρ) come from the
action of the inverse of the encoding matrix on the noise δS:

ρ + δρ = C−1(S + δS) (27)
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so that

δρ = C−1δS. (28)

This method estimates the error δρ by treating the noise δS as a free optimization parameter.
The reconstructed image (ρ + δρ) can then be corrected and an image closer to the ideal
recovered. However, in order for this to be achievable, it is necessary to reduce the search
space by constraining the problem. The assumption is that as a system becomes less well-
conditioned, the relative weight of the largest eigenvalue of the inverse of the encoding matrix
becomes larger. The principal singular value can come to represent a significant fraction of
the average of all eigenvalues. For the exactly determined case it is possible to obtain a good
approximation to the inverse of the encoding matrix by taking its principal eigenvalue (α1) and
its associated eigenvector (λ1) which largely reduces the number of degrees of freedom when
trying to estimate δρ. Now only the scalar quantity δs corresponding to the error associated
with the direction of the principal eigenvector needs to be determined:

δρ = C−1δS ≈ α1λ1δs. (29)

In order to be able to evaluate whether the new image is closer to the truth, the joint histogram
entropy between the corrected image and the reference (unfolded) image is calculated. The
g-factor noise reduces the similarities between the reconstructed image and the reference data,
so the minimum joint entropy is achieved when the noise has been minimized. In this process
it is not required that the two sets of images display the same contrast. The reference image
is merely used to provide information regarding how many tissue classes exist in the sample
and how they are distributed in the object. Because of the constrained nature of the method
it is very robust to the usual problems associated with prior knowledge regularization where
information from the regularizor appears in the reconstructed image. Provided the regularizor
image has high signal to noise, SNR is increased in the target image (and hence g-factor
reduced). However the method can only improve the image to the extent that the principal
eigenvector describes the full system and so it is powerful where the g-factor is very poor but
is less effective in other areas.

3.3. Artefacts

In order to obtain accurate reconstructions, it is very important to ensure that the coil sensitivity
information is consistent with the main data. Inconsistencies can be introduced due to motion,
low SNR or other artefact.

When the reference scan is acquired separately from the main data, motion may be a
problem. It is possible that the overall position of the subject may have changed between the
two acquisitions. If the coils remained static (i.e. if a rigid fixed array was used like a head
coil) and the subject is still contained within the region of reference data (remembering that
the low resolution acquisition means that reference data are extrapolated beyond the actual
boundaries of the subject) then the reconstruction is largely unaffected. However, if the subject
moves to a region where sensitivity data have not been measured, then the reconstruction is
severely affected with large residual aliasing left (figure 12(a)). In the case of arrays which
are not rigid then the coil positions themselves can move with respect to the patient. This
introduces errors which result in incorrect reconstruction leaving residual aliasing potentially
across the target data (figure 12(b)). In order to avoid bulk motion of the subject, care must
be taken to ensure that the subject is lying in the scanner as comfortably as possible. Extra
padding may also be used to further restrict patient motion. Such bulk motion artefact can also
be avoided using auto-calibration and accepting the commensurate reduction in acceleration
factor. Another option is to re-acquire the calibration data if the subject moves.
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(a) (b) (c)

Figure 12. (a) Artefacts typically seen if movement of the subject is gross between reference data
acquisition and target data acquisition. (b) Similar artefact but now produced by a shift in the coils.
(c) The effect of incorrect planning where aliasing remains in the un-accelerated field of view and
is not accounted for in the reconstruction.

When echo planar imaging is used, inconsistencies between the reference data and the
target data are likely due to the distortions present in the EPI data. Reference data are typically
acquired using a gradient echo sequence and then applied to an EPI target data set. (Figure 3
shows the difference between these two types of images.) Even if an EPI acquisition is used
for reference data, given that the echo train spacing is likely to be different from the used when
acquiring the reference image, the level of geometric distortions observed will still not be the
same between target and reference data. In both cases this can lead to mismatches between
the two images. It is possible to correct for this effect by using a field map to distort the
reference data to the same level, but this solution requires the acquisition of extra data and
therefore prolonging the total acquisition time. However the higher the acceleration factor, the
lower the distortions in the final reconstructed image. Typically at acceleration factors between
2 and 3 the distortions in the final reconstructed image are small enough such that standard
reference data provide adequately matched images in all but the most severely affected regions
of the brain. In EPI artefacts can be reduced by pushing the acceleration factor higher.

