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Chapter 1

Review of Topics in Angular
Momentum
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1.1 Introduction

In this chapter we review some topics in quantum mechanics that we will apply to our
discussion of magnetism. The major topic under discussion here is angular momentum.

1.1.1 Angular Momentum, Definitions and Commutation Relations

In classical mechanics, as in quantum mechanics, angular momentum is defined by

~L = ~r × ~p. (1.1)

Since the position operator ~r and momentum operator ~p do not commute, the components
of the angular momentum do not commute. We note first that the position and momentum
operators do not commute:

(xpx − pxx)f(~r) =
h̄

i
x
∂

∂x
f(~r)− h̄

i

∂

∂x
[xf(~r)] = ih̄f(~r). (1.2)

The result of Eq. 1.2 is conveniently written in terms of the commutator defined by [rj , pk] ≡
rjpk − pkrj using the relation

[rj , pk] = ih̄δjk, (1.3)

where δjk is a delta function having the value unity if j = k, and zero otherwise. Equation 1.3
says that different components of ~r and ~p commute, and it is only the same components of
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~r and ~p that fail to commute. If we now apply these commutation relations to the angular
momentum we get:

[Lx, Ly]=LxLy − LyLx = (ypz − zpy)(zpx − xpz)− (zpx − xpz)(ypz − zpy)

=−ih̄ypx + ih̄xpy = ih̄Lz.

(1.4)

Similarly, the commutation relations for the other components are:

[Ly, Lz] = ih̄Lx [Lz, Lx] = ih̄Ly. (1.5)

The commutation relations in Eqs. 1.4 and 1.5 are conveniently summarized in the symbolic
statement

~L× ~L = ih̄~L. (1.6)

These commutation relations are basic to the properties of the angular momentum in quan-
tum mechanics.

Since no two components of the angular momentum commute, it is not possible to find
a representation that simultaneously diagonalizes more than one component of ~L. That is,
there is no wavefunction that is both an eigenfunction of Lx and Ly, for if there were, we
could then write

LxΨ = `xΨ (1.7)

and

LyΨ = `yΨ. (1.8)

Equations 1.7 and 1.8 would then imply that

LxLyΨ = Lx`yΨ = `x`yΨ (1.9)

and also

LyLxΨ = `y`xΨ (1.10)

so that if Lx and Ly could be diagonalized simultaneously, then Lx and Ly would have
to commute. However, we know that they do not commute; therefore, they cannot be
simultaneously diagonalized.

On the other hand, all three components of angular momentum, Lx, Ly, and Lz commute
with L2 where

L2 = L2
x + L2

y + L2
z. (1.11)

For example

[Lz, L
2] = LzL

2
x − L2

xLz + LzL
2
y − L2

yLz

= LxLzLx + ih̄LyLx − LxLzLx + ih̄LxLy

+LyLzLy − ih̄LxLy − LyLzLy − ih̄LyLx = 0

(1.12)

and similarly for [Lx, L
2] = 0 and [Ly, L

2] = 0. Since Lx, Ly and Lz do not commute with
each other, it is convenient to select one component (e.g., Lz) as the component that is
simultaneously diagonalized with L2.
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It is convenient to introduce raising and lowering operators

L± = Lx ± iLy (1.13)

so that we can write

L2 = L2
z +

1

2
(L+L− + L−L+). (1.14)

From Eq. 1.13 we know that L+ and L− are non-hermitian operators, because Lx and
Ly are both Hermitian operators and have real eigenvalues. Since Lx and Ly individually
commute with L2, we have the commutation relations:

[L2, L+] = 0 and [L2, L−] = 0. (1.15)

Furthermore, L+ does not commute with Lz but rather

[Lz, L+] = [Lz, (Lx + iLy)] = ih̄(Ly − iLx) = h̄L+ (1.16)

and likewise

[Lz, L−] = −h̄L−. (1.17)

By the same procedure we obtain

[L+, L−] = [(Lx + iLy), (Lx − iLy)] = 2h̄Lz (1.18)

and

Lx =
1

2
(L+ + L−) Ly = −

i

2
(L+ − L−) (1.19)

1.1.2 Angular momentum Eigenvalues

We will now use the commutation relations in §1.1.1 to find the eigenvalues of the angular
momentum matrices. Let us choose as our representation, one that diagonalizes both Lz
and L2 and we will use quantum numbers m and ` to designate the representation. For,
example, if Ψ is an eigenfunction of Lz we can write

LzΨ = mh̄Ψ (1.20)

where the eigenvalue of Lz is mh̄. From Eq. 1.20 we can then write the matrix element of
Lz in the |m`〉 representation as

〈m`|Lz|m`〉 = mh̄ (1.21)

where m is a dimensionless real integer denoting the magnitude of Lz, while ` is the maxi-
mum value of m and h̄ has the dimension of angular momentum. Physically, we can think
of m as telling how many units of angular momentum there are along the z direction. Since
Lz has only diagonal matrix elements, the above relation can be written more generally as

〈m′`′|Lz|m`〉 = mh̄δmm′δ``′ . (1.22)

We will now compute the matrix elements of L+, L−, and L2 in the |m`〉 representation.
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From the commutation relation

[L2, L+] = 0 (1.23)

we obtain
〈m′`′|L2L+ − L+L

2|m′′`′′〉 = 0 (1.24)

for all |m`〉 states. But L2 is diagonal in the |m`〉 representation by hypothesis and therefore
is specified by some function of `, the quantum number associated with L2. We thus obtain

L2|m′′`′′〉 = (L2)`′′ |m′′`′′〉 (1.25)

where we have written the eigenvalue of the operator L2 using the notation (L2)`′′ . We will
now show that

(L2)`′′ = h̄2`′′(`′′ + 1). (1.26)

From Eqs. 1.24 and 1.25 we write

[(L2)`′ − (L2)`′′ ]〈m′`′|L+|m′′`′′〉 = 0. (1.27)

For Eq. 1.27 to be satisfied, we see that the matrix elements of L+ must vanish unless
`′ = `′′ which implies that L+ must be diagonal in `.

The commutation relation [Lz, L+] = h̄L+ given by Eq. 1.16 then yields

〈m′`|LzL+ − L+Lz|m′′`〉 = h̄〈m′`|L+|m′′`〉 (1.28)

Now exploiting the eigenvalue relation in Eq. 1.22 Lz|m′′`〉 = m′′h̄|m′′`〉 we get:

(m′ −m′′)h̄〈m′`|L+|m′′`〉 = h̄〈m′`|L+|m′′`〉 (1.29)

so that (m′ −m′′ − 1)h̄〈m′`|L+|m′′`〉 = 0 which is conveniently expressed as

h̄〈m′`′|L+|m′′`′′〉 = δ`′`′′δm′,m′′+1 λm′ h̄ (1.30)

where λm′ is a dimensionless number. Thus, not only are the matrix elements of L+ in the
|m`〉 representation diagonal in `, but they are non-vanishing only on off-diagonal positions
of m (that is where the index of m′ exceeds the index m′′ by unity). The matrix element for
L+ furthermore implies the matrix element of L− since these matrix elements are related
by the Hermitian transpose

〈m′`′|L−|m′′`′′〉 = δ`′`′′δm′,m′′−1λ
∗
m′ h̄. (1.31)

We can evaluate λm′ explicitly by using the commutation relation [L+, L−] = 2h̄Lz from
Eq. 1.18, so that in taking matrix elements of [L+, L−], we need only consider wholly
diagonal matrix elements of

〈m`|[L+, L−]|m`〉 = 2h̄mh̄ = 2mh̄2 (1.32)

because Lz is diagonal in both m and `. Since the matrix element of a product of two
operators O1 and O2 in general can be written as

〈n|O1O2|n′〉 = Σn′′〈n|O1|n′′〉〈n′′|O2|n′〉 (1.33)
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Eq. 1.32 implies a sum over all possible m′′ and `′′ values. But since L+ is diagonal in `
and has only one non-vanishing matrix element in m, then Eq. 1.32 only has the terms

〈m`|L+|m− 1, `〉〈m− 1, `|L−|m, `〉 − 〈m, `|L−|m+ 1, `〉〈m+ 1, `|L+|m, `〉

= |λm−1|2h̄2 − |λm|2h̄2 = 2mh̄2
(1.34)

which has a solution
|λm|2 = −m(m+ 1) (1.35)

so that −(m − 1)m +m(m + 1) = 2m is satisfied. Clearly we can add any constant C to
the solution of Eq. 1.34 and obtain another equally valid solution

|λm|2 = C −m(m+ 1). (1.36)

Since |λm|2 is positive, definite, we require that C be chosen to guarantee that requirement.
This means that m must be restricted to the range from −` to +` and C = `(`+ 1) or

|λm|2 = `(`+ 1)−m(m+ 1). (1.37)

This then means that the raising operator acts on the state |m, `〉 to produce a state |m+1, `〉

L+|m, `〉 = h̄λm+1|m+ 1, `〉. (1.38)

Starting with the lowest state m = −`, the raising operator L+ produces a physical state
until m = ` is reached at which time L+|`, `〉 produces a non-existent or null state.

With these restrictions on possible values of m, we can evaluate the matrix element of
L2 in the m, ` representation:

〈m, `|L2|m, `〉=〈m, `|12(L+L− + L−L+) + L2
z|m, `〉

=

[

1
2(`(`+ 1)− (m− 1)m) + 1

2

(

`(`+ 1)−m(m+ 1)

)

+m2

]

h̄2

=`(`+ 1)h̄2

(1.39)

and from Eq. 1.38 we can write

〈m+ 1, `|L+|m, `〉 = h̄|λm| = h̄
√

`(`+ 1)−m(m+ 1) ≡ h̄
√

(`−m)(`+m+ 1) (1.40)

which also implies

〈m− 1, `|L−|m, `〉 = h̄
√

(`+m)(`−m+ 1). (1.41)

The restrictions on the values of m are thus:

1. The raising operator L+ raises the m index by 1, while the lowering operator L−
lowers m by 1.

2. The difference between the minimum and maximum values of m must be an integer.
This condition requires that ` be either integral or half-integral. Orbital angular
momentum always involves integral values of ` and spin angular momentum may
involve either half-integral or integral values of the unit of angular momentum h̄.
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In matrix form, the matrix elements of Lz are:

Lz =

















` 0 0 . . . 0
0 `− 1 0 . . . 0
0 0 `− 2 . . . 0
...

...
...

...
...

0 0 0 . . . −`

















(1.42)

For L+ we have only off-diagonal elements to the right of the diagonal. We will give here
some matrix elements for specific values of `. For half integral spin s = 1/2 we have

Sx = h̄/2

(

0 1
1 0

)

, Sy = h̄/2

(

0 −i
i 0

)

, Sz = h̄/2

(

1 0
0 −1

)

(1.43)

and

S+ = h̄

(

0 1
0 0

)

, S− = h̄

(

0 0
1 0

)

, S2 = 3h̄2/4

(

1 0
0 1

)

(1.44)

(Note: We use ` to denote orbital angular momentum where ` = integer and we use s when
discussing half-integral values of angular momentum.) The four matrices

(

1 0
0 1

)

,

(

0 1
1 0

)

,

(

0 −1
1 0

)

,

(

1 0
0 −1

)

(1.45)

span the vector space and can be used to expand any arbitrary (2×2) matrix. Similarly, we
can write the matrices for ` = 1 as

Lx =
h̄√
2







0 1 0
1 0 1
0 1 0






(1.46)

Ly =
h̄√
2







0 −i 0
i 0 −i
0 i 0






(1.47)

Lz = h̄







1 0 0
0 0 0
0 0 −1






(1.48)

L+ = h̄







0
√
2 0

0 0
√
2

0 0 0






(1.49)

L− = h̄







0 0 0√
2 0 0

0
√
2 0






(1.50)

L2 = 2h̄2







1 0 0
0 1 0
0 0 1






. (1.51)
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Figure 1.1: Cartesian and polar coordinate
system used in wave mechanics.

The matrix element expressions

〈m`|L2|m′`′〉 = δ`,`′ δm,m′ `(`+ 1)h̄2, (1.52)

〈m`|Lz|m′`′〉 = δ`,`′ δm,m′ mh̄, (1.53)

〈m`|L+|m′`′〉 = δ`,`′ δm,m′+1

√

(`−m′)(`+m′ + 1), (1.54)

and

〈m`|L−|m′`′〉 = δ`,`′ δm,m′−1

√

(`+m′)(`−m′ + 1) (1.55)

allow us to write explicit matrices for the angular momentum operators for all ` values.

1.2 Angular Momentum in Wave Mechanics

By definition

Lx = ypz − zpy =
h̄

i

[

y

(

∂

∂z

)

− z
(

∂

∂y

)]

(1.56)

Ly = zpx − xpz =
h̄

i

[

z

(

∂

∂x

)

− x
(

∂

∂z

)]

(1.57)

Lz = xpy − ypx =
h̄

i

[

x

(

∂

∂y

)

− y
(

∂

∂x

)]

(1.58)

Using polar coordinates shown in Fig. 1.1, we can write

x = r cosφ sin θ y = r sinφ sin θ z = r cos θ. (1.59)

In spherical coordinates, the components of the angular momentum become

Lx = ih̄

[

sinφ

(

∂

∂θ

)

+ cot θ cosφ

(

∂

∂φ

)]

(1.60)
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Ly = ih̄

[

− cosφ

(

∂

∂θ

)

+ cot θ sinφ

(

∂

∂φ

)]

(1.61)

Lz =
h̄

i

(

∂

∂φ

)

(1.62)

and

L2 = L2
x + L2

y + L2
z = −h̄2

[

1

sin θ

∂

∂θ

(

sin θ
∂

∂φ

)

+
1

sin2 θ

(

∂2

∂φ2

)]

. (1.63)

In wave mechanics, the eigenfunctions of Lz and L2 are the spherical harmonics Y`m(θ, φ):

L2Y`m(θ, φ) = `(`+ 1)h̄2Y`m(θ, φ) (1.64)

and

LzY`m(θ, φ) = mh̄Y`m(θ, φ) (1.65)

where the spherical harmonics are explicitly given by

Y`m(θ, φ) =

[(

(2`+ 1)

4π

(`− |m|)!
(`+ |m|)!

)]1/2

Pm
` (cos θ)eimφ (1.66)

in which the associated Legendre functions Pm
` (cos θ) are

Pm
` (w) = (1− w2)(1/2)|m| d|m|P`(w)

dw|m| (1.67)

where w = cos θ and the Legendre functions are found from the generating functions

∞
∑

`=0

P`(w)s
` =

1√
1− 2sw + s2

for s < 1. (1.68)

From Eq. 1.68 it follows that

P0(w)=1

P1(w)=w = cos θ

P2(w)=
1
2(3w

2 − 1) = 1
2(3 cos

2 θ − 1).

(1.69)

Thus, the first few spherical harmonics are:

Y0,0 =

√

1

4π
(1.70)

Y1,1 =

√

3

8π
sin θeiφ (1.71)

Y1,0 =

√

3

4π
cos θ (1.72)

Y1,−1 =

√

3

8π
sin θe−iφ. (1.73)
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The matrix elements of angular momentum can also be calculated from the point of view
of wave mechanics. In that case we must perform the angular integrations which define the
matrix element for an operator O:

∫ π

0
dφ

∫ 2π

0
sin θ dθ Y ∗

`m(θ, φ) O Y`′m′(θ, φ) ≡ 〈`m|O|`′m′〉. (1.74)

In general, the matrix mechanics approach to angular momentum is the easier technique
for the evaluation of matrix elements. For example we have from Eq. 1.54 the result for the
raising operator

L+Y`m(θ, φ) =
√

(`−m)(`+m+ 1) h̄Y`,m+1(θ, φ). (1.75)

1.3 Magnetic Moment and Orbital Angular Momentum

In this section we show that there is a magnetic moment ~µ associated with the orbital
angular momentum ~L given by

~µ =

(

e

2mc

)

~L (1.76)

where e = −4.8 × 10−10 esu = −1.6 × 10−19 Coulombs of charge. It is for this reason
that a discussion of the magnetic properties of solids requires knowledge of the quantum
mechanical properties of the angular momentum.

There are various derivations of the result given by Eq. 1.76 which follows from classi-
cal electromagnetic theory. By definition, the magnetic moment associated with a charge
distribution ρcharge(~r, t) is: (see Jackson, pp 181)

~µ ≡ 1

2c

∫

d3r ρcharge(~r × ~v). (1.77)

The factor (~r × ~v) in the above definition suggests that ~µ is related to the orbital angular
momentum ~L which is defined for a mass distribution ρmass(~r, t) as

~L =

∫

d3rρmass (~r × ~v). (1.78)

For simple systems, the mass and charge densities are proportional:

ρmass/m = ρcharge/q =
1

Volume
(1.79)

where m is in units of mass and q is in units of charge for the electron. Therefore we can
write for a simple electron system

~µ =

(

q

2mc

)

~L =

(

e

2mc

)

~L. (1.80)

See Eisberg Ch. 11 for another derivation of this result.
It is usually convenient to introduce a special symbol for the magnetic moment of an

electron, namely the Bohr magneton µB which is defined as

µB ≡ eh̄/2mc = −0.927× 10−20 erg/gauss (1.81)
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and µB is a negative number since e is negative. Thus

~µ =
µB~L

h̄
=
g`µB~L

h̄
(1.82)

where we note that the angular momentum is measured in units of h̄. Equation 1.82 defines
the g–factor as it relates ~µ and the angular momentum and we note that the g–factor for
orbital motion is g` = 1. Remember that since µB is a negative number for electrons, the
magnetic moment of the electron is directed antiparallel to the orbital angular momentum.

1.4 Spin Angular Momentum

The existence of spin angular momentum is based on several experimental observations:

1. The Stern–Gerlach atomic beam experiment shows that there could be an even number
of possible m values

m = −`,−`+ 1,−`+ 2, · · · , ` (1.83)

which implies that ` can have a half-integral value.

2. The observation that associated with the spin angular momentum is a magnetic mo-
ment

~µ = gsµB ~S/h̄ (1.84)

where ~µ and ~S are oppositely directed. However in Eq. 1.84 the gs value for the spin
is not unity but is very nearly gs = 2. For spectroscopy, the Lamb shift correction
is needed whereby gs = 2.0023. Electron spin resonance experiments typically yield
g-values to 5 or more significant figures.

3. There is evidence for spin in atomic spectra.

Like the orbital angular momentum, the spin angular momentum obeys the commutation
relations

~S × ~S = ih̄~S (1.85)

and consequently we have the matrix elements of the spin operators in the |s,ms〉 represen-
tation:

〈m′
ss

′|S2|mss〉 = h̄2s(s+ 1) δs,s′ δms,m′s (1.86)

〈m′
ss

′|Sz|mss〉 = h̄msδs,s′ δms,m′s (1.87)

〈m′
ss

′|S+|mss〉 = h̄
√

(s−ms)(s+ms + 1) δs,s′ δms+1,m′s (1.88)

〈m′
ss

′|S−|mss〉 = h̄
√

(s+ms)(s−ms + 1) δs,s′ δms−1,m′s . (1.89)

A single electron has a spin angular momentum Sz = h̄/2 so that there are two possible ms

values, namely ms = ±1/2 and also s(s+ 1) = (1/2)(3/2) = 3/4.
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1.5 The Spin-Orbit Interaction

An electron in an atomic state having orbital angular momentum ~L and spin angular mo-
mentum ~S can have its spin angular momentum coupled to the orbital angular momentum
through the so-called spin-orbit interaction. The physical basis for this interaction is as
follows. Because of the orbital motion of the electrons, a magnetic field ~H is created. Now
this magnetic field acts on the magnetic moment associated with the electron spin and
attempts to line up the moment along the magnetic field giving an interaction energy

H′
s−o = −~µ · ~H. (1.90)

We will give here a simple classical argument for the magnitude of the spin-orbit interaction
and refer you to Eisberg Ch. 11 for a more complete derivation.