Artefacts may also appear in the reconstructed image when a FOV smaller than the
dimensions of the subject is used for the target data. In cardiac imaging this is often done
to increase image resolution without having to use larger image sizes and therefore longer
acquisition times. In a non-accelerated acquisition the final images have aliasing in them but
it does not encroach on the area of interest. However, when the same FOV is used in an
accelerated acquisition, the reconstructed image may display artefacts, with signal originating
from regions outside of the FOV overlapping with the myocardium (Goldfarb and Shinnar
2002). This type of artefact can occur while using parallel imaging algorithms such as SENSE
(Pruessmann et al 1999) which aim to directly invert the encoding matrix (Griswold et al
2004). Similar artefacts are seen also when the reference data mistakenly contain aliasing
also. This can occur when the subject is large e.g. foetal imaging. Figure 12(c) shows the
typical appearance of such artefacts. The simplest solution to these artefacts is to increase
the FOV so that no wrap-around would occur in the non-accelerated image or the reference
data. Other possibilities exist if the aliasing is only present in the target data. The apparent
coil sensitivities at the aliased locations can be calculated but a significant problem with this
approach is that the assumption of smoothness would no longer be valid for these sensitivity
data (Griswold et al 2004). High resolution reference data would hence be required, and
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are generally not available. A second possibility would be to alter the basic reconstruction
equations to account for the extra-aliasing; this effectively increases the acceleration factor
used in the reconstruction. While using full FOV reference data, the g-factor noise can still
be kept under control using SENSE as suggested by Winkelmann et al (2005b). The image
is reconstructed once to estimate, through filtering, a body coverage map. This mask is then
applied to the sensitivity data so as to exclude any background voxels from the reconstruction.
As the number of overlapping aliases is reduced, so is noise amplification.

Any detrimental consequences to using reduced FOV reference data can be avoided by
using the approximate reconstruction algorithms, SMASH (Sodickson and Manning 1997) or
GRAPPA (Griswold et al 2002), which try to recover the missing k-space information using
the neighbouring k-space points instead. These methods are effective because the relationship
between the k-space data at each point is not inherently altered by choosing a smaller FOV
(Griswold et al 2004).

3.4. The hardware

3.4.1. System requirements. As discussed in the introduction, the theoretical framework
for PI was proposed in the late 1980s but there was a delay in its widespread adoption due
the lack of multi-channel machines. After the widespread adoption of array coils to increase
SNR for large FOV imaging, the principles of which are outlined in Roemer’s paper (Roemer
et al 1990), then the essential hardware for PI was in place. The receiver chain for these
multi-channel machines remains to this day largely as described in Roemer’s paper. The main
impact that PI has had on MR systems is the proliferation of channels and the design of coils
to use these channels.

Optimal SNR in most applications delivers diminishing returns as the number of
independent receivers increases. Generally (a gross generalization!) a system with between
four and eight channels yields a good performance and hence commercial systems before
PI were usually sold with these many channels. PI quickly demonstrated that, even for
modest accelerations of 2–4 at field strengths of 1.5–3.0 T, many more channels are required
to overdetermine the system and produce numerically stable reconstructions with a small
g-factor. Having eight channels rapidly became a minimum requirement rather than an upper
limit.

Due to g-factor, accelerations are generally limited to 2–3 at currently used field strengths.
Given this, a simple assessment might conclude that eight channels would be sufficient to
provide this level of acceleration with enough overdetermination of the reconstruction to keep
it accurate. However, in general the coils do not have the ideal geometry with respect to the
desired field of view: they are not arranged as linear arrays with the principal direction of
variation commensurate with the acceleration direction. For this to be the case, the phase
encode direction in all imaging exams would be dictated by the coil geometry rather than the
anatomy of interest. If the imaging plane is rotated away from the optimal direction in a linear
array, the image quality will drop due to the unfavourable geometry. We can therefore see that
the choice of imaging plane w.r.t. coils is critical. Taking the example of a cardiac application,
this becomes clear where short and long axis views of the heart are inevitably double obliqued
w.r.t. the magnet axes. To maintain the g-factor for all imaging planes in such an application
is a major challenge. A key component is to increase the number of coils so that for any given
imaging plane there is a subset of coils which provide a well-conditioned reconstruction. In
the torso this has been achieved with 2D arrays (Hardy et al 2004). In the brain a number
of designs have been proposed. Current coil designs are looking at using 32, 64 or even
128 channels to try and achieve this flexibility.
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Two principle system challenges arise from an increase in channel numbers: how to
handle the large increase in data throughput and how to manage the increase in cabling that
is commensurate with a large volume of coils. Data throughputs of 20 MB s−1 have been
reported for a 16-channel system which, for rapid imaging protocols can quickly lead to
very large sets of data (Bodurka et al 2004). A 40 min fMRI scan would easily result in
raw data exceeding 40 GB per subject. With 32-channel systems this could double. After
image reconstruction the raw data will generally be reduced by a factor of the number of
coils, but the reconstruction process will need to handle this volume and flow of data (Hardy
et al 2004). Moore’s law has been of considerable help with increasing computational speed
helping maintain tolerable throughputs. The reconstruction processes themselves are highly
parallelizable at multiple graining levels, on a volume by volume basis, slice by slice basis
and, for image domain reconstructions, on a pixel group by pixel group level. One research
group has dedicated a ten-node Linux-based ‘Beowulf’ processing cluster (Niendorf et al
2006) to explore the use of parallel computing for parallel reconstruction. The widespread
availability of 64 bit computing is making addressing of large amounts of memory possible
while also making an impact on the ability to reconstruct these large data sets. Even with all
this development, real-time reconstruction is still a challenge for systems with large numbers
of array coils and both the research community and the manufacturers are working on this
problem.