Since we wish to focus our attention on the electron and the magnetic field it sees,
we choose a coordination system attached to the electron. In this coordinate system, the
nucleus is moving, thereby generating at the position of the electron both an electric field
~E = e~r/r3 and a magnetic field ~H = −(~v/c)× ~E. We thus find the interaction energy

H′
s−o = −~µ · ~H = −

[

− |e|
mc

~S

]

·
[

− ~v

c
× ~E

]

. (1.91)

In a solid, we replace ~E = ~∇V (r)/|e| where V (r) is the Coulomb potential energy in the
solid; in an atomic system, V (r) becomes U(r) and ~∇U(r) becomes f(r)~r where f(r) is a
scalar function. We thus obtain for atomic systems

H′
s−o =

f(r)

mc2
[~S · (~r × ~v)] = f(r)

m2c2
(~L · ~S). (1.92)

For the special case of a simple Coulomb potential U(r) = −e2/r ,

~∇U = (e2/r3)~r (1.93)

or
f(r) = e2/r3 (1.94)

and

H′
s−o =

e2

(m2c2r3)
~S · ~L. (1.95)

The more correct derivation given in Eisberg shows that

H′
s−o =

e2

(2m2c2r3)
~S · ~L (1.96)

where the factor of 2 inserted in Eq. 1.96 is due to relativistic corrections. For more general
atomic systems the spin-orbit interaction is written as

H′
s−o = ξ(r)~S · ~L (1.97)

and for solids where no central force approximation is made, we then have

H′
s−o =

1

2m2c2
[~∇V × ~p] · ~S (1.98)

where V (~r) is the periodic potential in the solid.
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1.5.1 Solution of Schrödinger’s Equation for Free Atoms

We will now study the effect of the spin-orbit interaction on atomic spectra. The one-
electron atomic problem in a central force Coulomb field is written as the Schrödinger
equation

[

p2

2m
+ U(r)

]

Ψ = EΨ (1.99)

(without spin) or in wave mechanics (spherical coordinates) Eq. 1.99 becomes

− h̄2

2m

[

1

r2
∂

∂r
r2
∂

∂r
+

1

r2 sin2 θ

(

∂2

∂φ2

)

+
1

r2 sin θ

(

∂

∂θ

)(

sin θ
∂

∂θ

)]

Ψ+U(r)Ψ = EΨ. (1.100)

It is clear that if the potential is spherically symmetric, the separation of variables leads to
an eigenvalue problem in L2, or writing

Ψ(r, θ, φ) = R(r) Y`m(θ, φ) (1.101)

we get for the radial equation
{

1

r2
d

dr

(

r2
d

dr

)

+

[

− `(`+ 1)

r2
+

2m

h̄

(

E − U(r)

)]}

R(r) = 0 (1.102)

where m is the mass and the angular equation is written in terms of the spherical harmonics
Y`m(θ, φ). Thus each atomic state is (without spin) characterized by a principal quantum
number n and a quantum number ` denoting the orbital angular momentum states. By
inspection of the differential equation (Eq. 1.102), the quantum number m does not enter
so that every solution to a one-electron atomic problem must be (2` + 1)-fold degenerate
or degenerate in the quantum number m. We can also understand this result physically.
For a spherically symmetric system there is no preferred direction. Thus, there can be no
difference in energy arising from the component of ~L taken along any particular direction.

The solutions for ` = 0 of the atomic problem where U(r) = −e2/r gives the Bohr
energy levels for the hydrogen atom

En = − me4

2h̄2n2
n = 1, 2, 3, 4, . . . . (1.103)

Since the angular momentum term in the radial equation −`(` + 1)/r2 has the opposite
sign from the potential term −U(~r), higher ` states will lie higher in energy. A physical
way to see this is to think of the angular momentum as giving rise to an increase in kinetic
energy and hence less binding. For a general attractive potential U(~r) the classification of
the atomic levels is as shown in Fig. 1.2.

We have reviewed this background in order to show that the spin-orbit interaction

H′
s−o = ξ(r)~L · ~S (1.104)

serves to lift certain degeneracies. To calculate the effect of the spin-orbit interaction we
introduce the total angular momentum ~J which is defined by

~J ≡ ~L+ ~S. (1.105)

If no torques are acting on the atomic system, then the total angular momentum is conserved
and the magnitude of ~J (or J2) is a constant of the motion. We can thus find for atomic
systems where U = U(~r) various constants of the motion:
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Figure 1.2: Energy levels in the Bohr atom and the Schrödinger solution showing the orbital
degeneracy.

1. the energy E giving rise to the principal quantum number n

2. the magnitude of L2 giving rise to quantum number `

3. the z component (or any other single component) of ~L giving rise to quantum number
m`. The energy levels do not depend on m`.

4. the magnitude of S2 giving rise to quantum number s. In the absence of the spin-orbit
interaction the energy levels do not depend on the spin.

Since no preferred direction in space is introduced by the spin-orbit interaction, each level
is (2`+ 1)(2s+ 1)-fold degenerate.

At this point it is profitable to point out the difference between the various possible
representations, which will be denoted here by their quantum numbers:

1. no spin: n, `, m`

2. with spin but no spin-orbit interaction: n, `, s, m`, ms

Here each atomic level is (2s+1)(2` + 1)-fold degenerate but since s = 1/2 we have each
level 2(2`+ 1)-fold degenerate. Having specified m` and ms, then mj is determined by the
relation:

mj = m` +ms (1.106)

which follows from the vector relation ~J = ~L+ ~S taken along the z direction of quantization.
Having specified ` gives two possible values for j

j = `+ s = `+
1

2
(1.107)

or

j = `− s = `− 1

2
(1.108)
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Now let us count up the degeneracy from the point of view of the j-values: mj can have
(2j + 1) values for j = ` + 1/2 or (2` + 1) + 1 values and mj can have (2j + 1) values for
j = `− 1/2 or (2`− 1)+1. Therefore the total number of states is [2`+2]+ [2`] = 4`+2 =
2(2` + 1) so that the degeneracy of the states is the same whether we count states in the
|n, `, s,m`,ms〉 representation or in the |n, `, s, j,mj〉 representation.

Although (without spin-orbit interaction) the energy is the same for the two represen-
tations, the states are not the same. Suppose we take m` = 1 and ms = −1/2 to give
mj = 1/2. This does not tell us which j,mj state we have: that is we can have either
j = 3/2 or j = 1/2, for in either case mj = 1/2 is an acceptable quantum number. Thus
to go from the (m`,ms) representation to the (j,mj) representation we must make linear
combinations of states. That is, the (m`,ms) combination (1,-1/2) contributes to both the
(j, mj) states (3/2,1/2) and (1/2,1/2).

If we now introduce the spin-orbit interaction, then not only are the states that con-
tribute to (j, mj) different but a splitting is introduced into the energy of the states,
depending of the value of j. That is, the energy for the j =1/2 levels (2-fold degenerate)
will be different than that for the j =3/2 levels (4-fold degenerate). The fact that this
splitting occurs in this way is a consequence of symmetry (group theory) and has nothing
to do with whether H′

s−o is small or large, or whether we use perturbation theory or not.

To show that this splitting does occur we will evaluate ~L · ~S in the j, mj representation
(remembering that ` and s are still “good” quantum numbers). We note that if we consider

~J = ~L+ ~S (1.109)

and square Eq. 1.109, we obtain the following operator equation:

J2 = (~L+ ~S) · (~L+ ~S) = L2 + S2 + 2~L · ~S (1.110)

since ~L and ~S commute. The spin and orbital angular momenta commute because they
operate in different vector spaces. Thus we obtain

~L · ~S =
1

2
(J2 − L2 − S2). (1.111)

If we now take the diagonal matrix element, we get:

〈jmj |~L · ~S|jmj〉 =
1

2
〈jmj |J2 −L2 − S2|jmj〉 =

h̄2

2

[

j(j + 1)− `(`+ 1)− s(s+ 1)

]

. (1.112)

If we consider, for example, the case of ` = 1, s = 1/2, we get

〈jmj |~L · ~S|jmj〉 = h̄2/2 for j = 3/2 (1.113)

and
〈jmj |~L · ~S|jmj〉 = −h̄2 for j = 1/2. (1.114)

Thus, the spin-orbit interaction lifts the degeneracy of the atomic states (see Fig. 1.3),
though the center of gravity is maintained. The magnitude of the splitting depends on the
matrix element of ξ(r) between states with principal quantum number n.

Similarly, if we have ` = 2 and s = 1/2 we will find a splitting into a j = 5/2 and
a j = 3/2 state; the center of gravity of the levels will be maintained. If we should have
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Figure 1.3: Schematic of the spin-orbit split-
ting of the p-state, ` = 1.

s = 1 (as might occur in a multi-electron atom) and ` = 1, then we can make states with
j = 2, 1, 0. In this case, the spin-orbit interaction will produce a splitting into three levels
of degeneracies 5, 3 and 1 to yield a total of nine states which is the number we started
with (2`+ 1)(2s+ 1) = 9.

We would now like to consider the magnetic moment of an electron in an atom (see §1.3),
taking into account the contribution from both the orbital and spin angular momenta. Of
particular interest here is the fact that although the g–factor for the orbital contribution
is g` = 1, that for the spin contribution is gs = 2. What this means is that the magnetic
moment ~µ = (e/2mc)(~L+2~S) due to both the orbital and spin contributions is not directed
along the total angular momentum ~J . As a consequence, we cannot simultaneously diago-
nalize the magnetic moment operator ~µ and the total angular momentum ~J . We will now
discuss two ways to calculate matrix elements of ~µ. The first is called the vector model
for angular momentum which gives the diagonal matrix elements, while the second is the
Clebsch–Gordan coefficients, which gives both diagonal and off-diagonal matrix elements.

1.6 Vector Model for Angular Momentum

In this section we develop a method to find the expectation value of an operator which is
itself a function of angular momentum operators, but cannot be directly diagonalized. The
magnetic moment operator is an example of such an operator.

Because of the coupling between the orbital and spin angular momentum, the compo-
nents Lz and Sz have no definite values. The spin-orbit interaction takes a state specified
by the quantum numbers ` and s, and splits it into levels according to their j values. So
if we have ` = 1 and s = 1/2 in the absence of the spin-orbit interaction, then we get
a j =3/2 level and a j =1/2 level when the spin-orbit interaction is considered. For the
j =3/2 level we have the four states mj = 3/2, 1/2,−1/2,−3/2 and for the j =1/2 level we
have the two states mj = 1/2 and –1/2. Since the mj = 1/2 state can arise from either an
m` = 1 and ms = −1/2 state or an m`=0 and ms = 1/2 state, the specifications of m` and
ms do not uniquely specify the energy, or to say it another way, the state with quantum
numbers |`, s,m`,ms〉 = |1, 1/2, 1,−1/2〉 has no definite energy. On the other hand, the
state |`, s, j,mj〉 does have a definite energy and is thus an eigenstate of the energy while
|`, s,m`,ms〉 is not an eigenstate in the presence of the spin-orbit interaction.

The various angular momenta are often represented in terms of a vector diagram as
shown in Fig. 1.4. Since there are no external torques acting on the system, the total angular
momentum ~J is a constant of the motion. In the absence of any external perturbation on
the free atom, we are free to choose the z direction however we wish. If, however, a magnetic
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Figure 1.4: This vector diagram for the angu-
lar momentum was constructed for: ` = 2, s =
1/2, j = 5/2,mj = 3/2 and shows that the

total angular momentum ~J precesses around
the z–axis. On the other hand, the angular
momenta ~S and ~L precess around ~J .

field is present, there is a preferred direction in space and the z direction is conventionally
taken along the direction of the external magnetic field. The projection of ~J on the z axis,
Jz, can be diagonalized along with the total Hamiltonian so that we can represent ~J on
the diagram above by a definite vector with respect to the z axis. The length of the vector
| ~J | is h̄

√

j(j + 1) and its projection Jz on the diagram in Fig. 1.4 is (3/2)h̄. (Actually for
j = 5/2 we could have selected five other projections mj = 5/2, 1/2,−1/2,−3/2,−5/2.)
Thus the angle between ~J and Jz in Fig. 1.4 is given by

cos θ =
Jz
|J | =

3/2
√

(5/2)(7/2)
=

3√
35
. (1.115)

Now the magnitudes of the vectors ~L and ~S are fixed at

|~L| = h̄
√

`(`+ 1) = h̄
√
6 (1.116)

and

|~S| = h̄
√

s(s+ 1) =
h̄

2

√
3. (1.117)

However, the direction of these vectors in space is not fixed and this fact is illustrated in
Fig. 1.4 as a freedom of precession of the vectors ~L and ~S about ~J such that only their
lengths are fixed. We note that ~L and ~S have equal probabilities of being in any particular
direction along the precessional path and consequently a projection of ~L or ~S on the z axis
would give different values depending on the position along this precessional path. For this
reason Lz and Sz do not yield good quantum numbers.

From the diagram, we see that the projections of ~L and ~S on ~J have definite values.
Thus, the vector diagram tells us that if we want to find the expectation value of the orbital
angular momentum ~L along any direction in space, we project ~L on ~J and then project the
resulting vector on the special direction of quantization z. Thus to calculate the expectation
value of Lz we find using the vector model:

〈`, s, j,mj |Lz|`, s, j,mj〉 = 〈`, s, j,mj

∣

∣

∣

∣

~L · ~J
| ~J |2

(Jz)

∣

∣

∣

∣

`, s, j,mj〉. (1.118)
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In the 〈`, s, j,mj〉 representation, we can readily calculate the diagonal matrix elements of
Jz and J2

〈`, s, j,mj |Jz|`, s, j,mj〉 = h̄mj (1.119)

〈`, s, j,mj |J2|`, s, j,mj〉 = h̄2j(j + 1). (1.120)

To find 〈`, s, j,mj |~L · ~J |`, s, j,mj〉 we observe that

~S = ~J − ~L and S2 = J2 + L2 − 2~L · ~J (1.121)

so that

〈`, s, j,mj |~L · ~J |`, s, j,mj〉=〈`, s, j,mj |12(J2 + L2 − S2)|`, s, j,mj〉

= h̄
2

[

j(j + 1) + `(`+ 1)− s(s+ 1)

] (1.122)

so for ` = 2, s = 1/2, j = 5/2,mj = 3/2 we get upon substitution into Eq. 1.122

〈`, s, j,mj

∣

∣

∣

∣

|~L · ~J |
J2

(Jz)

∣

∣

∣

∣

`, s, j,mj〉 = h̄
6

5
. (1.123)

The vector model is of great importance in considering the expectation value of vectors
which are functions of the angular momentum. Thus the magnetic moment operator ~µtotal
is

~µtotal =
µB
h̄

(g`~L+ gs~S) =
µB
h̄

(~L+ 2~S) (1.124)

and the magnetic moment is directed along the vector ~L + 2~S. This magnetic moment
vector is not along ~J and therefore has no definite value when projected on an arbitrary
direction in space such as the z–axis. On the other hand, the projection of ~µtotal on ~J has
a definite value. It is convenient to write Eq. 1.124 as

~µtotal =
µB
h̄

(g ~J) (1.125)

so that the energy of an electron in a magnetic field ~B is

E = −~µtotal · ~B = −µB(Bgmj) (1.126)

where the Landé g–factor g represents the projection of ~µtotal on ~J so that

g = 〈`, s, j,mj

∣

∣

∣

∣

(~L+ 2~S) · ~J
J2

∣

∣

∣

∣

`, s, j,mj〉. (1.127)

To evaluate g we note that

(~L+ 2~S) · ~J = (~L+ 2~S) · (~L+ ~S) = L2 + 3~L · ~S + 2S2 (1.128)

but
~J = ~L+ ~S (1.129)

and
J2 = (~L+ ~S)2 = L2 + S2 + 2~L · ~S (1.130)
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Figure 1.5: The vector model for the mag-
netic moment operator ~µ. Here we see that
~J precesses around z but Jz is fixed. ~S pre-
cesses around ~J and the projection of ~S on ~J
is fixed. The projection of ~µ on ~J is fixed as is
the projection of (~µ · ~J) ~J on the z axis. Thus
the vector model provides a prescription for
finding the expectation value of the magnetic
moment operator ~µ.

so that
~L · ~S =

1

2
(J2 − L2 − S2). (1.131)

Thus

(~L+ 2~S) · ~J = L2 +
3

2
(J2 − L2 − S2) + 2S2 =

3

2
J2 − 1

2
L2 +

1

2
S2. (1.132)

We now take diagonal matrix elements of Eq. 1.132 in the |`, s, j,mj〉 representation and
find for the Landé g–factor

g =
[32j(j + 1) + 1

2s(s+ 1)− 1
2`(`+ 1)]

j(j + 1)
. (1.133)

Thus using the vector model, we have found the diagonal matrix elements of the magnetic
moment operator. In §2.4 we will show how to also find the off–diagonal matrix elements
of the angular momentum operator using the Clebsch–Gordan coefficients and using raising
and lowering operators.
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Chapter 2

Magnetic Effects in Free Atoms

2.1 The Zeeman Effect

Suppose we now impose a small magnetic field on our atomic system. The magnetic moment
~µ will try to line up along the magnetic field ~B yielding an interaction Hamiltonian

H′
Z = −~µ · ~B. (2.1)

We will see below that the effect of a magnetic field is to lift the (2j + 1) degeneracy of
the angular momentum states and this effect is called the Zeeman effect. We denote the
perturbation Hamiltonian in Eq. 2.1 associated with the Zeeman effect by H′

Z .

To evaluate the matrix elements of Eq. 2.1, we choose the z direction along the magnetic
field. Then evaluation of H′

Z in the |`, s, j,mj〉 representation yields

〈`, s, j,mj |H′
Z |`, s, j,mj〉 = −µBgB〈`, s, j,mj |Jz|`, s, j,mj〉 (2.2)

following the discussion of the vector model in §1.6. As an illustration, take j = 5/2, and
from Eq. 2.2 we find that the magnetic field will split the zero field level into (2j + 1) = 6
equally spaced levels, the level spacing being proportional to (µBgB) and thus proportional
to the magnetic field. What we mean by a small magnetic field in Eq. 2.1 is thatH′

Z = −~µ· ~B
has an expectation value that is small compared with the spin-orbit interaction, i.e., H′

Z ¿
H′
so. In this limit the Zeeman problem must be solved in the |`, s, j,mj〉 representation.
If, on the other hand, the expectation value of the H′

Z = −~µ · ~B interaction is large
compared with the spin-orbit interaction, then we solve the problem in the |`, s,m`,ms〉
representation and consider the spin-orbit interaction as a perturbation. In the |`, s,m`,ms〉
representation, ~µ · ~B is readily evaluated from Eq. 1.126

〈`, s,m`,ms|H′
Z |`, s,m`,ms〉=−µB〈`, s,m`,ms|Lz + 2Sz|`, s,m`,ms〉/h̄

=−µBB(m` + 2ms).