The mechanical architecture changes required to accommodate the large number of
electrical connections from large numbers of coils are also proving challenging. Space inside
the bore of the magnet is at a premium and so embedding cabling (and sometimes coils) in
the patient handling mechanisms is one approach. Optical coupling has been suggested and
time domain multiplexing has been a longstanding approach used to maximize the use of
fewer receive chains (Bankson et al 2000). However, multiplexing is generally thought to
compromise SNR too much to be anything other than a transitional technology.

PI has not produced a conceptual paradigm shift in MR system hardware but has provoked
a step up in the computation power systems now need to carry with them.

3.4.2. Coil design. Coil design is an area where PI has had a huge impact. It rapidly became
clear that the design criteria for an array coil used for optimal SNR imaging and one for PI
might be different. At this point coil design could have diverged with some arrays being
specifically designed for PI and some specifically designed for SNR. However it is generally
acknowledged that coils should perform well under both paradigms and so the more extreme
PI coil designs which improved g-factor at great expense of baseline SNR were not generally
adopted (Ohliger et al 2005). A full discussion of coil design is beyond the scope of this
review and we would refer the interested reader to a review article by Ohliger and Sodickson
(2006). We will discuss the features of array coils and some criteria for assessing successful
coil design.

A coil consists of a conducting loop which is tuned to be resonant across the small range of
frequencies it is expected to operate at (dictated by the Larmor frequency and hence the main
field strength). The tuning is achieved by a combination of lumped components (capacitors
and inductors) and the contribution made by the body when it is in close proximity. The coil
is then coupled to a pre-amplifier, usually built into the coil to add gain as close to the source
as possible. This amplified signal is then streamed into an analogue-to-digital converter.

A consequence of the intimate interaction between coil and subject is that its performance
varies depending on the electromagnetic properties of the subject. This variation increases with
increasing field strength due to the reduction in wavelength producing small scale variations
in sensitivity along with global scaling seen at lower field strengths. If the performance of the
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coil varies on a subject by subject basis, then the calibration procedure required by PI must
also be subject dependent even for a rigid, static coil.

When two or more surface coils are to be combined into an array then inductive coupling
of the elements occurs. Coupling between elements is undesirable for two reasons. Firstly,
if no explicit account is made of the coupling, the SNR is reduced in both optimal SNR and
PI applications. The former because the assumption that signal is correlated across coils and
noise is not, is violated, and the latter because coil sensitivities are less independent reducing
the condition of the matrix inversion and therefore increasing g-factor noise unless explicitly
accounted for. The second reason is that coil coupling introduces parasitic inductance and
capacitance into the coils circuit and so can detune the coil reducing its overall effectiveness.
This can be offset in a fixed geometry as the coils can be tuned appropriately allowing for the
coupling, but if flexible placement of coils is required then an effective decoupling strategy is
needed which is not geometry dependent.

There are two widely used decoupling strategies. The first, which until recently was the
most widely used, is geometrical decoupling where neighbouring loops are overlapped such
that the mutual inductance between loops is exactly cancelled by the overlapping region. This
is capable of providing exact decoupling for two or three loops (three loops arranged as a clover
leaf). Loops beyond this nearest-neighbour geometry are not decoupled. Often it is enough
to assume that the level of coupling from non-nearest-neighbour loops is insignificant due to
the distance between them. The second method to isolate coils is to increase the impedance of
the pre-amplifiers such that the current in the coil is minimized (and therefore the coupling)
without reducing the voltage (and therefore the signal). Pre-amplifier decoupling is now widely
used and enables more flexible coil geometries enabling the free placement of coil elements.
However, decoupling is never perfect and to minimize its impact correlations between coils
should be measured on a study by study basis and included in the reconstruction process as
described in the algorithm section of this review. The aim for freely positionable coils (or
freely positionable groups of coils) is to provide sufficient decoupling via the pre-amplifiers
that the impact on efficiency of the coils is small.

A major change in hardware, attributable almost entirely to PI, has been the acceptance
of array coils for imaging the head. Up until PI it was widely accepted that the birdcage coil
was close to optimal for imaging the brain as it provides almost optimal SNR over the whole
brain. It also has a uniform receive field resulting in images with uniform signal-to-noise ratio
across them rendering them easy to interpret. Unfortunately, the birdcage coil is not useful
for PI as the receive fields of its two quadrature elements do not vary in space. So array coils
have largely superseded the birdcage.

Given that we know array coils are required for PI, and that the main feature we require is
a spatially varying sensitivity, how might the optimal design problem be approached? When
considering coil design what we are really looking at is how well does the array perform in
unfolding an aliased image. Assessment of this is made by considering the impact of the
reconstruction algorithm on the final image. For coil design we generally assume that the
coil sensitivity map can be exactly measured (this excludes the range of artefacts associated
with inconsistency between reference and target data). We are then left with SNR as an image
quality metric. An assumption is also made that the effects of the body loading of the coil
can be approximated by assuming a standard load. The variations induced by the population
variation, whilst significant enough to critically affect calibration, are assumed to have minimal
impact on the macroscopic coil design. This assumption is necessary unless coils are tailor
made for each subject, an impractical approach.

Unlike imaging with uniform receive field coils (birdcages), arrays produce images with
non-uniform signal to noise. Disregarding PI it is clear that figure 5 has a varying signal level
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Figure 13. A demonstration of the g-factor dependence on acceleration factor. Left to right,
acceleration factors 2, 3 and 4 with a four-coil linear array, simulated to behave like the spine
coil in figure 4. The g-factor (shown in (a′), (b′), (c′)) increases dramatically with acceleration.
Typically with only four coils an acceleration of 2 would be the practical limit.

across the image due to the fall off of the coil sensitivity. We can assume noise is constant
across the image so the SNR is directly proportional to the coil sensitivity (which varies on a
pixel by pixel basis). When we add PI the g-factor becomes significant. Different algorithms
have subtle differences in the manifestation of such noise but the effect has become generically
known as the g-factor. The g-factor can be readily calculated for SENSE from (9). In its
generic formulation, the g-factor can also be measured empirically for any algorithm as it
relates directly to the SNR as shown in equation (8). A key design motivation for any coil
is to minimize the g-factor and hence minimize noise in the final reconstruction. However
g-factor is not purely a coil dependent factor, it is also dependent on acceleration factor and
the geometry of the imaging plane. The g-factor noise can vary significantly from pixel to
pixel across the image with structured noise being potentially very disruptive to the image.
Figure 13 shows image reconstructions with increasing acceleration factors showing how noise
increases with increasing acceleration factor and how the noise is highly structured.

For the purposes of this section let us suppose that we can accurately measure the g-factor
at all locations within an imaging volume.

Clearly if coil design is to be optimized then criteria for a successful design must be
established. The g-factor gives us this but because it is specific to a given acceleration factor
and imaging plane, it is important to know about the application required of the coil before
assessing its performance. For example, a cardiac coil is required to perform well over a
relatively small region of interest covering the heart. This forms a small fraction of the field of
view, while the field of view necessarily encompasses the whole chest cavity. Being interested
in only a small fraction of the field of view aids good performance but typically cardiac exams
require double oblique imaging planes, which are unfavourable in terms of coil geometry. An
example of a cardiac dedicated coil design can be found in Weiger et al (2001). In contrast,
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Figure 14. A demonstration of the g-factor dependence on coil spacing. Left to right, centre to
centre coil spacing 1, 3 and 6 cm over a 24 cm field of view. The acceleration factor is fixed at
2 but we can see that coil spacing is critical to achieve a tolerable g-factor, shown on the bottom
row. The coils were simulated as a simple linear array.

a head coil has a target area encompassing almost the whole field of view. However, brain
imaging typically employs simple transverse or sagittal geometries which display much less
variability and therefore enable a relatively simple design assessment. Given this we can
see that even if the optimal configuration for a particular geometry is determined, the same
arrangement is not necessarily adequate for different slice geometries. For practical reasons it
might therefore be necessary to opt for a compromise and use coil arrays with an intermediate
performance in terms of SNR, but more robust to some variation in slice angulations