(2.3)

In this case there will be a degeneracy in some of the states in Eq. 2.3 and this degeneracy is
lifted by the spin-orbit interaction, which now acts as a perturbation on the Zeeman effect.
For intermediate field values where the Zeeman energy and the spin–orbit interaction are
of comparable magnitudes, the problem is more difficult to solve (see Schiff, chapter 12).
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2.2 The Hyperfine Interaction

Closely related to the spin-orbit interaction is the hyperfine interaction. This interaction,
though too small to be important for many solid state applications, is of great importance in
nuclear magnetic resonance and Mössbauer spectroscopy studies. The hyperfine interaction
arises through the interaction of the magnetic moment of the nucleus with the magnetic
field produced by the electrons. Just as we introduce the magnetic moment of the free
electron as (see Eq. 1.84)

~µspin =
gse

2mc
~S, (2.4)

where gs = 2, we introduce the nuclear magnetic moment

~µspin−nucleus =
gIµN ~I

h̄
(2.5)

where the g–factor for the nucleus gI is constant for a particular nucleus and ~I is the angular
momentum of the nucleus. Values of gI are tabulated in handbooks. For nuclei, gI can be
of either sign. If gI is positive, then the magnetic moment and spin are lined up; otherwise
they are antiparallel as for electrons. The nuclear magneton µN is defined as a positive
number:

µN =
|e|h̄
2Mc

=
m

M
|µB| =

µB
1836

∼ 5× 10−24 ergs/gauss (2.6)

where M is the mass of the proton, so that the hyperfine interaction between the nuclear
orbital motion and the nuclear spin is much smaller than the spin-orbit interaction. The
magnetic field produced by the electrons at the nuclear position is denoted by ~BJ and will
be proportional to ~J or more specifically to

( ~BJ · ~J
J2

)

~J. (2.7)

Thus, the hyperfine interaction H′
hf will be of the form H′

hf = −~µspin−nucleus · ~BJ so that
from Eqs. 2.5 and 2.7 we obtain

H′
hf = −constant(~I · ~J). (2.8)

To the extent that the H′
hf interaction is significant in magnitude, neither mi nor mj are

good quantum numbers, and we must therefore introduce a new total angular momentum
~F which is the sum of the nuclear and electronic angular momenta

~F = ~I + ~J (2.9)

so that
~F · ~F = (~I + ~J) · (~I + ~J) (2.10)

and in the representation |i, j, f,mf 〉 we can evaluate ~I · ~J to obtain

~I · ~J =
1

2
[f(f + 1)− i(i+ 1)− j(j + 1)]. (2.11)

The presence of this hyperfine interaction lifts some of the (2i + 1)(2j + 1) degeneracy of
the f states. For example let j = 1/2, i = 1/2, then f = 0, 1 and we have ~I · ~J = 1 or 0.
Thus the hyperfine interaction splits the 4-fold degenerate level into a 3–fold f = 1 triplet
level and a non–degenerate f = 0 singlet level as shown in Fig. 2.1.
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Figure 2.1: Schematic diagram of the split-
ting of the 4–fold j = 1/2, i = 1/2 level under
the hyperfine interaction between the nuclear
spin and the orbital magnetic field. The level
ordering for the hyperfine interaction may be
opposite to that for the spin-orbit interaction,
since the nuclear g–factor can be either posi-
tive or negative.

2.3 Addition of Angular Momenta

We have until now considered the addition of angular momentum in terms of (~L + ~S) for
a single electron and ( ~J + ~I) for the case of the nuclear spin angular momentum. In this
section we consider the addition of orbital angular momenta associated with more than one
electron. For example, for two electrons ~L could be written as ~L1 + ~L2. The addition of
the angular momentum ~Li for each electron to obtain a total orbital angular momentum ~L
occurs in most atomic systems where we have more than one electron. We will consider here
the case of L-S (Russell–Saunders) coupling which is the more important case for atomic
systems and for solids. According to the L-S coupling scheme we combine the orbital
angular momenta for all the electrons

~L = Σi
~Li (2.12)

and all the spin angular momenta
~S = Σi

~Si (2.13)

and then, from the total ~L and the total ~S, we form a total ~J = ~L+ ~S. The representation
that we use for finding the matrix elements for J is |`, s, j,mj〉 where the quantum numbers

correspond to the total ~L, total ~S and ~J = ~L+ ~S. Our discussion of the magnetic properties
of solids most often uses this representation.

In the following subsection (§2.3.1), we will give some examples of multi-electron sys-
tems. First we will find the lowest energy state or the ground state for a many-electron
system. To find the lowest energy state we use Hund’s rule.

2.3.1 Hund’s Rule

Hund’s Rule is used to find the ground state s, ` and j values for a multi-electron atom and
provides a recipe to find the s, `, and j values for the ground state. The rules are applied
in the following sequence:

1. The ground state has the maximum multiplicity (2s+1) allowed by the Pauli Principle,
which determines ~S.

2. The ground state has the maximum ~L consistent with the multiplicity in ~S given by
Hund’s Rule (1).
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Figure 2.2: The notation used to specify the
quantum numbers s, `, j for an atomic config-
uration, which for the 2F5/2 level is s = 1/2,
` = 3, and j = 5/2.

3. The total ~J value is |~L− ~S| if the shell is less than half full and |~L+ ~S| if the shell is
more than half full.

The physical origin of the first Hund’s rule is that to minimize the Coulomb repulsion
between two electrons it is advantageous to keep them apart, and by selecting the same
spin state, the two electrons are required to have different orbital states by the exclusion
principle. The spin-orbit interaction which gives rise to the lowering of the ground state
is proportional to ξ(~r)~L · ~S (see §1.5). Thus the lowest energy state is expected to occur
when L and S have their maximum values in accordance with the Pauli principle. Finally,
ξ(~r) tends to be positive for less than half filled shells and negative for more than half filled
shells. Thus ~J in the ground state tends to be a minimum J = |L − S| when the shell is
less than half full and a maximum J = |L+ S| when the shell is more than half full.

The notation used to specify a state (s, `, j) is shown in Fig. 2.2 for the state: s = 1/2,
` = 3, and j = 5/2, where the multiplicity (2s + 1) is given as the left hand superscript, `
is given by a Roman capital letter and j is given as the right hand subscript. The notation
for the total L value is historic and listed here:

L =0 S (Sharp)
L =1 P (Paschen)
L =2 D (Diffuse)
L =3 F
L =4 G
L =5 H
L =6 I
L =7 K
etc.

Let us illustrate Hund’s rule with a few examples.

• one 4f electron in Ce3+

This simple configuration is for a single 4f electron for which ` = 3. We have then
` = 3, and s = 1/2. Hund’s Rules (1) and (2) above are already satisfied. Rule (3)
gives ~J = |~L − ~S| or j = 5/2 so we have the result that the ground state of a 4f
electronic configuration is 2F5/2. The g–factor using Eq. 1.133 becomes

g =
3
2(

35
4 )− 3

2(4) +
3
8

35
4

=
15

2
(2.14)
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Table 2.1: The s = 1 level is 3-fold degenerate and has ms = 1, 0,−1, while the s = 0 level
is non–degenerate and can only have ms = 0.

ms1 ms2 ms

1/2 1/2 1
1/2 –1/2 0
–1/2 1/2 0
–1/2 –1/2 –1

• the configuration (4f)2 in Pr3+

For this configuration we have two 4f electrons. Applying Hund’s Rule (1), the
maximum ~S we can have is obtained by taking (ms)total = 1/2 + 1/2 = 1 so that
s = 1, thus giving a multiplicity 2s+ 1 = 3. But then we cannot take both electrons
with m` = 3 because, if we did, we would violate the Pauli principle. Thus the highest
` value we can make is to take m`1max = 3 and m`2max = 2. Thus m`total,max

= 5 so that
Hund’s Rule (2) gives ` = 5 which, from our table above, is an H state. Application
of Rule (3) is made for two electrons filling a shell that can hold 2(2 · 3 + 1) = 14
electrons so that we are still less than half full. The j-value is then found as (` − s)
and is j = 5− 1 = 4 so that our configuration gives a ground state 3H4 and a Landé
g–factor from Eq. 1.133

g =
3
2(4)(5)− 1

2(5)(6) +
1
2(1)(2)

(4)(5)
=

4

5
. (2.15)

For homework you will have practice in applying Hund’s rule to a different electronic
configuration.

2.3.2 Electronic Configurations

It is also useful to find all the states that emerge from a particular electronic configuration,
such as nd n′p. For example, for the3d4p this two-electron configuration we have one d-
electron (` = 2) and one p-electron (` = 1). Applying Hund’s Rule (1) tells us that the
stotal = 1 configuration will lie lower in energy than the stotal = 0 configuration. Taking
s1 = 1/2 and s2 = 1/2 we can only have stotal values of 0 or 1 as shown in Table 2.1, and
there is no way to make an stotal = 1/2. Now for the `total we can make a state with ` = 3
(state of lowest energy by Hund’s Rule (2)). But as shown in Table 2.2 we can also make
states with ` = 2 and ` = 1. In this table is listed the number of ways that a given m`

value can be obtained. For example, m` = 1 can be formed by: (1) m`1 = 2, m`2 = −1; (2)
m`1 = 1, m`2 = 0; and (3) m`1 = 0, m`2 = 1.

Since the shells for the two electron configuration ndn′p are less than half-full, the j
value with lowest energy is |`− s|. For s = 0, we immediately have j = ` and no spin-orbit
splitting results. For s = 1, we have three possible j-values: `+ 1, `, `− 1.

We show below that the number of states is invariant whether we consider the |`, s,m`,ms〉
representation or the |j, `, s,mj〉 representation. To demonstrate this point, consider an `-
state associated with s = 1. This state has a degeneracy (2` + 1)(2s + 1) = 3(2` + 1).
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Table 2.2: The multiplicities of the various m` levels for the 3d4p configuration yielding a
total of 15 states.

m` value number of states

3 1
2 2
1 3
0 3
–1 3
–2 2
–3 1

Figure 2.3: Level scheme for the ndn′p = 3d4p
electronic configuration where one electron is
placed in a 3d shell and a second electron is
in a 4p shell.

When the spin-orbit interaction is turned on we can make three different j values with
degeneracies

[2(`+ 1) + 1] + (2`+ 1) + [2(`− 1) + 1] = 3(2`+ 1) (2.16)

so that all levels are accounted for independent of the choice of representation. A dia-
gram illustrating the possible states that can be made from the two-electron configuration
nd n′p = 3d 4p is shown in Fig. 2.3. In order to familiarize yourself with this addition of
angular momentum, you will construct one of these diagrams for homework. Figure 2.3
is constructed for the case where the two electrons go into different atomic shells. In the
case where the two electrons are placed in the same atomic shell, the Pauli principle applies
which states that the quantum numbers assigned to the two electrons must be different.
Thus, there will be fewer allowed states by the Pauli principle where n = n′ and the angular
momentum is also the same. To illustrate the effect of the Pauli principle we will consider
two electrons in a 2p3p configuration (Fig. 2.4) and in a 2p2 configuration (Fig. 2.5). A list
of possible states for the 2p2 configuration is given in Table 2.3.

We notice that in Table 2.3 there are only 15 states in the 2p2 configuration because if
we have two electrons in a 2p level they are indistinguishable and (m`1 ,ms1 ,m`2 ,ms2) =
(1, 1/2, 1,−1/2) is identical to (1, –1/2, 1, 1/2).

The possible values for s are

s1 + s2, s1 + s2 − 1, · · · , |s1 − s2| (2.17)
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Figure 2.4: States in the 2p 3p electronic
configuration.

Table 2.3: List of states allowed in the 2p2 electronic configuration.

m`1 ms1 m`2 ms2 m` ms mj

1 1/2 0 1/2 1 1 2
1 1/2 –1 1/2 0 1 1
0 1/2 –1 1/2 –1 1 0

1 1/2 1 –1/2 2 0 2
1 1/2 0 –1/2 1 0 1
1 1/2 –1 –1/2 0 0 0
0 1/2 0 –1/2 0 0 0
0 1/2 –1 –1/2 –1 0 –1
–1 1/2 –1 –1/2 –2 0 –2
0 1/2 1 –1/2 1 0 1
–1 1/2 1 –1/2 0 0 0
–1 1/2 0 –1/2 –1 0 –1

1 –1/2 0 –1/2 1 –1 0
1 –1/2 –1 –1/2 0 –1 –1
1 –1/2 –1 –1/2 –1 –1 –2
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Figure 2.5: Level scheme for the 2p2

configuration where the Pauli Exclu-
sion Principle must be considered ex-
plicitly.

and for ` are

`1 + `2, `1 + `2 − 1, · · · , |`1 − `2| (2.18)

and for j are

`+ s, `+ s− 1, · · · , |`− s|. (2.19)

Since the Pauli Exclusion Principle prohibits the state

(m`1 ,ms1 ,m`2 ,ms2) = (1, 1/2, 1, 1/2)

we cannot have j = 3 and the states for s = 1, ` = 2 in Fig. 2.4 do not occur in the 2p2

configuration. The ground state is then a 3P0 state with higher lying states in that multiplet
being 3P1 and 3P2. To account for the m` value of ±2 in Table 2.3, we have a state 1D2;
and this state is also consistent with the mj value of 2 when m` = 2. With the 3P states
and the 1D2 we have accounted for 9 + 5 = 14 states and we have one more to go to get
to 15. The only way to do this is with a 1S0 state so our diagram becomes as shown in
Fig. 2.5.

A general rule to be used in selecting states allowed by the Pauli principle is that the total
state must be antisymmetric under exchange of particles, so that if we have a symmetric
spin state, the orbital state must be antisymmetric under interchange of particles. Thus for
the s = 1 symmetric (↑↑) spin state, only the antisymmetric orbital state ` = 1 is allowed.
Likewise, for the s = 0 antisymmetric (↑↓) spin state only the ` = 0 and ` = 2 symmetrical
orbital states that are allowed, consistent with the allowed states shown in Fig. 2.5.

2.4 Clebsch–Gordan Coefficients

Up to this point we have used physical arguments (such as the vector model) for finding
matrix elements of various operators in the |`, s, j,mj〉 representation. We shall now view
this problem from a more mathematical point of view. If we have a wave function in
one representation, we can by a unitary transformation change from one representation to
another. This is a mathematical statement of the fact that an arbitrary function can be
expressed in terms of any complete set of functions. In quantum mechanics, we write such
a transformation quite generally as

ψα =
∑

β

φβ〈β|α〉 (2.20)
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Table 2.4: Listing of the states which couple to the |`, s, j,mj〉 and |`, s,m`,ms〉 represen-
tations for ` = 2, s = 1/2.

m` ms mj

2 1/2 5/2
2 –1/2 3/2
1 1/2 3/2
1 –1/2 1/2
0 1/2 1/2
0 –1/2 –1/2
–1 1/2 –1/2
–1 –1/2 –3/2
–2 1/2 –3/2
–2 –1/2 –5/2

where ψα is one member of a complete set of functions designated by quantum number α,
while φβ is one member of a different complete set of functions labeled by quantum number
β, and 〈β|α〉 is the transformation coefficient expressing the projection of one “vector” on
another, and the sum in Eq. 2.20 is taken over all quantum numbers β. Because the num-
ber of possible states α is equal to the number of states β and because |ψα|2 is identified
with the magnitude of an observable, 〈β|α〉 is a square matrix which conserves lengths and
is hence written as a unitary matrix. If now the function ψα is an eigenfunction of the
total angular momentum and of its z projection, then ψα denotes |`, s, j,mj〉, where the
Dirac ket, expressed in terms of all the four quantum numbers, can be written explicitly
with appropriate spherical harmonics. Similarly the function φβ in Eq. 2.20 denotes the
wave function |`, s,m`,ms〉. Then Eq. 2.20 provides an expansion of the |`, s, j,mj〉 func-
tion in terms of the |`, s,m`,ms〉 function which defines the Clebsch–Gordan coefficients
〈`, s,m`,ms|`, s, j,mj〉 by

|`, s, j,mj〉 =
∑

ms,m`;ms+m`=mj

|`, s,m`,ms〉〈`, s,m`,ms|`, s, j,mj〉 (2.21)

where the sum is on all the ms and m` values which contribute to a particular mj . Since

the operator relation ~J = ~L+ ~S is valid, we can write Jz = Lz+Sz and also mj = m`+ms.
In writing Eq. 2.21 we also restrict j to lie between |` − s| ≤ j ≤ ` + s. These rules can
be proved rigorously but we will not do so here. Instead, we will illustrate the meaning of
the rules. As an example, take ` = 2, s = 1/2. This gives us ten states with mj values as
shown in Table 2.4. We see that except for the mj = ±5/2 states, we have two different
states with the same mj value. This is exactly what is needed is provide six mj states for
j = 5/2 and four mj states for j = 3/2. Successive j values differ by one and not by 1/2,
since we cannot make proper integral mj values for j = integer in the case ` = 2, s = 1/2.

Since the Clebsch–Gordan coefficients form a unitary matrix, we have orthogonality
relations between rows and between columns of these coefficients

∑

ms,m`

〈`, s, j,mj |`, s,m`,ms〉 〈`, s,m`,ms|`, s, j′,m′
j〉 = δj,j′δmj ,m′j

(2.22)
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∑

mj

〈`, s,m`,ms|`, s, j,mj〉 〈`, s, j,mj |`, s,m′
`,m

′
s〉 = δm`,m

′
`
δms,m′s . (2.23)

We now address ourselves to the problem of calculating the Clebsch–Gordan coefficients.
In particular, the coefficient 〈`, s,−`,−s|`, s, (` + s),−(` + s)〉 is unity since the state
|`, s,−`,−s〉 in the |`, s,m`,ms〉 representation is the same as the state |`, s, (`+s),−(`+s)〉
in the |`, s, j,mj〉 representation. As an example of this point take m` = −2, ms = −1/2 in
Table 2.4. This makes an mj = −5/2 state and it is the only way to prepare an mj = −5/2
state. So starting with this minimum mj value state, we will use the raising operator
J+ = L+ + S+ of Eq. 1.13 to act on both sides of the equation

J+|`, s, (`+ s),−(`+ s)〉 = (L+ + S+)|`, s,−`,−s〉. (2.24)

We then get for the left-hand side using the raising operator relation Eq. 1.13

√

([`+ s] + [`+ s])([`+ s]− [`+ s] + 1) |`, s, (`+ s), (−`− s+ 1)〉 (2.25)

where the mj value has now been raised by unity. From the right hand side of Eq. 2.24 we
get

√

(`+ `)(`− `+ 1) |`, s,−`+ 1,−s〉+
√

(s+ s)(s− s+ 1) |`, s,−`,−s+ 1〉 (2.26)

which from Eq. 2.24 gives an equation of the form

|`, s, (`+s), (−`−s+1)〉 = 1
√

2(`+ s)

[√
2` |`, s,−`+1,−s〉+

√
2s |`, s,−`,−s+1〉

]

. (2.27)

Thus we have evaluated the Clebsch–Gordan coefficients:

〈`, s,−`+ 1,−s|`, s, `+ s, (−`− s+ 1)〉 =
√

`

`+ s
(2.28)

〈`, s,−`,−s+ 1|`, s, `+ s, (−`− s+ 1)〉 =
√

s

`+ s
(2.29)

And by repeated application of the raising operator J+ we can find all the Clebsch–Gordan
coefficients corresponding to a given j value. To find the coefficients for the (j−1) quantum
states, we must use the orthogonality relations given by Eqs. 2.22 and 2.23 to construct one
coefficient and then use raising and lowering operators to produce the remaining coefficients
for the (j − 1) set of states.