So we see that coil designers not only have to be aware of the principles of parallel
imaging, so that the g-factor can be explored for achievable acceleration factors, but must also
be knowledgeable about the application intended. Only through joint consideration of these
two factors can coil performance be optimized for appropriate image planes and acceleration
factors. Assuming the designers are well equipped with this knowledge, then they are left with
the decision regarding how many coils and how to place them. Coil placement is conceptually
fairly straightforward: coil elements should be close enough together such that there is
sufficient SNR across the whole field of view of interest, but not so close that their sensitivities
become practically indistinguishable (figure 14). The maximum variation in coil sensitivity
should be commensurate with the direction of speedup (figure 15). If this direction is variable,
then the coil should contain as much symmetry as possible to enable equal performance in all
directions. The number of individual elements is usually dictated by the scanner architecture,
but it is generally assumed to be as high as possible. The basis for this assumption is that the
g-factor can be reduced by overdetermining the sensitivity matrix. If more coils are added
then more independent measurements are made. Interestingly, recent work has explored this
assumption using principal component analysis to estimate, for a given scan plane, how many
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Figure 15. A demonstration of the g-factor dependence on coil position. This is a four-element
coil with acceleration factor 2 and coil spacing as seen in figure 14(c) (optimal). In this example the
coil is rotated from 0◦ in (a) where the maximum direction of variation of the coil is commensurate
with the acceleration direction to 45◦ (b) and to 80◦ in (c). Orienting the direction of acceleration
with the most favourable coil geometry is critical in PI otherwise a penalty in SNR is paid as can
be seen from the corresponding g-factor maps in (d), (e) and (f).

truly independent measurements are present. In the case of a large number of head coil
elements (90) they found that only a small number of principal components were ever present
at one time implying that a much smaller number of coils is required. However, when the scan
geometry is changed, different elements become important. It is this factor that is the real
driving force for massive array coils as they make the g-factor more homogeneous as imaging
planes are changed. The question regarding what is the maximum number of coils needed is
still unanswered but as we move to whole body scanning with moving table applications it is
reasonable to assume that total number of channels will exceed 100.

4. Established applications

A major benefit of PI is that it does not impose any restrictions on the pulse sequence used,
with image contrast remaining unaltered. PI is also largely independent of other acceleration
approaches used. Even though some consideration has to be given during reconstruction if
partial Fourier approaches are combined with PI (Bydder and Robson 2005), the two can still
be applied simultaneously. Bearing in mind that any benefits gained by employing PI come
at a cost in SNR, it is essential to take this factor into account when considering potential
applications. Even if the g-factor is close to 1, as in the case where a favourable coil geometry,
acceleration factor and sampling strategy have been determined, if the baseline SNR is too
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low (SNRfull in (8)), the reconstructed image may not have any diagnostic value after the SNR
reduction resulting from the application of PI.

Obvious clinical applications are therefore those for which a high signal is inherently
available. (EPI is potentially an exception to this which we will discuss separately.) Alongside
this consideration, are applications where currently the acquisition speed is limited by the
gradient performance. Generally these are methods where high temporal resolution is needed
but the rapid acquisition methods currently employed are still not fast enough to capture all
key information. PI is now integrated into many routine MR exams. The following section
discusses a few key applications and describes what makes them good targets for PI. The list
is clearly not exhaustive but it is hoped that it will give the reader an insight into how good
applications can be identified.

3D acquisitions are an excellent target for PI. In a 2D acquisition one slice is excited
at a time and phase encoding is performed along one of the in-plane directions. Instead of
repeating this procedure for a set of slices, a 3D alternative is to excite a whole slab and
perform phase encoding also along what would otherwise be the slice select direction. To
reconstruct the image a 3D Fourier transform is then required instead of a 2D Fourier transform.
3D acquisitions are generally more time consuming than 2D acquisitions but bring with them
much better 3D visualization with artefact free multi-planar reformatted images. Reformatting
is useful for many applications, for example vessel wall imaging where the tortuous routes of
vessels make it essential for viewing. Whole brain survey scans are also generally 3D. The
long scan times associated with 3D imaging make these scans an attractive proposition for PI.
In addition in 3D imaging there are two orthogonal directions of phase encoding and so PI can
be applied in both directions (Weiger et al 2002). When (in this case regular) sub-sampling is
applied in 2D, the aliasing pattern results in the distance between aliased pixels being greater
than if the same speedup factor is applied in only one dimension (figure 16). This change
in sampling pattern improves the g-factor allowing greater acceleration factors provided the
coils used have varying sensitivity in both directions. This is almost always the case in head
imaging but is less likely in the body.

Angiography is an area where PI is now widely used, particularly 3D contrast enhanced
angiography (Weiger et al 2000b). Alongside the suitability of 3D acquisitions discussed
above, contrast enhanced studies are particularly suited for PI due to the high SNR made
available through the application of the contrast agent.

When applying PI to MR contrast enhanced angiography (MRCEA), the extra information
provided by the coils can be used to increase the spatial resolution, improving the ability to
visualize, for example, small vessels. Alternatively, the spatial resolution can be maintained,
and the temporal resolution improved instead. In this way a better estimate of when the contrast
reaches individual vessels can be obtained. The use of parallel imaging may also contribute
to reducing sensitivity to artefacts. An example is a reduction in venous contamination as a
result of shorter acquisition times. This is particularly a problem in regions where the venous
return is very rapid such as the renal and carotid arteries. The same effect can be reduced when
imaging the lower parts of the body. In order to follow the path of the contrast agent, these
areas are normally imaged last. Reducing the acquisition time therefore reduces the likelihood
that the contrast agent may already have reached the veins in this part of the body. In contrast
enhanced acquisitions the intrinsic SNR is linked to the concentration of the contrast agent
and so any loss in SNR may be partially compensated for by increasing the contrast bolus.

Non-contrast-based angiographic techniques also benefit from PI. Both time of flight,
where inflow is used to preferentially select blood signal and phase contrast angiography
where the flowing blood accumulates phase (PCA) are high contrast high SNR 3D methods.
Figure 17 shows an example of a PCA acquisition accelerated with a factor of 2 and 3. The
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(a) (b) (c)

(d) (e) (f )

Figure 16. If volumetric imaging is being performed then PI can be applied in two directions of
phase encoding. For this to be successful a more complex coil structure is required than a linear
array (simulated in previous examples). Here a four-channel enveloping coil is used. (a) Shows
the full field of view image overlaid with the reduced field of view for a factor 4 linear acceleration
(in one direction). The location of an example asset of aliased pixels is shown—they are separated
by 1

4 FOV. The resulting reconstruction is noisy (b) and in (c) we can see why, the g-factor is high.
If the field of view is reduced by a factor of 2 in two directions then the distance between aliased
pixels is larger (d). This means that the coils can separate them better and so the g-factor is reduced
(f) producing an acceptable reconstruction with an acceleration factor of 4.

(a) (b) (c)

(a
,
) (b

,
) (c

,
)

Figure 17. Phase contrast angiograms acquired in 12 min ((a) and (a′)), 6 min ((b) and (b′))
and 4 min ((c) and (c′)). The high intrinsic SNR of this application makes it ideal for PI. Little
detail is lost whilst the reduced acquisition times allow successful angiograms to be performed on
uncooperative subjects.
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impact on image quality is minimal while the reduction of scan time from 12 to 4 min is
critical in achieving motion free data, particularly from uncooperative patients and infants.
The small impact in image quality due to acceleration in figure 17 is typical of phase contrast
angiography, time of flight angiography and contrast enhanced angiography.

When imaging the chest or abdomen, motion artefact due to respiratory motion is a major
problem. Typically the respiratory cycle lasts approximately 4 s and most scan times are far in
excess of this. Rapid imaging techniques which employ echo trains have limited resolution,
and the large size of the body makes them particularly unsuitable in these areas. Typically a
compromise is reached, with the patients being asked to hold their breath during an acquisition
that lasts between 5 and 20 s depending on their ability. PI allows breath-holds to be made
shorter and therefore much more tolerable for patients. This significantly helps to reduce
motion-related artefacts in the images. Imaging the heart is very challenging due to motion
related to both the cardiac and respiratory cycles (Pruessmann et al 2001a, Jakob et al 1999).
In order to improve image resolution, the acquisition needs to be lengthened. Unfortunately,
if the tissue moves by a significant distance during this time, the actual resolution achieved
is reduced due to blurring and artefacts. Using parallel imaging, a higher spatial resolution
can be achieved without having to increase the acquisition time any further. Alternatively, the
temporal resolution can be improved instead, allowing us to better study the dynamics of heart
function. The possibility to speedup the acquisition also has a significant impact regarding
cardiac triggering. As the number of cycles required to complete an image is reduced, the
likelihood of obtaining useful data significantly improves for patients for which triggering is
difficult, e.g. in the presence of arrhythmias. In extreme cases it is possible to resort to real-
time imaging, which does not require any sort of gating (Weiger et al 2000a). The dynamics
of individual cycles can be captured by significantly reducing the acquisition time per frame.
Using parallel imaging this can be done without excessively compromising spatial resolution.

In many neuro applications such as functional MRI (fMRI) or diffusion-weighted imaging
(DWI), single-shot EPI is the standard imaging technique. In fMRI this is because of the
temporal resolution required to capture rapid haemodynamic changes which are associated
with the change in the magnetic properties of blood in the transition from deoxy- to oxy-
haemoglobin during brain activation. In diffusion-weighted imaging, images are made
sensitive to the diffusion of water molecules. In order to make the images sufficiently sensitive
to detect the very fine motion of these molecules, they necessarily become very sensitive to
bulk patient motion as well. This may lead to data inconsistency if multi-shot techniques are
used. Scanning times also need to be kept as short as possible so as to enable the acquisition
of multiple diffusion-weighted image volumes as required to estimate diffusion anisotropy.