As an example of the Clebsch–Gordan coefficients, consider the addition of angular
momentum for two spins (e.g., take ` = 1/2 and s = 1/2). The development given here
is general and we can imagine this case to illustrate a ~J arising from the addition of two
angular momenta, ~J = ~S1 + ~S2. From Eqs. 2.28 and 2.29 we have for the Clebsch–Gordan
coefficients:

〈

1

2
,
1

2
,
1

2
,−1

2

∣

∣

∣

∣

1

2
,
1

2
, 1, 0

〉

=
1√
2
=

〈

1

2
,
1

2
,−1

2
,
1

2

∣

∣

∣

∣

1

2
,
1

2
, 1, 0

〉

. (2.30)

Clearly 〈12 , 12 ,−1
2 ,−1

2 |12 , 12 , 1,−1〉 = 1. It is convenient to represent these results in matrix
form
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〈`, s,m`,ms| / |`, s, j,mj〉 |12 , 12 , 1, 1〉 |12 , 12 , 1, 0〉 |12 , 12 , 1,−1〉 |12 , 12 , 0, 0〉
〈12 , 12 , 12 , 12 | 1 0 0 0

〈12 , 12 , 12 ,−1
2 | 0 1√

2
0 1√

2

〈12 , 12 ,−1
2 ,

1
2 | 0 1√

2
0 − 1√

2

〈12 , 12 ,−1
2 ,−1

2 | 0 0 1 0

where the 〈`, s,m`,ms| values label the rows and the |`, s, j,mj〉 values label the columns.
The zero entries in the last column are found by requiring mj = m`+ms. The

1√
2
and − 1√

2
entries are found from normalization. The orthogonality and normalization requirements
are valid because the Clebsch–Gordan coefficients form a unitary transformation.

Clebsch–Gordan coefficients are found tabulated in various quantum mechanics texts as
well as in books on group theory (in a chapter on the full rotation group). For our present
purposes in a solid state course, you should know how to construct such matrices for the
addition of small angular momenta such as ` = 1, s = 1/2 (homework problem). You should
also know how to use tabulated Clebsch–Gordan matrices that you will find in books and
journal articles.

Now let us see what the Clebsch–Gordan coefficients have to do with the evaluation
of the various matrix elements that occur in problems on magnetism. Suppose we have
an operator Lz acting on an eigenfunction in the |`, s, j,mj〉 representation. The wave
function |`, s, j,mj〉 is not an eigenfunction of Lz; that is, the operator Lz does not act
on |`, s, j,mj〉 to give an eigenvalue times |`, s, j,mj〉. We can find the action of Lz on
|`, s, j,mj〉 by expressing this state in terms of states which are eigenstates of Lz, namely
the states |`, s,m`,ms〉. We then get

Lz|`, s, j,mj〉 =
∑

m`,ms;m`+ms=mj

Lz|`, s,m`,ms〉 〈`, s,m`,ms|`, s, j,mj〉 (2.31)

where the sum is restricted to m` and ms values for which mj = ms+m`. We note that the
action of Lz on an eigenstate of Lz gives m`h̄|`, s,m`,ms〉. Thus we get for the expectation
value of Lz in the |`, s, j,mj〉 representation a sum over all m` and ms states that contribute
to mj :

〈`, s, j,mj |Lz|`, s, j,mj〉 =
∑

m`,ms;m`+ms=mj

h̄m`〈`, s, j,mj |`, s,m`,ms〉 〈`, s,m`,ms|`, s, j,mj〉.

(2.32)
It is readily seen that the results obtained with the Clebsch–Gordan coefficients are in
agreement with the vector model.

The Clebsch–Gordan coefficients are more general than the vector model discussed in
§1.6 in that these coefficients allow the calculation of off-diagonal matrix elements as well
as the diagonal matrix elements that can also be evaluated by the vector model. Operators
that are not diagonalized by a given representation have non-vanishing off-diagonal matrix
elements, as for example 〈`, s, j ′,m′

j |Lz|`, s, j,mj〉, which enter when considering transitions
between eigenstates.

The Clebsch–Gordan coefficients are also useful in finding explicit wave functions in the
sense of wave mechanics. For example, we can use the Clebsch–Gordan coefficients to write
the wave functions for a given ` and s = 1/2 namely

|`, s,m`,ms = 1/2〉 = Y`m`
(θ, φ) χα (2.33)
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where χα denotes the spin function for spin up. The spin function for spin down would
then be written as χβ and would correspond to ms = −1/2. We can write an explicit
expression for |`, s, j,mj〉 by making use of the spherical harmonics and the Clebsch–Gordan
coefficients. An alternate method for finding explicit expressions for the wave functions
|`, s, j,mj〉 is to remain entirely within the bounds of wave mechanics and to use the Addition
Theorem for Spherical Harmonics which is discussed in many of the standard quantum
mechanics texts.
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Chapter 3

Diamagnetism and Paramagnetism
of Bound Electrons

3.1 Introductory Remarks

The magnetic properties of solids are described quantitatively in terms of the magnetization
~M which is defined as the magnetic moment per unit volume. Most solids are only weakly
magnetic and develop a magnetization only when an external magnetic field is applied. In
such cases, the amount of magnetization that is developed depends upon the magnitude of
the magnetic susceptibility χ which is defined by

~M =
↔
χ · ~H (3.1)

where
↔
χ is in general a tensor in a crystalline solid. In Gaussian units, χ is dimen-

sionless since ~M and ~H are both measured in the same units – gauss. Materials for
which χ > 0 are denoted as paramagnetic and χ < 0 are diamagnetic. Materials with

a spontaneous magnetization (i.e., which exhibit a magnetization ~M without application of
a magnetic field) typically have much larger values for χ and can be either ferromagnetic,
antiferromagnetic or ferrimagnetic, as discussed in Chapter 7. In the present Chapter we
focus on materials which are either diamagnetic or paramagnetic and do not exhibit spon-
taneous magnetization.

Magnetic moments in solids can be associated with both the conduction electrons and
the ions (or closed shell valence electrons). In the case of electrons, magnetic moments
are associated both with the orbital motion and with the spin angular momentum of these
electrons. To understand the intimate connection between magnetic moments and angular
momenta, we review here a few basic definitions.

In cgs units, the magnetic induction ~B is related to the magnetic field ~H through the

permeability
↔
µ

~B =
↔
µ · ~H = ~H + 4π ~M = ~H + 4π

↔
χ · ~H = (

↔
1 +4π

↔
χ) · ~H (3.2)

↔
µ=

↔
1 +4π

↔
χ≥ 0 (3.3)

where
↔
1 is the unit second rank tensor having 1’s along the main diagonal and zero else-

where. The condition 1 + 4πχ ≥ 0 is required by thermodynamic stability so that the
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maximum diamagnetic susceptibility is χ = −1/4π, which is the value of χ for a supercon-
ductor that has complete exclusion of the magnetic flux (B = 0).

The field variables ~B and ~E are directly derived from the vector and scalar potentials
~A and φ respectively:

~E = −~∇φ− 1/c(∂ ~A/∂t) (3.4)

~B = ~∇× ~A. (3.5)

The field variables are unique, but the potentials are not (i.e., a gauge transformation yields
a new equivalent potential implying the same field variables)

~A′ = ~A+ ~∇g(~r, t) (3.6)

φ′ = φ− 1

c

∂g(~r, t)

∂t
(3.7)

where g(~r, t) is any analytic function and the gauge transformation given by Eqs. 3.6 and
3.7 does not change the fields in any way. In fact, we require that all measurable quantities
be invariant under a gauge transformation.

The magnetic moment associated with the orbital angular momentum is (see §1.3)

~µ =

(

e

2mc

)

~L (3.8)

in which angular momentum for electrons in atomic states is quantized in units of h̄ and
therefore the magnetic moment is quantized in units of Bohr magnetons µB

µB =
eh̄

2mc
= −0.923× 10−20 ergs/gauss. (3.9)

The charged particles of solids, electrons and nuclei, not only have orbital angular mo-
mentum, but can also have spin angular momentum ~S. A magnetic moment ~µ is also
associated with the spin angular momentum ~S. Experimental studies of atomic spectra
show that the magnetic moment associated with the electron spin can be related to ~S by

~µ =

(

egs
2mc

)

~S (3.10)

where gs is the g–factor which is 2 for free electrons. Since e is a negative number, the
magnetic moment and spin are antiparallel. This g–factor is introduced so that an equivalent
relation between the angular momentum and the magnetic moment will be valid for both
spin and orbital angular momentum. In a solid, the g–factor (or effective g–factor) can
differ from 2, and can in fact be either positive or negative.

In general for free electrons,

~µ =

(

eg`
2mc

)

~L+

(

egs
2mc

)

~S =

(

e

2mc

)

(~L+ 2~S) =

(

e

2mc

)

( ~J + ~S) =

(

µB
h̄

)

( ~J + ~S). (3.11)

Because the g–factor for the electron spin gs is 2, and not unity, we say that gs is anomalous.
Furthermore, since gs = 2, the magnetic moment ~µ is not directed along ~J , so that ~µ and
~J cannot be simultaneously diagonalized, and ~µ and ~J are operators that do not commute.
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Table 3.1: The magnitude of various magnetic quantities at several values of magnetic field.

Magnetic field H or B 0.1 tesla 1.0 tesla 10.0 tesla units

Energy of 1 Bohr magneton µBB 0.5× 10−5 0.5× 10−4 0.5× 10−3 eV

Equivalent temperature µBB/kB 0.06 0.6 6 degK

Cyclotron frequency eB/mc = ωc 2× 1010 2× 1011 2× 1012 rad/sec

fc = ωc/2π 3× 109 3× 1010 3× 1011 Hz

λc = c/fc 10 1 0.1 cm

h̄ωc 10−5 10−4 10−3 eV

It is for this reason that the properties of the angular momentum operators in quantum
mechanics play a major role in the magnetic properties of solids.

Magnetic moment can be associated with either orbital motion or with spin. Because
of the larger nuclear mass, nuclear moments are several orders of magnitude smaller than
are the electronic magnetic moments. Nuclear moments are widely studied by the nuclear
magnetic resonance technique and provide a valuable and sensitive local probe for studying
solids. Nevertheless, the small magnitude of the nuclear moments allows us to neglect them
in computing the static magnetization of solids.

The magnetic moment associated with the spin is a permanent moment which is present
whether or not a magnetic field is present. On the other hand, the magnetic moment
associated with the orbital motion of the electrons is proportional to the applied magnetic
field and is called an induced moment. By Lenz’s law, the induced moment is always
negative and leads to diamagnetic effects.

In calculating the magnetization, we will often need to resort to a statistical approach,
because we cannot hope to specify the detailed state of the system. In treating the orbital
and spin angular momenta, we must also consider the coupling between ~L and ~S through
the spin-orbit interaction. For atoms with high atomic number, the spin-orbit interaction
will be large compared with effects associated with laboratory magnetic fields. To determine
whether the spin-orbit interaction or the energy associated with magnetic field interactions
is larger, we now consider the orders of magnitude of magnetic interactions in solids.

Magnetic energies in solids are generally small compared with electronic energies. That
is, electronic energy gaps are of the order 1 eV while magnetic energies are typically in the
millivolt range. A useful table showing the order of magnitude of magnetic quantities is
given in Table 3.1. We note that the highest dc fields presently available are under 40 tesla,
though pulsed fields of over 100 tesla have been achieved.

Inspection of Table 3.1 shows us immediately why most experiments involving magnetic
energies of these magnitudes must be carried out at high magnetic fields and low temper-
atures. To have sharply defined magnetic energy levels we require the magnetic energies
µBB À kBT , where kB is Boltzmann’s constant. Inspection of Table 3.1 also shows why
cyclotron resonance experiments are easier to carry out in semiconductors where the ef-
fective masses are typically in the range m∗/m ∼ 0.1 so that the cyclotron frequency in
such semiconductors is one order of magnitude higher than for a free electron at the same
value of the B field. Typical semimetals also have carriers with small effective masses, and
therefore exhibit relatively large magnetic field interactions.
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Typical energies for nuclear magnetic effects are reduced by three to four orders of mag-
nitude from the values given in Table 3.1. For this reason nuclear resonance experiments
are usually performed at radio frequencies whereas electron spin resonance experiments
are performed at microwave frequencies. The lower energies for nuclear magnetism can be
exploited in such experiments as adiabatic magnetization and nuclear polarization (Over-
hauser effect). In adiabatic demagnetization, the demagnetization of the electronic system
results in the generation of temperatures in the millidegree K range. On the other hand,
the demagnetization of the nuclear system yields temperatures in the 10−6 deg K range be-
cause µN ∼ 10−3µB where µN is the nuclear magneton. Although the magnitude of nuclear
magnetism is small compared with electronic effects, nuclear magnetism is of considerable
theoretical and practical interest for ultra-low temperature science and technology, as well
as for magnetic imaging and for the chemical characterization of crystalline materials.

3.2 The Hamiltonian for Magnetic Interactions for Bound
Electrons

Now that we have a feeling for the small order of magnitude involved in the weak magnetic
effects in solids, let us look more closely into how we would calculate the energies of electrons
in magnetic systems. Using the one-electron Hamiltonian approach to solids, we can write
the Hamiltonian which includes the effects of the electromagnetic field and of the permanent
magnetic moments as:

H =
[~p− (e/c) ~A]2

2m
+ eφ+ V (~r)− ~µp · ~B (3.12)

in which we have not included the spin-orbit interaction but have included the effect of a
magnetic field through the vector potential ~A, an electric field through the potential φ, the
periodic potential through V (~r), and permanent magnetic moments through the ~µp · ~B term.

To include the spin-orbit interaction, we must add to Eq. 3.12 a term Hs−o = [1/(2m2c2)]~S ·
(~∇V × ~p) and in the presence of electromagnetic fields we replace ~p → ~p − (e/c) ~A in this
relation for Hs−o. If we are dealing with the problem of a static electric field, we can set the
vector potential equal to zero and consider only the scalar potential φ. If we are considering
a static magnetic field, we can set the scalar potential φ = 0 and consider only the vector
potential ~A. If we are considering an electromagnetic field (ω 6= 0), then we can also choose
our gauge so that φ = 0.

The ~µp · ~B term takes into account the permanent magnetic moments in a solid which
arise, for example, from the electron spin. Thus (neglecting for the moment the spin-orbit
interaction), we can write the Hamiltonian (Eq. 3.12) for an electron in a magnetic field as

H = H0−
(

e

2mc

)

(~p · ~A+ ~A · ~p) + e2A2

2mc2
+ eφ− ~µp · ~B (3.13)

where H0 = p2/2m + V (~r) is the Hamiltonian for an electron in a crystalline solid in
zero field. No assumption on the commutivity of ~p and ~A is made in writing Eq. 3.13. For
simplicity we can neglect φ and the commutator [p,A] to obtain a perturbation Hamiltonian
for an electron in a solid

H′ = − e

mc
~p · ~A+

e2A2

2mc2
− ~µp · ~B. (3.14)
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We can also introduce the interaction of an electron in a magnetic field through the pertur-
bation Hamiltonian

H′ = −~µtotal · ~B = − e

mc
(~L+ 2~S) (3.15)

For specific solid state problems either Eq. 3.13 or Eq. 3.15 are used.
Since Eq. 3.13 contains the vector potential explicitly it is convenient to use a specific

gauge to write the Hamiltonian for magnetic interactions. In the case of a static magnetic
field, we can set φ = 0 and the uniform magnetic field in the z direction is derived from a
vector potential

~A =
1

2
( ~B × ~r) (3.16)

with components (in the symmetric gauge)

Ax = −1

2
yB Ay =

1

2
xB Az = 0 (3.17)

which is substituted into the perturbation Hamiltonian of Eq. 3.14. Then writing pj =
(h̄/i)(∂/∂xj) and

~µp =

(

gse

2mc

)

~S (3.18)

the perturbation Hamiltonian of Eq. 3.14 for an electron in an external magnetic field
becomes

H′ =
ieh̄B

2mc

(

x
∂

∂y
− y ∂

∂x

)

+

(

e2B2

8mc2

)

(x2 + y2)−
(

gse

2mc

)

~S · ~B (3.19)

where the first term follows from −(e/2mc)~L · ~B and gives rise to a paramagnetic contribu-
tion to χ. However, the second term in Eq. 3.19 which is proportional to B2 gives rise to a
diamagnetic contribution to the susceptibility. The final term in Eq. 3.19 is again param-
agnetic and proportional to ~B and is due to the interaction of the spin angular momentum
of the electron with the magnetic field.

3.3 Diamagnetism of Bound Electrons

All atoms in gases, liquids and solids exhibit a diamagnetic contribution to the total sus-
ceptibility. The origin of this effect can be understood from very elementary considerations,
both from the standpoint of classical physics and quantum mechanics.

We first give a classical derivation of the diamagnetic susceptibility of bound electrons.
When a magnetic field is applied, the electrons will move to set up a current to oppose the
change in magnetic flux. According to the definition of the magnetic moment ~µ (given in
§1.3), we will now show that each electron will contribute to the diamagnetic moment ~µ.
Suppose that there are Z electrons in an atom. Then

~µ =

(

Ze

2c

)

(~r × ~v) =
(

Ze

2c

)

ω〈ρ2r〉b̂ (3.20)

where b̂ is a unit vector along ~B and ρr is the distance of an electron from the center of
its magnetic field-induced orbit in a plane ⊥ to the magnetic field, and ω is the Larmor
frequency of precession for a bound electron, where ω = −eB/2mc. We therefore obtain

~µ = −
(

Ze2 ~B

4mc2

)

〈ρ2r〉 (3.21)
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which is independent of temperature. This moment is induced and is not present as B → 0.

The diamagnetic susceptibility is then [χ = (∂~µ/∂ ~H)/volume]

χ = −
(

Ne2Z

4mc2

)

µ̂〈ρ2r〉 (3.22)

where N is the atomic density and the permeability µ̂ ' 1. The quantity 〈ρ2r〉 in Eq. 3.22
is related to the orbit made by an electron moving in a magnetic field is not well defined
classically. However, Eq. 3.22 tells us that if 〈ρ2r〉 is large, the electrons will give a greater
contribution to the diamagnetic susceptibility. The simple classical approach given above
provides us with the magnitude and functional dependence for the diamagnetic contribution
to χ, though we must still calculate 〈ρ2r〉. Our classical model is that electrons in an atom are
arranged in shells. Without a magnetic field, the electrons assume a spherically symmetric
state of motion in each shell. In a magnetic field, it is only the motion perpendicular to the
field that is relevant to the magnetic properties. In this plane there will be a net circulation
of charge for each atomic shell, characterized by the Larmor frequency.

To give a more satisfactory description of orbital diamagnetism, we will now give a
quantum mechanical derivation of χ(T ) and explicitly consider the charge distribution for
electrons in bound states. The one-electron perturbation Hamiltonian of Eq. 3.19 is the
basis of the quantum mechanical treatment.