Unfortunately, although EPI is critical to making such applications work it does present
significant limitations precisely because all of the data are acquired following a single RF
excitation. Figure 3 shows a typical EPI image compared to a GRE acquisition. After
excitation, the signal progressively decays due to relaxation, and for this reason the number
of echoes which can be acquired before the signal becomes indistinguishable from noise is
effectively limited. For a fixed FOV, this means that the extent of k-space sampled, and hence
the image resolution attained, is necessarily limited. Another consequence of signal decay
is the introduction of blurring in the image, which reduces the effective resolution achieved.
This is due to the reduced signal at the edges of k-space. An added problem of having longer
echo trains is that there is more time for any phase errors to accumulate, resulting in artefacts
in the image. EPI images are hence very sensitive to off-resonance effects (imperfections in
the main magnetic field, either intrinsic to the magnet or induced by the presence of a subject
with finite magnetic susceptibility). Geometric distortions can therefore be seen in some areas
of the brain, such as the frontal lobe, where the field is less homogeneous due to the sinus air
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space. This is because the extra phase resulting from differences in resonance frequency is
interpreted as being due to a different spatial location within the brain. The displacement error
in pixel units depends on both the difference in frequency �ω and the time interval between
consecutive echoes—the inter-echo spacing (�TE):

�rPE = �ω · �T E. (30)

The displacement errors are significant only along the phase encode direction, as the time
between the acquisition of two consecutive points in k-space is much longer along this direction.
When PI is used, because missing k-space lines are reconstructed from surrounding lines, the
effective inter-echo spacing is reduced, reducing distortions.

Another type of artefact visible in EPI is the presence of a distribution of frequencies
along the slice direction due once again to field inhomogeneities. In this case intra-voxel
dephasing leads to a local decrease in image intensity. The total signal loss is proportional to
the time the spin system is exposed to the dephasing fields. This effect is reduced using PI as
the echo train length is reduced.

Because the signal in EPI decays as a function of echo position, it is possible that even
if the same resolution is maintained, reducing the echo train length may actually lead to an
overall improvement in SNR as a result of a shorter echo time. This improvement is dependent
on the T2 of the tissue: the shorter the T2 the greater the benefit in SNR from PI, while long
T2 compartments suffer loss in SNR (Jaermann et al 2004).

Because of these factors the application of parallel imaging to EPI applications is
widespread. The result is a significant reduction in the level of geometric distortions, signal
dropout, and blurring artefacts and a potential increase in SNR. PI has been very successful
in both fMRI (Golay et al 2000) and DWI (Jaermann et al 2004, Bammer et al 2001). A
reduction in geometric distortions which can be enabled using PI has also been shown to be
beneficial to DTI (Andersson et al 2004). All of these techniques have EPI as their basis.

5. Emerging applications

The principle behind all PI applications is that when imaging with localized coils we have
generally a surplus of measurements. This surplus can be used to accelerate the acquisition or
could be used for other purposes. So far the use of coil information for purposes other than
accelerating imaging has focused on two areas: the removal of coherent image domain artefacts
which were not caused by aliasing, and improving image quality by tackling inconsistencies
introduced in MR data due to motion during the acquisition. A review of motion correction
methods can be found in Larkman et al (2004). In either application the concept of data
consistency is used to modify the image reconstruction so as to make the final image one
which is consistent with the object.

Motion correction using PI exploits the excess of information in an overdetermined data
set. Conceptually the most accessible method that has been proposed is known as SMASH
navigation (Bydder et al 2003). In this method the SMASH formalism is used to generate a
new prediction of a line in k-space which is compared to the actual measured line. This system
allows us to determine if motion has occurred between the acquisition of these two lines.
If the prediction and the actual measured line are the same within error then no motion has
occurred. If they are different then the difference is assigned to motion and the data can either
be corrected (using an iterative fit for known simple motion parameters) or it can be rejected
(Bydder et al 2002b), and the generated line used in its place. This can then be propagated
across k-space to produce a self-consistent image. This method is limited in that only simple
corrections can be applied such as simple rotations, rigid body motion, etc. As these clearly
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Figure 18. On the left-hand side an imperfect fat suppression has left residual chemical shift
artefact in a single-shot diffusion-weighted EPI image. Treating this chemical shift artefact as an
incorrect pixel signal allocation allows standard PI algorithms to be used to remove the artefact
producing the image on the right.

do not describe all motion, too many lines may end up being rejected and the method may
hence fail. These methods are currently the focus of research with the aim of generalizing
them to cope with a wider range of data errors (Atkinson et al 2004).