Let us for the moment just deal with the diamagnetic term

H′
dia =

(

e2B2

8mc2

)

(x2 + y2) (3.23)

that appears in Eq. 3.19. Since it is small, it can be handled in perturbation theory. Then,

in first-order perturbation theory, we get a correction to the electron energy E
(1)
dia due to the

diamagnetism of the bound electrons:

E
(1)
dia =

(

e2B2

8mc2

)

∑

i

〈ψi0|ρ2r |ψi0〉 (3.24)

and the matrix element of ρ2r is summed over all electrons. In the spirit of perturbation
theory the diagonal matrix element of ρ2r = (x2 + y2) in Eq. 3.24 is generally calculated for
zero magnetic field between ground state electronic wave functions ψi0.

We can interpret the diamagnetic energy of Eq. 3.24 as arising from a magnetic moment
induced by the field and directed along the field. Thus, according to the definition of the
magnetic moment we obtain

~µ = −∂
~Edia

∂ ~B
= −

(

e2 ~B

4mc2

)

∑

i

〈ρ2r〉 (3.25)

where 〈ρ2r〉 denotes the diagonal matrix elements appearing in Eq. 3.24 and the sum in
Eq. 3.25 is over all electrons in the atom. The quantum mechanical calculation of Eqs. 3.24
and 3.25 thus yield the same result for χ as was obtained classically (see Eq. 3.21), only now
we have a well-defined method for calculating this expectation value of ρ2r . For homework,
we will evaluate ~µ for a specific atomic system, hydrogen.
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Figure 3.1: Diagram showing the orientation
of the magnetic field relative to the axis of
quantization of angular momentum in a crys-
tal.

If the magnitude of the diamagnetic interaction is sufficiently large, we must go to 2nd
order perturbation theory. Then we get a second order contribution to Edia from the various
excited states

E
(2)
dia =

∑ |〈ψ0|H′
dia|ψexcited〉|2

(Eground − Eexcited)
(3.26)

where H′
dia is given by Eq. 3.23 Terms obtained in second order perturbation theory using

Eq. 3.26 are sometimes important and must be considered for the following reason. Up until
now we have assumed that the quantization of angular momentum is along the magnetic
field. In a solid, we are likely to carry out the quantization in terms of the crystallographic
axes. But then the magnetic field direction must be expressed with respect to the crystal
coordinates, in which case the perturbation Hamiltonian (Eq. 3.23) requires minor revision:

H′ =
∑

i

(

e2B2

8mc2

)

r2i cos
2 θi (3.27)

where the summation is over all the electrons and θi is the angle between the magnetic
field and the axis of quantization of the angular momentum (see Fig. 3.1). In a solid the
diamagnetic contribution to the magnetic moment may vanish in 1st order perturbation
theory for certain magnetic field directions and we must go to 2nd order. It often turns

out that the 2nd order term E
(2)
dia is of the opposite sign to the 1st order term E

(1)
dia and,

therefore, E
(2)
dia gives a paramagnetic contribution to χ (compare with the first order term

in Eq. 3.24 which gives a diamagnetic contribution to χ):

E
(2)
dia = +

2|〈ψ0|H′
dia|ψexcited〉|2

(E0 − Eexcited)
= −2|〈ψ0|H′

dia|ψexcited〉|2
Eg

(3.28)

where for simplicity we consider only one excited state and Eg is the energy gap between
the ground state and the excited state. The paramagnetic contribution in Eq. 3.28 is

called Van-Vleck paramagnetism. Like E
(1)
dia, the second order term E

(2)
dia originates from

purely orbital motion and like E
(1)
dia is temperature independent. In general, the most

important contribution from the orbital motion comes in first-order perturbation theory
and we don’t have to worry about second order terms. We have just included this idea into
the present discussion to show that the orbital motion may give rise to both diamagnetic
and paramagnetic contributions.

For the inert gases, the only contribution to the magnetism from the bound state elec-
trons is the diamagnetic contribution and typical experimental values for the magnetic
susceptibility are:
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χmolar ∼ −1.9× 10−6 cm3/mole Helium Z=2
χmolar ∼ −43× 10−6 cm3/mole Xenon Z=54 .

Neglecting for the moment that the electrons in xenon occupy several different atomic shells
(or have different principal quantum numbers), since xenon has 54 electrons compared
to 2 for helium, we can get a rough check on the idea that all electrons contribute to
diamagnetism from the product

(1.9)(27) ' 51.

3.4 Paramagnetism of Bound Electrons

Whereas all atoms possess core diamagnetism, not all atoms possess core paramagnetism.
Referring to Eq. 3.19, the perturbation Hamiltonian which describes the paramagnetism
due to the bound electrons is

H′
para =

∑

i

−
(

e

2mc

)

( ~Li + 2~Si) · ~B = −~µpara · ~B (3.29)

where

~µpara =
e

2mc

∑

i

( ~Li + 2~Si). (3.30)

Thus if we have a closed atomic shell, the total ~L and total ~S both vanish and H′
para vanishes

too. For helium, as an example, both electrons are in an s-states (zero angular momentum)
and have antiparallel spins, so that there is no paramagnetic contribution due to the bound
electrons.

The calculation for the paramagnetism for the bound electrons characteristically is
treated in two parts:

1. determination of the moment ~µpara

2. a statistical calculation of the average of ~µpara.

With regard to the calculation of ~µpara, it may be carried out either classically (approxi-
mately valid for large values of the angular momentum) or quantum mechanically. With
regard to the statistical problem, thermal disorder acts to randomize the alignment of the
moments by the magnetic field so that the average value of ~µpara will be temperature de-
pendent, in contrast to the situation for the diamagnetism for the bound electrons which is
independent of temperature.

For paramagnetic materials, Eq. 3.30 shows that the magnetic moment is independent
of the magnetic field but is a property of the atomic system; such moments are called
permanent moments, in contrast to moments which are induced by the presence of a mag-
netic field, such as the case for the diamagnetic contribution to χ which is discussed in §3.3.
The magnetic field tends to line up the moments and thermal energy tends to randomize
the orientation of the magnetic moments.

We will first give a classical derivation of Curie’s law which provides a good way to
think about paramagnetic systems, even if it must later be refined to take into account the
quantum mechanical aspects of the problem.
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The interaction energy of a magnetic moment with the magnetic field is

E = −~µpara · ~B. (3.31)

Insofar as the magnetic energy tends to be small compared with the thermal energy, the
permanent moments can be excited by thermal excitation to higher energy states whereby
~µpara is no longer along ~B. Thus the average energy at temperature T is found by performing
a statistical average through summing over all states

〈E〉 =
∑

[−~µpara · ~B]e~µpara· ~B/kBT
∑

e~µpara· ~B/kBT
(3.32)

where we have written kB for Boltzmann’s constant. In doing the problem classically, ~µpara
and ~B can make any arbitrary angle with respect to each other (this is not so quantum-
mechanically). Classically we can write

cos θ =
~µpara · ~B
|µpara|B

(3.33)

so that the sums in Eq. 3.32 become integrals over θ. Let x = µparaB/kBT ¿ 1 where x
denotes the ratio of the magnetic energy to the thermal energy and also let y = cos θ. We
now perform an angular integration as indicated in

∫ 2π

0
dφ

∫ π

0
sin θdθ, (3.34)

where we use the coordinate system in Fig. 1.1. If we set y = cos θ, then

〈E〉 = −µparaB
(
∫ 1
−1 e

xyy dy
∫ 1
−1 e

xydy

)

(3.35)

and

〈E〉 = −µparaB
(

d

dx

)

ln

∫ 1

−1
exydy = −µparaB

[(

d

dx

)

ln(ex − e−x)−
(

d

dx

)

lnx

]

(3.36)

= −µparaB
[

cothx− 1

x

]

≡ −µparaB L(x) (3.37)

where L(x) is the dimensionless Langevin function shown in Fig. 3.2.
A Taylor expansion of cothx for small x is

cothx = 1/x+ x/3− x3/45 + · · · (3.38)

so that
L(x) = x/3− x3/45 + · · · (3.39)

is the expansion of L(x) for small x. For very small x, we retain only the leading term or

L(x) ' x

3
=
µparaB

3kBT
. (3.40)
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Figure 3.2: Plot of the dependence of
the Langevin function L(x) on x (solid
curve) where L(x) = cothx−(1/x) and
x = µparaB/kBT . For small x L(x) ∼
x/3 (dashed curve).)

Since 〈E〉 = −〈µpara〉B we have for the thermal average 〈µpara〉

〈µpara〉 =
µ2paraB

3kBT
(3.41)

so that

χpara =
Nµ2paraµ̂

3kBT
=
C

T
(3.42)

where C is Curie’s constant and µ̂ is the permeability. Equation 3.42 which expresses a
proportionality between χpara and 1/T is called the Curie law.

From this treatment you see that the Curie law, which gives the functional form of
χpara(T ) as 1/T is only approximate. That is, classically the temperature dependence of
χpara is given by the Langevin function L(x) shown in Fig. 3.2, which reduces to the Curie
relation for small x when the magnetic energy is much less than the thermal energy.

At low temperatures we would expect departures from the 1/T law according to the plot
shown in Fig. 3.2. When we do the problem quantum-mechanically below, we will find that
yet another function applies. Nevertheless, saturation effects, as suggested by the Langevin
function, are observed experimentally as shown in Fig. 3.3. From the discussion given so
far, we conclude that if we want to enhance the paramagnetic behavior, we need to go to
low temperatures and if we want to enhance the diamagnetic behavior we need to go to
high fields.

Now let us think about the changes that we must make in the above treatment to make
it quantum-mechanical. For one thing, we must find an explicit expression for µpara by
finding the expectation value of the magnetic moment operator in an eigenstate of the total
Hamiltonian H′

para in Eq. 3.29 in the |`, s, j,mj〉 representation. The magnetic moment can
be found easily using the vector model.

By treating the magnetic moment as a quantized operator, we can using Eqs. 1.127 and
1.133 write the quantum mechanical energy levels in the form

Ej = −mjgµBB (3.43)
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Figure 3.3: Plot of magnetic moment
versus H/T for spherical samples of (I)
potassium chromium alum, (II) ferric
ammonium alum, and (III) gadolinium
sulfate octahydrate. Over 99.5% mag-
netic saturation is achieved at a low
temperature of 1.3 K and a field of
about 50,000 gauss. The fit to the ex-
perimental data makes use of Eq. 3.52
which expresses the magnetic moment
in terms of a Brillouin function. [Af-
ter W.E. Henry, Phys. Rev. 88, 559
(1952)]
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Figure 3.4: (a) Equally spaced levels for different mj values −j ≤ mj ≤ j in a magnetic field
where the Zeeman splitting between adjacent levels is gµBB where g is the Landé g–factor.
(b) For a 2-level, spin up and spin down system, the Zeeman splitting is 2µBB.

where g is the Landé g–factor

g =
[32j(j + 1) + 1

2s(s+ 1)− 1
2`(`+ 1)]

j(j + 1)
(3.44)

and µB is the Bohr magneton. These magnetic energy levels are equally spaced, since the
quantum number mj is either an integer or half-integer and can assume values

mj = j, j − 1, . . . ,−j. (3.45)

For a two level spin up and spin down system, we have s = 1/2 and ` = 0, g = 2, mj = ±1/2
and E = ±µBB, while for a more general set of quantum numbers we have an equally spaced
set of Zeeman levels shown in Fig. 3.4(a).

Quantum mechanically the mean value for the magnetic moment is found, as before, by
computing the mean energy

〈E〉 =
∑

mj
emjgµBB/kBT (−mjgµBB)
∑

mj
emjgµBB/kBT

. (3.46)

To simplify the notation let x = gµBBj/kBT where j = maximum value which mj can
assume. Physically, x denotes the ratio between the magnetic energy and the thermal
energy. The sums in Eq. 3.46 can be related to geometric series by recognizing that

〈E〉 = −gµBBj
∑

mj
(mj/j)e

mjx/j

∑

mj
emjx/j

= −gµBBj( ∂
∂x) ln

∑j
mj=−j e

mj
x
j .

(3.47)

The geometric sum in Eq. 3.47 then yields

j
∑

mj=−j
e
mj

x
j =

[e
(j+1)x

j − e−j
x
j ]

[e
x
j − 1]

=
[e
(j+1/2)x

j − e−(j+1/2)x
j ]

[e
x
2j − e−

x
2j ]

(3.48)
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thereby giving the following results for the mean energy

〈E〉 = −gµBBj
(

∂

∂x

)[

ln

(

sinh

(

2j + 1

2j
x

))

− ln

(

sinh(
x

2j
)

)]

(3.49)

= −gµBBj
[(

2j + 1

2j

)cosh(2j+1
2j )x

sinh(2j+1
2j )x

−
(

1

2j

)(cosh( x2j )

sinh( x2j )

)]

(3.50)

so that

〈E〉 = −gµBBj
[(

2j + 1

2j

)(

coth(
2j + 1

2j
)x

)

−
(

1

2j

)(

coth(
x

2j
)

)]

= −(gµBBj)Bj(x)

(3.51)
where Bj(x) is defined as the Brillouin function. By writing 〈E〉 = −〈µpara〉B, we can
obtain the mean magnetic moment (thermal average) as

〈µpara〉 = gµBjBj(x) (3.52)

and by multiplying 〈µpara〉 by N , the number of magnetic moments per unit volume, we
obtain N〈E〉 = −N〈µpara〉B, where N〈µpara〉 is the magnetization per unit volume. The
quantity 〈µpara〉 is plotted in Fig. 3.3 for several magnetic compounds with different j = S
values, yielding excellent agreement between the experimental data and 〈µpara〉 calculated
from Eq. 3.52.

The expansion of the Brillouin function for small x is

Bj(x) =

(

j + 1

3j

)

x−
[

(j + 1)2 + j2
]

(j + 1)

90j3
(x3) + · · · (3.53)

and this result can be used to derive Curie’s law by writing Bj(x) ' ( j+1
3j )x for small x.

Thus for x¿ 1,

〈µpara〉 ' gµBj
(

j + 1

3j

)

gµBBj

kBT
=
g2µ2BBj(j + 1)

3kBT
(3.54)

or

χpara =
Nµ̂g2µ2Bj(j + 1)

3kBT
. (3.55)

It is of interest to compare the quantum mechanical derivation of the Curie law to the
classical derivation of Eq. 3.42. A comparison of Eq. 3.42 and 3.55 suggests the identification
of

µ2para ≡ g2µ2Bj(j + 1) (3.56)

where the j and Landé g–factor g for a particular magnetic species are found by quantum
mechanics (see §1.6).

By making measurements of the temperature dependence of the magnetic susceptibility,
we can determine the Curie constant C which is defined by the Curie law

χpara =
C

T
(3.57)

through Eq. 3.55 as

C =
Nµ̂g2µ2Bj(j + 1)

3kB
. (3.58)
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Figure 3.5: Plot of the susceptibility
per gram versus reciprocal temperature
for powdered CuSO4 · K2SO4 · 6H2O,
showing the Curie law temperature de-
pendence. [After J.C. Hupse, Physica
9, 633 (1942).]
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Table 3.2: Effective magneton numbers p for trivalent lanthanide group ions (near room
temperature).

Ion Configuration Basic level p(calc) p(exp)

Ce3+ 4f15s2p6 2F5/2 2.54 2.4

Pr3+ 4f25s2p6 3H4 3.58 3.5
Nd3+ 4f35s2p6 4I9/2 3.62 3.5

Pm3+ 4f45s2p6 5I4 2.68 –
Sm3+ 4f55s2p6 6H5/2 0.84 1.5

Eu3+ 4f65s2p6 7F0 0 3.4
Gd3+ 4f75s2p6 8S7/2 7.94 8.0

Tb3+ 4f85s2p6 7F6 9.72 9.5
Dy3+ 4f95s2p6 6H15/2 10.63 10.6

Ho3+ 4f105s2p6 5I8 10.60 10.4
Er3+ 4f115s2p6 4I15/2 9.59 9.5

Tm3+ 4f125s2p6 3H6 7.57 7.3
Yb3+ 4f135s2p6 2F7/2 4.54 4.5

The Curie law is very well obeyed by paramagnetic salts, as shown in Fig. 3.5 where χ is
plotted vs. 1/T . The points are experimental and the fit is to Eq. 3.57.

In deriving Curie’s law, we neglected any interactions between magnetic moments (called
the dipole-dipole interaction). The dipole-dipole interaction Hdip between magnetic mo-
ments ~µ1 and ~µ2 is given by

Hdip =
1

r3

[

~µ1 · ~µ2 − 3(~µ1 · r̂)(~µ2 · r̂)
]

(3.59)

where ~r is the vector between the dipoles and r̂ is a unit vector along ~r. The dipole-dipole
interaction tends to line up a dipole due to the magnetic field generated by neighboring
dipoles.

3.5 Angular Momentum States in Paramagnetic Ions

Some paramagnetic systems that have important practical applications (such as laser ma-
terials) are insulating host crystals containing a small concentration of paramagnetic impu-
rities. The paramagnetic susceptibility in the low field limit is found by the Curie law

χpara =
Nµ̂µ2para
3kBT

(3.60)

where µpara is given by Eq. 3.56 in which j and g are found by the vector model. Exper-
imental values for µpara for the rare earth ions are given in Table 3.2 where p is defined
by p2 = g2j(j + 1) where p physically denotes the effective number of Bohr magnetons.
The comparison between the calculated and experimental values of p in Table 3.2 shows
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the excellent agreement between the calculated and experimental values for µpara for the
various rare earth ions.

Although Table 3.2 is useful for describing the ground state of rare earth paramagnetic
ions, it does not give information about the excited states. Information about the energy
levels of the excited states are of great value to people who design laser materials. Such
information is largely established by optical techniques. Many of the high power solid state
lasers used commercially today involve a population inversion created between some excited
levels of a paramagnetic rare earth ion in an ionic host material – e.g. Nd:YAG. A R&D field
that has been on–going for some time is the development of more efficient laser materials
with lower operating thresholds and at more laser frequencies based on excited states of
these rare earth ions.

3.6 Paramagnetic Ions and Crystal Field Theory

Crystal field theory is important for the discussion of the properties of paramagnetic ions
(such as rare earth ions or transition metal ions) in a host crystal. Since the magnetic ions
are well separated from each other, they behave like atomic entities and the treatment we
have given in §3.5 is appropriate. There are several effects, however, that are different for
paramagnetic ions in a solid as compared with a gas, including crystal field splittings and,
in the case of transition metal ions, the quenching of the orbital angular momentum.

The basic assumption of crystal field theory is that the crystal is ionic. Each atom
gives up or receives electrons to make a closed shell or a more stable electron configuration.
Examples where crystal field theory applies are host materials, such as Al2O3 and MgO.
Here, each ion is bonded to ions of opposite charge and the bonds are called ligands. We
may assign a radius to each ion or ion core.

In crystal field theory (also called ligand field theory) we assume that the paramagnetic
ion is surrounded by a set of point charges. We then find the electric potential eV (ri, θi, φi)
produced by these ions and ligands and include this term in the Hamiltonian H for the
paramagnetic ion. This theory is most useful in magnetically dilute substances where para-
magnetic ions are far apart. Examples where crystal field theory applies include 1% Cr3+

in Al2O3 (which constitutes a common laser material), and 1% Er3+ in LaCl3. The Hamil-
tonian for the paramagnetic ion is given by

H =
n
∑

i=1

[(

p2i
2m

)

− e2Z

ri
+ e2

∑

j>i

1

rij

]

+ λ~L · ~S +
n
∑

i=1

eV (ri, θi, φi) (3.61)

which can be written as:
H = Hion +Hs−o +Hcrystal field (3.62)

where the sums are over all the electrons and V (ri, θi, φi) is the crystal field potential pro-
duced by the ligands at the site ri. Figure 3.6 shows the splittings of the ionic energy levels
by the crystal field and the spin-orbit interaction. There are three cases of interest, depend-
ing on the relative magnitudes of the crystal field potential and the spin-orbit interaction.

1. Strong Crystal Field – Here the crystal field is large compared with the spin-orbit

interaction. Thus the crystal field breaks up the ~L · ~S coupling of the atomic electrons.
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Figure 3.6: Crystal field splittings for a paramagnetic ion with a (3d)7 configuration in the
regime where the crystal field is much larger than the spin–orbit interaction.

The transition metal compounds having incomplete 3d-shells are in this category.
Orbital angular momentum is quenched by the strong crystal field.

2. Medium Crystal Field – Here the crystal field is of comparable magnitude to the

spin-orbit interaction. Thus the crystal field breaks up the ~L · ~S coupling, but ` and
s remain good quantum numbers. Co2+ and Ni2+ with an incomplete 3d shell are in
this category. Orbital angular momentum is usually quenched in part for this case.

3. Weak Crystal Field – Here the crystal field is small compared with the spin-orbit
interaction. Thus in this case j is a good quantum number. Rare earth ions which
have an incomplete 4f level belong to this case. 4f electrons are more shielded
from their ligands than 3d electrons, and hence the crystal field is weaker for the 4f
electrons.

The crystal field V (ri, θi, φi) is invariant under every symmetry operation which leaves
the crystal structure invariant. The crystal field potential can be found by summing the
potential of point charges of nearest neighbors, next nearest neighbors, etc. Therefore, the
crystal field potential does not exhibit spherical symmetry but rather the symmetry of the
crystalline lattice. Once the spherical symmetry is lifted, ~J is no longer a constant of the
motion. By lowering the symmetry from full rotational symmetry of the free ion to the
crystal symmetry of the lattice, certain degeneracies in the energy are lifted, as shown in
Fig. 3.6. A more detailed discussion of crystal field theory is given in a course on group
theory.

A second effect which occurs in crystals with strong crystal fields is the quenching of
the orbital angular momentum, which is discussed in the next section.

3.7 Quenching of Orbital Angular Momentum

Let us consider the quenching of the orbital angular momentum which occurs in materials
with a strong crystal field. For simplicity consider an ion with a single electron in a p-state,
with all other electrons being accommodated in a closed shell. Neglecting both the effect
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Figure 3.7: A schematic representation of the eigenfunctions (a), (b), (c) and energy eigen-
values (d) for a uniaxial crystal field along the z–direction and L = 1. In the free atom
the states m = +1, 0,−1 have identical energies so that the states are degenerate. In the
crystal the atom has a lower energy when the electron cloud is coupled to positive ions as
in (a) than when it is oriented midway between them, as in (b) and (c). The wavefunctions
that give rise to these charge densities are of the form zf(r), xf(r) and yf(r) and are called
the pz, px, py orbitals, respectively. In an axially symmetric field, as shown, the px and py
orbitals are degenerate. The energy levels referred to the free atom (dotted line) are shown
in (d). If the electric field does not have axial symmetry, all three states will have different
energies.

of the electron spin and of the spin-orbit interaction, we can write down three degenerate
p-states:

Y1,1(θ, φ)Rn,`(r)∝
[

(x+ iy)/
√
2

]

f(r) m = 1

Y1,0(θ, φ)Rn,`(r)∝z f(r) m = 0

Y1,−1(θ, φ)Rn,`(r)∝
[

(x− iy)/
√
2

]

f(r) m = −1.

(3.63)

Since p-states are degenerate in the free atom, we write them in a form that that displays the
crystal symmetry, as shown in Fig. 3.7. The proper eigenfunctions to display a p-function
in a cubic crystal field are xf(r), yf(r) and zf(r) (see Fig. 3.7). The energy levels are also
indicated in this figure.

Let us find the average value of Lz (denoted by 〈Lz〉) for the xf(r) state:

xf(r) =
1√
2

{[

x+ iy√
2
f(r) +

x− iy√
2
f(r)

]}

(3.64)

so that the expectation value for Lz should be found from the following integral which we
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Table 3.3: A table showing the effective Bohr magnetons for various configurations of the
3d transition metal ions.

Config- Basic p(calc) = p(calc) =

Ion uration Level g[j(j + 1)]1/2 2[s(s+ 1)]1/2 p(exp)a

Ti3+, V4+ 3d1 2D3/2 1.55 1.73 1.8

V3+ 3d2 3F2 1.63 2.83 2.8
Cr3+, V2+ 3d3 4F3/2 0.77 3.87 3.8

Mn3+, Cr2+ 3d4 5D0 0.00 4.90 4.9
Fe3+, Mn2+ 3d5 6S5/2 5.92 5.92 5.9

Fe2+ 3d6 5D4 6.70 4.90 5.4
Co2+ 3d7 4F9/2 6.63 3.87 4.8

Ni2+ 3d8 3F4 5.59 2.83 3.2
Cu2+ 3d9 2D5/2 3.55 1.73 1.9

a Representative values

show below goes to zero
∫

d3r xf(r)Lz xf(r) = 0. (3.65)

More generally, using time inversion symmmetry we see that, if the ground state eigenfunc-
tion is real, then Lz is given by

Lz =

(

h̄

i

)[(

x
∂

∂y

)

−
(

y
∂

∂x

)]

, (3.66)

so that the expectation values for Lz becomes

〈ψ0|Lz|ψ0〉 =
∫

ψ∗
0

(

h̄

i

)[(

x
∂

∂y

)

−
(

y
∂

∂x

)]

ψ0 d
3r. (3.67)

For a ground state wave function ψ0 that is real,

〈Lz〉 =
h̄

i

∫

ψ0

[(

x
∂

∂y

)

−
(

y
∂

∂x

)]

ψ0 d
3r (3.68)

which implies that 〈Lz〉 is pure imaginary. But 〈Lz〉 is an observable, so that 〈Lz〉 must be
real. Hence 〈Lz〉 ≡ 0 for the case of cubic symmetry. Similar arguments follow for crystals
with other symmetries.

The quenching of the orbital angular momentum is important in the limit where the
crystal field is large compared with the spin–orbit interaction. In this case, we continue to
label states in the |`, s,m`,ms〉 representation so that the magnetic moment (~L+2~S) yields
an eigenvalue (m` + 2ms). With the quenching of ~L, we eliminate ~L from the problem and
take ~J = ~S. This seems to be a good approximation for the transition metal ions, especially
those with less than a half-filled 3d shell, as shown in Table 3.3. Only partial quenching
of ~L occurs experimentally for more than half-filled 3d shells. When the orbital angular
momentum is quenched, then the effective paramagnetic moment is p = 2

√

s(s+ 1) and we
can forget about ~L in calculating both the Landé g–factor and the total angular momentum,
consistent with the results in Table 3.3.
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Chapter 4

Paramagnetism and Diamagnetism
of Nearly Free Electrons

References

• Ashcroft and Mermin, Solid State Physics, pp. 661-664, and Chapter 14.

• Kittel, Introduction to Solid State Physics, 6th Ed., pp. 239–249 and 413–416.

4.1 Introduction

In Chapter 3 we considered the diamagnetism and paramagnetism of bound electrons as-
sociated with the core electrons in crystalline materials. In the present chapter, we treat
the paramagnetism of conduction electrons (Pauli paramagnetism) and also consider the
diamagnetism (Landau diamagnetism) of the s and p nearly free electrons in metals and
semiconductors. In addition we devote considerable attention to the discussion of the energy
levels of conduction electrons in a magnetic field, also known as Landau levels.

4.2 Pauli Paramagnetism

We have previously discussed the response of bound electrons to a magnetic field. We first
show in this section that the Curie law for bound electrons has the wrong temperature
dependence for describing the paramagnetic response of conduction electrons in a magnetic
field. We then indicate the new physics that must be introduced to handle the behavior
of the conduction electrons, and show that by taking into account the Fermi statistics, the
proper temperature dependence is obtained.

For the bound electrons, the paramagnetic susceptibility in a weak field is given by the
Curie law:

χ =
nµ̂g2µ2Bj(j + 1)

3kBT
(4.1)

where n is the carrier density and µ̂ is the permeability in the constitutive equation B = µ̂H.
Free electrons have no orbital angular momentum, but only spin angular momentum so that
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j = s = 1/2 and g = 2. Therefore we obtain

g2j(j + 1) = 22
(

1

2

)(

3

2

)

= 3,

and we would expect the Curie law for free electrons having a concentration n to be

χfree electrons =
nµ̂µ2B
kBT

. (4.2)

Equation 4.2 suggests that the free electrons should contribute substantially to the suscep-
tibility (for a simple metal like sodium) as the temperature is decreased. Instead, we find
experimentally that χfree electrons is small in magnitude and nearly independent of tempera-
ture. The reason for this discrepancy is simply that we need to use Fermi statistics to treat
free electrons and not Maxwell–Boltzmann statistics which we used in the calculation of
Curie’s Law. In discussing the statistics for whole atomic systems, as was done in consider-
ing the paramagnetism of the bound electrons, Maxwell–Boltzmann statistics is the proper
statistics to use since the quantum numbers of each atom are not correlated with those of
other atoms.

We will now give two different derivations of the paramagnetic susceptibility of free
electrons taking Fermi statistics into account. We will find this contribution to χ to be
positive, and is called Pauli paramagnetism, in honor of the man who first explained this
effect successfully.

The first “derivation” of the Pauli paramagnetic susceptibility is hand-waving. Although
it can hardly qualify as a derivation, it nevertheless provides us with a very nice physical
picture of Pauli paramagnetism. Suppose that the free electrons form as electron gas with
all energy states occupied up to the Fermi level. Only those states near the Fermi surface
can contribute to the susceptibility, for it is only those states which have unoccupied states
nearby in energy. Thus, the fraction of electrons that can contribute to χ is on the order
of T/TF where the Fermi temperature TF is related to the Fermi energy EF through the
Boltzmann constant kB by TF = EF /kB. This argument then indicates that the free
electron density which is effective in contributing to χ is the fraction n(T/TF ) so that

χfree electrons '
nµ̂µ2B
kBT

(

T

TF

)

=
nµ̂µ2B
kBTF

. (4.3)

Because TF À T for metals at room temperature, the Pauli paramagnetism is expected
to be small compared with the contribution from the bound electrons and χ is essentially
independent of T in agreement with experiment.

We will now give a second derivation of this result that is still quite physical, but
somewhat more rigorous than the hand-waving approach. The second derivation given here
is the basis for many arguments you will see in the literature in the field of magnetism, and
is based on a density of states picture for spin-up and spin-down bands as shown in Fig. 4.1.
The arrows on this diagram refer to the directions of the magnetic moments. The spin
angular momentum ~S has a direction opposite to ~µ. To see the familiar density of states
curve for nearly free electrons in 3D space ρ(E) ∝ E1/2, hold Fig. 4.1 on its side. This
figure shows that the total occupation for the spin-up and spin-down states is different, but
the occupation in both cases is terminated at the same Fermi energy. If we were thinking
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Figure 4.1: Pauli paramagnetism at 0 K, the
levels below EF are occupied. The number
of electrons in the “up” and “down” bands
will adjust to make the energies equal at the
Fermi level. We use the notation µ̂B = |µB| to
take account of the fact that µB is a negative
quantity due to the negative charge on the
electron.

of electrons in a solid, we would call the two sides of the picture spin-up and spin-down
bands. In Fig. 4.1 the energy E at the band edge is either ±µBB relative to the energy in
zero magnetic field. Thus, the electrons with spin along the magnetic field go into the ↓
band on the right hand side of the figure, while the electrons with ~S antiparallel to ~B go
into the band on the left hand side of Fig. 4.1.

Let us now calculate the average number of electrons in the spin up and spin down
bands. This average number will be roughly half of the total carrier concentration n. In
carrying out the calculation we note that because of the negative sign of the electron charge,
µB is a negative quantity. We therefore use µ̂B to denote the absolute value |µB|. Then we
write

n+ =
1

2

∫ EF

−µ̂BB
dE f(E) ρ(E + µ̂BB) (4.4)

where n+ is the electron density with the magnetic moment directed along the field, f(E)
is the Fermi function, and ρ(E + µ̂BB) is the density of states for the ensemble for which
the magnetic moment is directed along the magnetic field (see Fig. 4.1). To carry out the
integral in Eq. 4.4, expand the density of states

ρ(E + µ̂BB) = ρ(E) + µ̂BB(∂ρ(E)/∂E) + · · · . (4.5)

Then upon substitution of Eq. 4.5 into Eq. 4.4 we obtain

n+ =
1

2

∫ ∞

0
dE f(E)ρ(E) +

1

2

∫ 0

−µ̂BB
dE f(E)ρ(E) +

(µ̂BB)

2

∫ ∞

−µ̂BB
dE f(E)ρ′(E). (4.6)

The second term on the right hand side of Eq. 4.6 vanishes because ρ(E) = 0 for E < 0.
The last term on the right hand side of Eq. 4.6 is handled through integration by parts:

∫ ∞

−µ̂BB
dE f(E) ρ′(E) = f(E)ρ(E)|∞−µ̂BB −

∫ ∞

−µ̂BB
dE f ′(E)ρ(E). (4.7)

The first term in Eq. 4.7 vanishes at both limits, since ρ(E) vanishes at the lower limit where
E = −µ̂BB < 0, and f(E) vanishes at the upper limit E →∞. The second term in Eq. 4.7
selects the density of states at the Fermi level because of the delta function properties of
f ′(E) = −δ(E − EF ), and we therefore obtain:

n+ = (
1

2
)n0 + (

1

2
)µ̂BBρ(EF ). (4.8)
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Similarly, we can carry out the corresponding calculation for n− to obtain

n− =
1

2

∫ ∞

+µ̂BB
dE f(E) ρ(E − µ̂BB) = (

1

2
)n0 − (

1

2
)µ̂BBρ(EF ). (4.9)

The magnetic moment per unit volume is proportional to the net number of electrons
contributing to the magnetic moment times µ̂B, and can be written as

M = µ̂B(n+ − n−) = µ2BBρ(EF ) (4.10)

so that
χ = µ2Bρ(EF ). (4.11)

We note that since χ depends on the square of µB, there is no distinction between µ̂2B and
µ2B. It is to be noted that the derivation for χ given here does not take into account the
effect of the magnetic field on the electronic states. This effect is, in fact, of significant
importance but beyond the scope of the simple discussion presented here.

For free electrons we can easily evaluate the density of states at the Fermi level ρ(EF )
to obtain

ρ(EF ) = (3/2)
n

EF
=

3n

2kBTF
(4.12)

so that

M = (3/2)
nµ2BB

kBTF
(4.13)

from which we obtain

χ = (3/2)
nµ̂µ2B
kBTF

(4.14)

which except for the numerical factor is the same result as was obtained by the hand-waving
approach given by Eq. 4.3 in the first “derivation” of the Pauli paramagnetic susceptibility.
Measurements of the Pauli paramagnetic contribution are difficult to carry out and interpret
because of difficulties in separating the various physical contributions to the experimentally
determined χ(T ). The most effective method to measure the Pauli contribution is a compar-
ison between the susceptibilities implied by electron spin resonance and nuclear magnetic
resonance.

4.3 Introduction to Landau Diamagnetism

The orbital motion of the nearly free electrons in a magnetic field gives rise to diamagnetism.
The magnetic energy levels associated with this diamagnetism are called Landau levels and
the diamagnetism is called Landau diamagnetism, named after the famous Russian physicist
Lev Davidovich Landau, who first studied this phenomenon theoretically back in 1930.

In this chapter we discuss the fundamental properties associated with the Landau levels
insofar as they determine Landau diamagnetism. Since the Landau levels imply a variety
of magneto-oscillatory phenomena which are important for studies of the Fermi surface for
crystalline solids, these topics are discussed in Chapter 5, while in Chapter 6 we discuss
magnetic effects in the quantized 2D electron gas which have recently become important be-
cause of quantum wells and superlattices. In our discussion of the diamagnetism associated
with nearly free electrons, we will first discuss the magnetic energy levels (or Landau levels)
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which form the basis for Landau diamagnetism. The discussion starts with a derivation
of the basic equations for a free electron system, and then proceeds to discuss electrons in
simple parabolic bands for 3D materials.

4.4 Quantized Magnetic Energy Levels in 3D

The Hamiltonian for a free electron in a magnetic field uses the basic Schrödinger equation

[

(~p− (e/c) ~A)2

2m
− ~µ · ~B

]

ψ = Eψ (4.15)

in which the square on the first term implies the scalar product of each of the factors
[~p − (e/c) ~A]. To represent a magnetic field along the z axis, we choose the asymmetric
gauge (Landau gauge) for the vector potential ~A:

Ax=−By

Ay=0

Az=0

(4.16)

and we note that ~µ in Eq. 4.15 is the magnetic moment associated with the electron spin,
where ~µ = gsµB ~S/h̄.

Since the only coordinate in the problem (Eqs. 4.15 and 4.16) is y, the form of ψ(x, y, z)
in Eq. 4.15 is chosen to make the differential equation separable into plane wave motion in
the x and z directions. The wave function ψ(x, y, z) is thus written as

ψ(x, y, z) = eikxxeikzzφ(y). (4.17)

Substitution of Eq. 4.17 in Eq. 4.15 results in the expression

[

(h̄kx + (e/c)By)2

2m
+

p2y
2m

+
h̄2k2z
2m

− gsµB
h̄

~S · ~B
]

φ(y) = Eφ(y) (4.18)

where gs and µB are, respectively, the free electron g–factor (gs = 2.0023) and the Bohr
magneton µB = eh̄/(2mc). We see immediately that the orbital portion of Eq. 4.18 is of
the form of the harmonic oscillator equation

[

p2x
2m

+
1

2
mx2ω2

c

]

ψ
(`)
H.O. = E`ψ

(`)
H.O. (4.19)

where ψ
(`)
H.O. is a harmonic oscillator function and E` = h̄ωc(` + 1/2) are the harmonic

oscillator eigenvalues in which ` is an integer, ` = 0, 1, . . .. A comparison of Eq. 4.18 with
the harmonic oscillator equation Eq. 4.19 shows that the characteristic frequency for the
harmonic oscillator is the cyclotron frequency ωc = eB/(mc) and the harmonic oscillator is
centered about

y0 = −
h̄kx
mωc

. (4.20)
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These identifications yield the harmonic oscillator equation

[

p2y
2m

+
ω2
c

2m
(y − y0)2 +

h̄2k2z
2m

− gsµB
h̄

~S · ~B
]

φ(y) = Eφ(y). (4.21)

Thus, the energy eigenvalues of Eq. 4.21 for a free electron in a magnetic field can be written
down immediately as

E`,ms(kz) =
h̄2k2z
2m

+ h̄ωc(`+
1

2
)− gsµBmsB (4.22)

recognizing that in the direction parallel to ~B we have plane wave motion, since there is
no force acting along ~B, and in the plane perpendicular to ~B we have harmonic oscillator
motion. The last term in Eq. 4.22 gives the contribution from spin terms with spin up
corresponding to ms = 1/2 and spin down corresponding to ms = −1/2.