More generally inconsistencies are manifest when individual coil images are compared
to each other. These images can be compared when the coil sensitivity has been removed. In
the simplest case when no acceleration is present, this can be done by image domain division
or k-space deconvolution of the coil image with the coil sensitivity function. In this process
one image is produced per coil. These should be identical apart from noise, and therefore
any differences can be attributed to artefact. If a suitable model of the cause of the artefact
is known, then the reference data can be modified in order to remove the artefact, and a cost
function associated with the coil images consistency can be minimized (Winkelmann et al
2005a, Atkinson et al 2004).

Fourier aliasing is not the only mechanism by which signals may be allocated incorrectly.
If during data acquisition there is inconsistency between neighbouring lines in k-space, due
for example to relaxation processes, then this results in a periodic modulation across k-space
leading to periodic replication of the object in the image domain. This periodicity can readily
be removed by PI by direct analogy with Fourier aliasing. Kellman et al (2002) developed
and exploited this approach to deal with the inherent ghosting problem in SSFP imaging. This
approach can also be used to remove chemical shift artefact. In EPI the difference in resonant
frequency between fat and water (3.3 ppm, 420 Hz at 3 T) results in incorrect spatial encoding
of the fat signal, with the relative shift easily achieving 30–60% of the field of view. The
result is that signal is misallocated in the image domain resulting in two pixels that should
be separate sitting on top of each other. Although the cause is no longer Fourier aliasing
but chemical shift, the solution is the same. This overlap can be resolved using PI provided
that the reference data are modified to allow for the exact fractional field of view shift rather
than the FOV/r shift in accelerated PI. Figure 18 shows the results of this approach. These
concepts have also been exploited with deliberate modulations imposed on the k-space data
to improve the condition of the reconstruction process (Breuer et al 2005). Such modulations
induce aliasing in the image domain. These methods exploit the fact that separating pixels
in an unfavourable direction with respect to the coils is difficult but if a differential shift can
be imposed between these slices then some of the sensitivity variation in the xy plane can be
exploited for acceleration in the z direction.
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6. Discussion

Parallel imaging has really been a developing story ever since the late 1980s. Whilst there
are many different reconstruction methods for PI there is much commonality. The simple
reconstruction methods are generally the most robust and computationally efficient. For
regular undersampled k-space with low acceleration factors and well-designed coils all the
methods largely produce the same result. If more ambitious k-space trajectories or non-uniform
undersampling is required, then differences become apparent. It is when the algorithms are
pushed e.g. high acceleration factors or inconsistent reference data are used that different
algorithms have different SNR properties and/or artefacts. Ultimately all the schemes are
combining the signal from multiple coils in a linear way.

The choice between auto-calibration and separate calibration of coils should be application
driven. Separate calibration has been proven to be robust in all cases except where extreme
motion is present. Generally the coil calibration is relatively straightforward and has now been
assimilated in the standard clinical protocol in the same way that other essential calibrations
(RF power, shim, etc) are, as calibration data can typically be acquired for a full imaging
volume in 30–60 s. These data can then be used for all subsequent acquisitions provided the
patient and/or coils do not move.

As with all imaging techniques there are some methodology-specific artefacts that
radiologists need to be aware of so that on the rare occasions they do appear they are not
mistaken for pathology. PI artefacts are usually easily recognizable due to their linking of
remote regions of the image.

It is interesting to note that all the main manufacturers Philips, Siemens and GE have
adopted PI in one form or another. It has been integrated into the core product very rapidly.
Naturally they have adopted SENSE or SMASH (GRAPPA) like methods due to the speed of
reconstruction but we should expect to see other algorithms also adopted in the near future
to allow non-Cartesian accelerated acquisitions. PI has provided a bonanza for coil designers
and as generally all but the basic head coils are optional extras on MR, this has given the
development of PI a major commercial incentive.

Newer ideas surrounding artefact suppression using PI have yet to take hold commercially,
their utility is still being tested in the research community but it is inevitable that they will
emerge eventually.

Conceptually PI shares common ground with radar and telecommunications technologies.
Antenna arrays are common in many areas of physics but the near field nature of the MR
problem has meant that it has been largely developed separately so far. As the MR application
becomes more mature we will no doubt see more cross fertilization between these areas
particularly with the development of transmit arrays combined with receiver arrays bringing
an obvious link with multiple-input multiple-output (Mimo) technology now employed in
short and long range wireless communications.
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