For a band electron in a solid, the energy eigenvalues in a magnetic field are given in the
“effective mass approximation” by an expression which is very similar to Eq. 4.22 except
that the free electron mass is replaced by an effective mass tensor and the free electron
g-factor gs = 2.0023 is replaced by an effective g-factor geff . Thus Landau levels for carriers
in a simple parabolic band in a semiconductor are given by

E`,ms(kz) =
h̄2k2z
2m∗

‖
+ h̄ω∗

c (`+
1

2
)− geffµBmsB (4.23)

where the various band parameters in Eq. 4.23 are defined as follows: m∗
‖ is the effective

mass tensor component along the magnetic field, ω∗
c = eB/(m∗

cc) is the cyclotron frequency,
m∗
c is the cyclotron effective mass for motion in the plane normal to the magnetic field, and

geff is the effective g–factor.
The quantum numbers describing the energy eigenvalues E`,ms(kz) are as follows:

1. ` is the Landau level index (or harmonic oscillator level index), ` = 0, 1, 2, 3, . . ..

2. ms is the spin quantum number, 1/2 for ↑ and –1/2 for ↓.

3. kz assumes values between −∞ and +∞ in free space and is a quasi-continuous
variable in the first Brillouin zone for a real solid.

4. kx is the wave vector in the plane ⊥ to ~B and does not enter into Eq. 4.23 for the
energy levels.

Since the magnetic energy levels E`,ms(kz) are independent of kx, the quantum number kx
contributes directly to the density of states in a magnetic field. This degeneracy factor is
discussed in §4.4.1. The form of E`,ms(kz) is then discussed in §4.4.2 and finally the effective
mass parameters m∗

‖ and m∗
c and the effective g-factor are discussed in §4.4.3.

4.4.1 Degeneracy of the Magnetic Energy Levels in kx

The degeneracy of the magnetic energy levels E`,ms(kz) in kx is found by considering the
center of the harmonic oscillator function, which from Eq. 4.20 is at y0 = −h̄kx/(mωc).
Since y0 lies in the interval

−Ly/2 < y0 < Ly/2, (4.24)
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and since the center of the harmonic oscillator is inside the sample, we have the requirement

−mωcLy
2h̄

< kx <
mωcLy
2h̄

. (4.25)

Thus the limits on the range of the quantum number kx are between kmin
x and kmax

x which
are given by

kmin
x =−mωcLy/2h̄

kmax
x =mωcLy/2h̄.

(4.26)

With the limits on kz imposed by Eq. 4.26, the sum over states (using Fermi statistics)
becomes

Z =
∞
∑

`=0

∞
∑

kz=−∞

kmax
x
∑

kx=kmin
x

1/2
∑

ms=−1/2

ln

(

1 + e[EF−E`,ms (kz)]/kBT
)

. (4.27)

Since the energy levels are independent of kx, we can sum Eq. 4.27 over kx to obtain a
degeneracy factor which is important in all magnetic energy level phenomena

∑

kx

→
∫ kmax

x

kmin
x

dkx
Lx
2π

=
LxLymωc

2πh̄
(4.28)

utilizing the uncertainty principle which requires that there is one kx state per 2π/Lx since
Nxa = Lx, in which a is the lattice constant. It is important to emphasize that the sum
over kx in Eq. 4.28 is proportional to the magnetic field since ωc ∝ B.

Referring to Fig. 4.2(d) we see how upon application of a magnetic field in the z direction
the wave vector quantum numbers kx and ky in the plane normal to the magnetic field are
transformed into the Landau level index ` and the quantum number kx which has a high
degeneracy factor per unit area of (mωc/h). It is convenient to introduce the characteristic
magnetic length λ defined by

λ2 ≡ h̄c

eB
(4.29)

so that from Eq. 4.28 the degeneracy factor per unit area becomes 1/(2πλ2).
From Fig. 4.2(d) we see a qualitative difference between the states in a magnetic field

and the states in zero field. For fields too small to confine the carriers into a cyclotron
orbit with a characteristic length less than λ, the electrons are best described in the zero
field limit, or we can say that the Landau level description applies for magnetic fields large
enough to define a cyclotron orbit within the sample dimensions and for electron relaxation
times long enough for an electron not to be scattered before completing an electron orbit,
ωcτ > 1. We return to the discussion of this degeneracy factor in discussion the 2D electron
gas in Chapter 6.

4.4.2 Dispersion of the Magnetic Energy Levels Along the Magnetic Field

The dispersion of the magnetic energy levels is given by Eq. 4.23 and is displayed in
Fig. 4.2(a). In this figure it is seen that the dispersion relations E`,ms(kz) are parabolic in kz
for each Landau level, each level ` being displaced from levels `+1 and `−1 by the Landau
level separation h̄ωc. The lowest Landau level (` = 0) is at an energy (h̄ωc/2) above the
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Figure 4.2: Various aspects of Landau levels. (a) E vs kz for the first few Landau levels
` = 0, 1, . . . , 4. The B = 0 parabola (dashed curve) refers to the ordinary free electron case
with zero magnetic field. (b) k–space showing Landau levels in 3D. The allowed k-values
lie on the concentric cylinders, and the spherical Fermi surface cuts these cylinders. (c)
The solid line is the density of states for all the Landau levels while the dashed-solid curves
give the density of states in a magnetic field for each of the Landau levels. Singularities
in the density of states occur whenever a Landau level pops through the Fermi level. The
dashed curve labeled B = 0 refers to the density of states in zero field, and shows the
expected

√
E dependence. (d) A schematic diagram showing how the states in zero field

go into Landau levels when the B field is applied. The diagram also shows the effect of
electron-spin splitting on the Landau levels.
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energy of electrons in zero magnetic field. The occupation of each Landau level is found by
integration up to the Fermi level EF . Figure 4.2(b) shows special kz values where either a
Landau level crosses the Fermi level or a Landau level pops through the Fermi level EF . As
the magnetic field increases the Landau level separation increases until a Landau level pops
through EF , requiring a redistribution of electrons through the remaining Landau levels.

In this section we focus on the kz dependence of the magnetic energy levels. First we
obtain the sum of the number density over kz which involves conversion of the sum on states
to an integral

∑

kz

→ 2

∫ ∞

0
dkz

Lz
2π
. (4.30)

Using Fermi statistics we then obtain for the number density:

n(Lx, Ly, Lz) =
∑

states
1

1+e
(E`,ms

(kz)−EF )/kBT

=
LxLymωc

2πh̄
2Lz
2π

∑

`,ms

∫∞
0 dkz

1

1+e
(E`,ms

(kz)−EF )/kBT
,

(4.31)

so that the degeneracy factor per unit volume is (1/2π2λ2).
Keeping the Fermi level constant, the electron density is found by summing the Fermi

distribution over all states in the magnetic field, where the Fermi function

f(E`,ms(kz)) =
1

1 + e(E`,ms (kz)−EF )/kBT
(4.32)

gives the probability that the state (`,ms, kz) is occupied. In a magnetic field, the 3D
electron density n of a nearly free electron solid (neglecting spin splitting effects) is

n =
2eB

(2π)2h̄c

`max
∑

`=0

∫ π/a

−π/a
dkzf(E`,ms(kz)) (4.33)

in which a factor of 2 for the electron spin degeneracy has been inserted.
For simplicity, we further consider the magnetic energy levels for a simple 3D parabolic

band (neglecting spin)

E`(kz) =
h̄2k2z
2m∗ + h̄ω∗

c (`+ 1/2) (4.34)

so that

kz =

(

2eB

ch̄

)1/2[ E

h̄ω∗
c

− (`+ 1/2)

]1/2

(4.35)

where we have written E to denote E`(kz). Differentiating Eq. 4.35 gives

dkz =

(

2eB

ch̄

)1/2 dE

2h̄ω∗
c

[

E

h̄ω∗
c

− (`+ 1/2)

]−1/2

. (4.36)

For the case of a 2D electron gas, the electrons are confined in the z direction and exhibit
bound states. Thus no integration over kz (see Eq. 4.33) is needed for a 2D electron gas.
However, for the 3D electron gas, integration of Eq. 4.33 thus yields a carrier density at
T = 0 of

n =
1

π2λ2

`F
∑

`=0

∫ EF

E(kz=0)

(

2eB

ch̄

)1/2 dE

2h̄ω∗
c

[

E

h̄ω∗
c

− (`+ 1/2)

]−1/2

(4.37)
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where the characteristic magnetic length λ is given by Eq. 4.29. Carrying out the integration
in Eq. 4.37, we obtain the result

n =
1

π2λ2

`F
∑

`=0

(

2eB

ch̄

)1/2[ EF
h̄ω∗

c

− (`+ 1/2)

]1/2

(4.38)

where `F is the highest occupied Landau level. The oscillatory effects associated with
Eq. 4.38 are discussed in Chapter 5.

From differentiation of Eq. 4.38 with respect to energy, we obtain the density of states
in a magnetic field ρB(E) = (∂n/∂E)

ρB(E) =

√

2eB/h̄c)

2π2h̄ω∗
c (h̄c/eB)

∑

`

[

E

h̄ω∗
c

− (`+ 1/2)

]−1/2

(4.39)

which is plotted in Fig. 4.2c, showing singularities at each magnetic subband extrema. Be-
cause of the singular behavior of physical quantities associated with these extrema, the
subband extrema contribute resonantly to magneto-optical spectra, as discussed in Chap-
ter 5.

To illustrate the oscillatory behavior of Eq. 4.38 in 1/B, we write Eq. 4.38 as the sum
over Landau levels and can be written as

n =

√
2

π2λ3

`F
∑

`=0

(

`′F − `
)1/2

(4.40)

and the resonance condition is

`′F =
EF
h̄ω∗

c

− 1

2
(4.41)

gives a measure of the occupation level as is illustrated in Fig. 4.2a. The oscillatory behavior
of n and other physical observables is the subject of Chapter 5.

4.4.3 Band Parameters Describing the Magnetic Energy Levels

The magnetic energy levels given by Eq. 4.23 depend on several band parameters m∗
‖, m

∗
c

and geff . In this section we summarize the properties of these band parameters. To observe
the effects associated with the Landau levels we require that ωcτ À 1, which implies that
an electron can execute at least one cyclotron orbit before being scattered. Because of the
small effective masses of carriers in semiconductors, the cyclotron frequency is high, and the
spacing between magnetic energy levels also becomes large in comparison to free electrons.

The effective mass parameters m∗
‖ and m∗

c which enter Eq. 4.23 can be simply written
for semiconductors because of the simplicity of their Fermi surfaces. For arbitrary magnetic
field directions, it is often convenient to use the formula

m∗
c =

(

det[
↔
m

∗
]

b̂· ↔m∗ ·b̂

)1/2

(4.42)

to find the cyclotron effective mass m∗
c for an ellipsoidal constant energy surface, where

det[
↔
m

∗
] is the determinant of the effective mass tensor

↔
m

∗
and b̂ is a unit vector in the

direction of the magnetic field so that

m∗
‖ = b̂· ↔m∗ ·b̂. (4.43)
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Figure 4.3: Simplified view of the band
edge structure of a direct gap semicon-
ductor, e.g., GaAs at ~k = 0. Note that
the spin-orbit splitting in the valence
band is nearly as large as the bandgap.

Equations 4.42 and 4.43 are particularly useful when the constant energy ellipsoidal surface
does not have its major axes along the crystalline axes and the magnetic field is arbitrarily
directed with respect to the major axes of the ellipsoidal constant energy surface. For
ellipsoidal constant energy surfaces, neither m∗

‖ nor m∗
c depend on kz. For more general

Fermi surfaces, m∗
c is found by integration of k/(∂E/∂k) around a constant energy surface

normal to the magnetic field and m∗
c will depend on kz in general. The effective mass

component along the magnetic field m∗
‖ is unaffected by the applied field.

The calculation of geff is more complicated than for the effective mass components, and
makes considerable use of group theory to handle symmetry phenomena. Therefore we will
treat geff as an experimentally determined band parameter.

In materials with large spin–orbit coupling (see Fig. 4.3) the effective g–factor, geff , is
found experimentally to be quite different from the free electron value of 2 and geff can be
either positive or negative. For example, for the conduction band of InSb, geff ' −50 and
the cyclotron effective mass for the electron carriers is small (m∗

c ' 0.014m) and isotropic.
The extremum (kz = 0) of each magnetic sub-band (indexed by the quantum number ` =
integer) is indicated in Fig. 5.2. For the case of InSb, the lowest magnetic energy level is
a spin ↑ state, with the spin oriented along the magnetic field due to the negative effective
g-factor of InSb. This negative g-factor arises because of the large orbital contribution to
the g-factor which can occur in solids with a large spin-orbit interaction, an effect that is
totally absent in atomic systems.
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4.5 The Magnetic Susceptibility for Conduction Electrons

Having obtained the magnetic energy levels for the conduction electrons, we can then use
statistical mechanics to obtain the magnetization per unit volume using

M = +
kBT

V

∂ lnZ
∂H

(4.44)

where the partition function Z for the conduction electrons is given by Eq. 4.27 and the
magnetic susceptibility is given by χ = ∂M/∂H.

Most interest in studies of the magnetic susceptibility has focussed on the magneto-
oscillatory phenomena exhibited by the partition function Z as is further discussed in
Chapter 5.
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Chapter 5

Magneto-Oscillatory and Other
Effects Associated with Landau
Levels

References

• Ashcroft and Mermin, Solid State Physics, Ch. 14.

• Kittel, Introduction to Solid State Physics, 6th Ed., pp. 239–249.

5.1 Overview of Landau Level Effects

Studies of the density of states in a magnetic field and intraband (cyclotron resonance) and
interband transitions between magnetic energy levels provide three of the most informative
techniques for study of the constant energy surfaces, Fermi surfaces, and effective mass
parameters in solid state physics:

1. The de Haas–van Alphen effect and the other related magneto-oscillatory effects pro-
vide the main method for studying the shape of the constant energy surfaces of semi-
conductors and metals. This is the main focus of this chapter.

2. Cyclotron resonance (see Fig. 5.1) gives values for the effective mass tensor components
by measurement of the transition between adjacent magnetic energy levels in a single
band (intraband transitions)

h̄ω∗
c = E` − E`−1 (5.1)

where the cyclotron frequency for a carrier orbit normal to the magnetic field is given
by ω∗

c = eB/(m∗
cc) and E` denotes a Landau level with Landau level index `. The

magnetic energy level structure for two simple parabolic bands shown in Fig. 5.2 can
be interpreted as the Landau level subbands for the valence and conduction bands
for a model semiconductor. The dispersion of the energy levels along kz discussed in
Chapter 4

E`,ms(kz) =
h̄2k2z
2m

+ h̄ωc(`+
1

2
)− gsµBmsB (5.2)
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Figure 5.1: Typical cyclotron resonance signals in (a) germanium and (b) silicon. The
magnetic field lies in a (110) plane and makes an angle with the [001] axis of 60◦ for the
spectrum shown for Ge and 30◦ for the spectrum shown for Si. (From G. Dresselhaus, et
al., Phys. Rev. 98, 368 (1955).)

is shown in Fig. 5.2 for each magnetic subband ` for a given spin statems. As shown in
Fig. 5.1, cyclotron resonance experiments can be carried out on both the electron and
hole carrier pockets of semiconductors. Electrons and holes correspond to the two
different circularly polarizations of the microwave excitation radiation. Because of
the different band curvatures and effective masses associated with the various carrier
types in metals and semiconductors, h̄ω∗

c will be in resonance with h̄ω of the resonant
microwave cavity at different magnetic field values. The optical selection for these
intraband (cyclotron resonance) transitions is ∆` = ±1. By varying the magnetic field
direction relative to the crystal axes, the corresponding cyclotron effective masses can
be determined, thereby giving the effective mass tensors for electrons and/or holes.

3. Interband Landau level transitions (see Fig. 5.2) occur when the optical frequency is
equal to the separation between the extrema (kz = 0) of the Landau levels ` and `′

h̄ω = E`,c − E`′,v = Eg + h̄ω∗
c,c(`+ 1/2) + h̄ω∗

c,v(`
′ + 1/2). (5.3)

These interband transitions provide information on effective masses for the valence
and conduction bands and the bandgaps between them. The optical selection rule for
these interband transitions is ∆` = 0. In Eq. 5.3 the subscripts v and c refer to the
valence and conduction bands, respectively. Table 5.1 gives values for the effective
masses for the conduction band me, and valence bands for heavy holes mhh and light
holes mlh and for the split-off bands for several direct gap semiconductors, and data
are included for the split-off band shown in Fig. 4.3.

In semiconductors it is relatively easy to observe quantum effects in a magnetic field because
of the light mass, high mobility and long relaxation times of the carriers which make it easy
to satisfy ωcτ À 1, the requirement for observing quantum effects.
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Figure 5.2: Magnetic energy levels for sim-
ple parabolic valence and conduction bands.
Intraband cyclotron resonance and interband
Landau level transitions occur between these
magnetic energy levels. The dashed curves
represent the energy dispersion relation in
zero magnetic field. In this diagram the spin
on the electron is neglected.

Table 5.1: Effective masses of electrons and holes in direct gap semiconductors.

Electron Heavy Hole Light Hole Split-Off Hole Spin-Orbit Gap
Crystal me/m0 mhh/m0 mlh/m0 msoh/m0 ∆ (eV) Eg (eV)

InSb 0.015 0.39 0.021 (0.11) 0.82 0.23
InAs 0.026 0.41 0.025 (0.08) 0.43 0.43
InP 0.073 0.40 (0.078) (0.15) 0.11 1.42
GaSb 0.047 0.30 0.06 (0.14) 0.80 0.81
GaAs 0.070 0.68 0.12 (0.20) 0.34 1.52
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Figure 5.3: Schematic diagram of the
extrema of the energy of the Lan-
dau levels for the quantum limit ` =
0, 1, 2, . . . showing occupation of the
two lowest magnetic sub-bands for
kz = 0. The parabola indicates the kx
(or ky) dependence at B = 0. � ���
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5.2 Quantum Oscillatory Magnetic Phenomena

Consider the magnetic energy levels such as those shown in Fig. 5.2 for a band electron in a
solid. Assume, for example, that we have carriers in the conduction band and hence a Fermi
level as indicated in Fig. 5.3 where we plot the parabolic E(~k) relation in zero magnetic field
and indicate the energy of each magnetic sub-band extremum by its Landau level index.
For each magnetic subband, the density of states is singular at its subband extremum and
the resonances in the magneto-oscillatory experiments occur when an energy extremum is
at the Fermi energy. Now imagine that we increase the magnetic field. The Landau level
spacing is h̄ω∗

c = h̄eB/(m∗
cc) and is proportional to B. Thus as we increase B, we eventually

reach a value B` for which the highest occupied Landau level ` crosses the Fermi level and
the electrons that formerly were in this level must redistribute themselves among the lower
levels below the Fermi level.

Assume for the moment that the Fermi level is independent of magnetic field, which is
a good approximation when many Landau levels are occupied. We will now show that the
passage of Landau levels through the Fermi level produces an oscillatory dependence of the
electron density upon the reciprocal of the magnetic field.

Since many physical quantities depend on the density of states, these physical quan-
tities will also exhibit an oscillatory dependence on 1/B. Thus, this oscillatory depen-
dence on (1/B) is observed in a large class of observables such as the electrical resistivity
(Shubnikov–de Haas effect), Hall effect, Seebeck coefficient, ultrasonic attention, velocity of
sound, optical dielectric constant, relaxation time, temperature dependence (magnetother-
mal effect), magnetic susceptibility (the de Haas–van Alphen effect). We discuss below the
oscillatory dependence of the carrier density on 1/B as representative of this whole class of
magneto-oscillatory effects.

In order for the de Haas–van Alphen effect to be observable, we require that an electron
complete an orbit before scattering. The time to complete an orbit is 2π/ω∗

c and this time
must be small compared with τ the average time between electron scattering events. Thus
the condition for observing the de Haas–van Alphen effect is usually written as ω∗

c τ À 1.
Thus the observation of magneto-oscillatory phenomena requires high magnetic fields (large
ωc) and low temperatures (long τ). Low temperatures are also necessary so that the Landau
level separations can be large compared with thermal energies. Landau level separations
generally are quite small in magnitude. For example, for B = 10 tesla or 100 kilogauss,
and m equal to the free electron mass, the Landau level separation is ∼ 10−3 eV (or
∼ 12K) which is to be compared with kBT at room temperature with an energy of 0.025
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eV. Therefore it is desirable to carry out de Haas–van Alphen experiments in the vicinity
of 1K. For simplicity, we will take T = 0K in our simple discussion of magneto-oscillatory
effects so that the Fermi function is 1 for E < EF (occupied states) and is 0 for E > EF

(unoccupied states).
The oscillatory behavior of the electron density in a magnetic field can be understood

from the following considerations. As we increase the magnetic field two things happen.

1. The density of states degeneracy associated with kx increases because this degeneracy
is proportional to B (see Eq. 4.28).

2. With increasing field B, the number of electrons in a magnetic energy level ` decreases
as its magnetic energy level extremum approaches the Fermi level. This emptying of
electrons from higher lying magnetic sub-bands is not a linear function of B. In
particular, when a level crosses the Fermi level, the emptying of electron states is very
rapid due to the high density of states at kz = 0 (see Fig. 4.2c).

Consider, for example the emptying of the ` = 1 Landau level as it passes through EF , for
increasing magnetic field. All electrons in this level must be emptied when the Landau level
crosses EF (see Fig. 5.3). We show below that the extrema in the Landau levels correspond
to singularities in the density of states (see Fig. 4.2c). The 3D density of states in a magnetic
field has a monotonic magnetic field-dependent background due to the degeneracy factor of
Eq. 4.28 as well as a resonance at

EF = h̄ω∗
c (`+ 1/2) =

h̄eB`

m∗
cc

(`+ 1/2) (5.4)

denoting the energy where a Landau level passes through the Fermi level. As B increases
further, the magnetic energy levels tend to empty their states slowly just after the Landau
level has passed through the Fermi level, and the monotonic linearly increasing degeneracy
term (Eq. 4.28) dominates. The interplay of these two factors leads to oscillations in the
density of states and consequently in all physical observables depending on the density of
states. The resonance condition in the density of states in a magnetic field is given by
Eq. 5.4 which defines the resonant magnetic field B` as the field where the E` Landau level
passes through EF . Making use of Eq. 5.4, we see that the resonances in the density of
states (Eq. 4.39) are periodic in 1/B with a period defined by

P ≡ 1

B`
− 1

B`−1
=

eh̄

m∗
cEF c

[(`+ 1/2)− (`− 1/2)] =
eh̄

m∗
cEF c

. (5.5)

Equation 5.5 shows that the period P is independent of the quantum number (Landau level
index) `, but depends on the product m∗

cEF . It turns out that the temperature dependence
of the amplitude of the de Haas–van Alphen resonances depends on m∗

c so that one can
thus measure both m∗

c and the product m∗
cEF through study of these magneto-oscillatory

phenomena, thereby yielding EF and m∗
c independently.

It is often convenient to discuss the de Haas–van Alphen effect in terms of cross–sectional
areas of the Fermi surface. Since EF = h̄2k2F /2m

∗ and A = πk2F , we have EF = h̄2A/2πm∗

and from Eq. 5.5 the de Haas–van Alphen period P becomes

P =
1

B`
− 1

B`−1
=

2πe

ch̄A . (5.6)
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Figure 5.4: Fermi surface showing extremal
cross–sectional areas. The indicated maxi-
mum and minimum areas would each show
distinct de Haas–van Alphen periods. The
larger cross section would have a shorter pe-
riod.

Equation 5.6 shows that the de Haas–van Alphen period P depends only on the Fermi
surface cross sectional area A (see Fig. 5.4) except for universal constants. A more rigorous
derivation of the de Haas–van Alphen period P shows that Eq. 5.6 is valid for an arbitrarily
shaped Fermi surface and the area A that is associated with the resonance is the extremal
cross-sectional area – either the maximum or minimum as illustrated in Fig. 5.4. A physical
explanation for the dominance of the extremal cross section of the Fermi surface is that
all cross sectional areas normal to the magnetic field contribute to the magneto-oscillatory
effect, but upon integration over kz, the cross-sections which do not vary with kz (or vary
very little with kz) will contribute to the same de Haas–van Alphen period P, while the
non-extremal cross sections will each contribute to different values of P and therefore will
not give a resonant oscillatory period. By varying the magnetic field orientation, different
cross-sections will become extremal, and in this way the shape of the Fermi surface can
be monitored. Ellipsoidal constant energy surfaces have only one extremal (maximum)
cross-section and the cyclotron effective mass m∗

c is independent of kz.

As an example of the de Haas–van Alphen effect in a real material, we see in Fig. 5.5a
oscillations observed in silver with ~B ‖ (111) direction. In this figure we see oscillations with
a long period as well as fast or short period oscillations. From the Fermi surface diagram
in the extended Brillouin zone shown for silver in Fig. 5.5b, we identify the fast periods
with the large Fermi surface cross sections associated with the belly orbits and the slow
oscillations with the small cross sectional necks. From Fig. 5.5b, it is clear that the necks
can be clearly observed only for the ~B ‖ (111) directions. However, the anisotropy of the
belly orbit can be monitored by varying the orientation of ~B.

Not only do the electrons execute orbits in reciprocal space, they also execute orbits
in real space in the presence of a magnetic field. Because the length scales in real space
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(a) (b)

Figure 5.5: (a) De Haas–van Alphen effect for silver with ~B ‖ (111) direction, allowing
observation of the belly (fast oscillation) orbit and neck (slow oscillation) orbit shown in
(b). The Fermi surface for silver is inferred from measurement of the de Haas–van Alphen
effect as a function of magnetic field orientation. The period for the neck orbits [see (b)] is
given by the distance between the vertical arrows in (a).

and reciprocal space are inversely proportional to one another, large orbits in k-space (see
Fig. 5.4) correspond to small orbits in real space. Furthermore for ellipsoidal orbits (which
commonly occur in semiconductor physics), a large ky/kx ratio in the k-space orbit would
correspond to a small y/x ratio in real space orbit but a large value for x/y, so that the
semi-major axis in the real space orbit is rotated by 90◦, relative to the semi-major axis of
the reciprocal space orbit.

Although we have neglected the electron spin in the above discussion, it is nevertheless
important. De Haas–van Alphen oscillations occur whenever a spin-up or a spin-down level
crosses EF . In fact, magneto-oscillatory observations provide an excellent tool for studying
both the Landau level spacing as well as the effective g–factor geff as can be seen from
Fig. 4.2d. Values for m∗

c and geff can be obtained independently since the period between
every second resonance yields the Landau level separation, while sequential resonances are
separated by geffµBB.

5.3 Selection Rules for Landau Level Transitions

Since the magnetic energy states are described by harmonic oscillator wave functions, the
matrix elements coupling different Landau levels are described by the selection rules for
harmonic oscillators. Utilizing the matrix element of the coordinate taken between harmonic
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oscillator states, we write

〈`|x|`′〉 =
√

h̄

2m∗
cω

∗
c

[√
`+ 1 δ`′,`+1 +

√
` δ`′,`−1

]

. (5.7)

The corresponding matrix element for px is

〈`|px|`′〉 =
√

h̄m∗
cω

∗
c

2

[√
`+ 1 δ`′,`+1 +

√
` δ`′,`−1

]

. (5.8)

The matrix elements for x and px determine the matrix elements for intraband transitions,
referred to in §5.1. It is also of interest to discuss the expectation value of 〈`|x2|`′〉 and
〈`|p2x|`′〉 which are

〈`|x2|`〉 =
(

h̄

2m∗
cω

∗
c

)

(2`+ 1) =
h̄

m∗
cω

∗
c

(`+ 1/2) (5.9)

〈`|p2x|`〉 =
(

h̄m∗
cω

∗
c

2

)

(2`+ 1) = h̄m∗
cω

∗
c (`+ 1/2) (5.10)

to yield the partition theorem that the kinetic and potential energies of the harmonic
oscillator are each (h̄ω∗

c/2)(`+ 1/2). The “classical mean radius” for a harmonic oscillator
state is defined by

√

〈`|x2|`〉 = λ
√

(`+ 1/2) (5.11)

using Eq. 5.9, thus giving physical meaning to the characteristic length λ in a magnetic
field which is λ = (h̄/m∗

cω
∗
c )

1/2 = (ch̄/eB)1/2 as given in Eq. 4.29. We see here that λ is
independent of m∗

c and except for universal constants depends only on B. The classical
mean radius thus has a value at 10 tesla (or 100 kG) of ∼ 10−6 cm which is about 30 lattice
constants in extent. Thus to get a classical orbit within a unit cell we would require fields
of ∼ 3,000 tesla or 30 megagauss. With present technology it is not yet possible to generate
an external magnetic field with magnetic effects comparable in magnitude to crystal fields,
though the highest available fields (300 tesla in the form of pulsed fields) permit entry into
this important and interesting regime.

5.4 Landau Level Quantization for Large Quantum Numbers

The most general quantization condition for electrons in conduction bands was given by
Onsager. Suppose that a magnetic field is applied parallel to the z–axis. Then the wave
vector components kx, ky which are perpendicular to the magnetic field B should satisfy
the commutation relation

[kx, ky] =
s

i
, (5.12)

where s = 1/λ2 is proportional to the magnetic field B and is defined as s = eB/h̄c and
where

kx →
1

i

∂

∂x
− eB

ch̄
y (5.13)

and

ky →
1

i

∂

∂y
. (5.14)
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The reason why kx and ky in a magnetic field do not commute, of course, relates to the fact
that y and py do not commute. We define the raising and lowering operators k+ and k− in
terms of kx and ky

k± =
1√
2
(kx ± iky), (5.15)

and the operation of k± on the harmonic oscillator wavefunction φ` is given by

k+φ`=[(`+ 1)s]
1
2φ`+1

k−φ`=(`s)
1
2φ`−1.

, ` = 0, 1, 2, · · · . (5.16)

The general quantization condition gives k2 = k+k− + k−k+ so that

(2`+ 1)s −→ k2 (5.17)

and corresponds to the Bohr–Sommerfeld–Onsager relation:

∮

E(k)=const
|k|dk = 2πs

(

`+
1

2

)

, (`À 1) (5.18)

where the line integral is over an orbit on the constant energy surface. This semiclassical
quantization gives the classical limit for large quantum numbers and can be applied to
calculate orbits of carriers in a magnetic field on any constant energy surface.
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Chapter 6

The Quantum Hall Effect (QHE)

References

• Prange and Girvin, The Quantum Hall Effect, Springer-Verlag (1987).

6.1 Introduction to Quantum Hall Effect

The observations of the quantum Hall effect (QHE), and the fractional quantum Hall ef-
fect (FQHE) which is mentioned in section §6.6, were made possible by advances in the
preparation of high mobility materials with physical realizations of a 2D electron gas. The
MOSFET devices (see Part I, §9.2) and the modulation-doped heterostructures (see Part
I, §9.3) give rise to the formation of a 2D electron gas in a narrow interface region. In
this Chapter we present a simple view of the physics of the quantum Hall effect and the
two-dimensional electron gas.

The “Quantum Hall Effect” (QHE) is the step–like increase in the Hall resistance ρxy
in units of h/e2 with magnetic field (see Fig. 6.1). Each step in (ρxy) is accompanied by
a vanishing of the magnetoresistance (i.e., ρxx = 0) as shown in Fig. 6.1. For an ordinary
3D electron gas, ρxy increases linearly with magnetic field B and the magnetoresistance ρxx
increases as B2 (see Part I, §8.2). The quantum Hall effect is a strictly 2D phenomenon
which can be observed in semiconductors containing a 2D electron gas region (e.g., in a
modulation–doped superlattice as in Part I, §9.3). A second requirement for observation of
the Quantum Hall Effect is a very high carrier mobility, so that no carrier scattering occurs
until the carrier has completed many cyclotron orbits (ωcτ À 1). A third prerequisite
for the observation of the quantum Hall effect is that the Landau level separation of the
magnetic levels is large compared with kBT . Thus the QHE is normally observed at very
high magnetic fields, very low temperatures and in very high mobility samples, as shown in
Fig. 6.1.

6.2 Basic Relations for 2D Hall Resistance

The conventional 3D Hall effect is usually measured in a long sample in which a fixed
current Ix is flowing in the x–direction and a magnetic field B is applied in the z–direction.
The Lorentz force on the electrons e(~v/c)× ~B is compensated by the Hall electric field EH
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Figure 6.1: The quantum Hall effect. As shown in the upper panel, the Hall resistance
shows plateaux which coincide with the disappearance of the sample’s electrical resistance.
On the plateaux, the Hall resistance remains constant while the magnetic field strength
is varied. At each of these plateaux, the value of the Hall resistance is precisely equal to
h/(`e2), where ` is an integer, while the magnetoresistance component vanishes ρxx = 0.
(Note: plateaux is the preferred plural of plateau.)
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Figure 6.2: Typical geometry of a
sample used for Hall effect measure-
ments. The formation of a 2D electron
gas (2DEG) in a GaAs heterostruc-
ture is shown in the enlargement of
the cross section. The Hall voltage
VH and the voltage drop Vx are mea-
sured under the constant current con-
dition Ix = constant as a function of
the magnetic field Bz perpendicular to
the 2D electron gas.

in the y–direction to prevent the flow of current in the y–direction. The geometry for the
Hall measurements is shown in Fig. 6.2. The two voltages Vx (driving voltage) and VH
(Hall voltage) are measured. The longitudinal (Rx) and Hall (RH) resistances are defined
in terms of the current flow Ix as:

Rx=Vx/Ix

RH=VH/Ix.

(6.1)

In general, the conductivity tensor (
↔
σ ) and the resistivity (

↔
ρ ) tensors relate the current

density (~j) and the electric field ( ~E) vectors, and the vector relations in 2D are written as:

~j =

(

jx
jy

)

=
↔
σ · ~E =

(

σxx σxy
σyx σyy

)(

Ex
Ey

)

(6.2)

and in terms of the resistivity as

~E =

(

Ex
Ey

)

=
↔
ρ · ~J =

(

ρxx ρxy
ρyx ρyy

)(

jx
jy

)

(6.3)

with the required relation between
↔
σ and

↔
ρ

↔
σ · ↔ρ=

↔
1 (6.4)

where
↔
1 is the unit matrix with components (δij). Since the off–diagonal xy components of

↔
ρ result from the magnetic field, they are odd under reversal of the magnetic field direction
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(time reversal symmetry), yielding the relation between components

σxx=σyy,

σyx=−σxy,

ρxx=ρyy,

ρyx=−ρxy.

(6.5)

Equations 6.4 and 6.5 imply that for the 2D electron gas:

ρxx = σxx/(σ
2
xx + σ2xy), ρxy = −σxy/(σ2xx + σ2xy)

σxx = ρxx/(ρ
2
xx + ρ2xy), σxy = −ρxy/(ρ2xx + ρ2xy).

(6.6)

An especially interesting implication of these formulae is that in a 2D system, when σxx = 0
but σxy 6= 0, then ρxx is also zero (and vice versa). This means that (as long as σxy is finite),
the vanishing of the longitudinal conductivity implies that the longitudinal resistivity also
vanishes. This is precisely the situation that occurs in the quantum Hall effect, and is
fundamental to this phenomenon.

We now relate the resistance parameters that are measured (Rx and RH) to the current
density ~j and the electric fields ~E. For a long device (as shown in Fig. 6.2), jy = 0, so that
RH is related to the resistivity components ρxx and ρxy via:

Rx =Vx/Ix = (L/W ) · (Ex/jx)|jy=0 = (L/W )ρxx

RH=VH/Ix = (Ey/jx)|jy=0 = ρxy

(6.7)

Note that the dimensions of the resistivity in 2D is Ω/2, and that RH in 2D has the same
dimensions as ρxy.

In the presence of a DC magnetic field ~B = Bẑ, and in the relaxation–time approxima-
tion, the classical equation of motion for the carriers is written as:

d~v

dt
=

e

m∗

(

~E +
1

c
~v × ~B

)

− ~v/τ (6.8)

where ~v denotes the drift velocity of the carriers, and the charge on the electron is taken as
a negative number. Using the relation ~j = ne~v, we can write

σ0Ex=jx − ωcτjy

σ0Ey=ωcτjx + jy

(6.9)

where σ0 = ne2τ/m∗ and ωc = eB/m∗c. Finally, combining Eqs. 6.7 and 6.9 with the
condition jy = 0, we can write:

Ey =
ωcτ

σ0
jx (6.10)
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and the Hall resistance RH becomes

RH ≡
Ey
jx

=
ωcτ

σ0
=

(eB/m∗c)τ
(ne2τ/m∗)

=
B

nec
= RB (6.11)

where R = (1/nec) is called the Hall coefficient. We note here that RH is proportional
to the magnetic field. The result derived in Eq. 6.11 is valid for a classical system that
ignores the quantization of the magnetic energy levels. This quantization effect becomes
important in the limit ωcτ À 1. The classical result for a 2D system is the same result as was
previously obtained for the 3D system (see Part I, §8.2). Yet the experimental results for
the 2D electron gas in a modulation–doped GaAs/Ga1−xAlxAs interface (Fig. 6.1) exhibit
the quantum Hall effect, where VH or ρxy shows a series of flat plateaux as a function of
magnetic field rather than a simple linear dependence in B (Eq. 6.11). The reason for the
steps in ρxy (or RH) as a function of B is due to the density of states of the 2D electron
gas in a magnetic field, as discussed below.

6.3 The 2D Electron Gas

We refer to the phenomenon shown in Fig. 6.1 as the quantum Hall effect because the values
of RH exhibit a plateau whenever

RH =
h

`e2
` = 1, 2, 3, . . . (6.12)

where ` is an integer. Figure 6.1 shows the results of Hall measurements on a modulation–
doped GaAs/AlxGa1−xAs heterostructure. Here ρxx and ρxy are shown as a function of
magnetic field for a heterostructure with a fixed density of carriers. These experiments are
done at a low temperature (4.2 K), and the plateaux for ρxy can be observed very clearly,
especially in the limit of small `. (The plural of plateau is plateaux.) The results shown in
Figure 6.1, indicate that RH for the 2D electron gas is quantized. Detailed measurements
show that RH is given by Eq. 6.12 to an accuracy of better than 0.1 ppm (parts per million).
This quantization is reported to be independent of the sample geometry, the temperature,
the scattering mechanisms, or other parameters, including the physical system giving rise
to the 2D electron gas. The exactness of these results and their apparent independence of
experimental parameters are very intriguing and, as we discuss below, are ultimately due to
a fundamental physical principle. A schematic diagram summarizing the general behavior
of the 2D electron gas is given in Fig. 6.3 for ρxy, ρxx and σxx vs B, and also included in
this diagram is the comparison with the behavior of a 3D electron gas.

Referring to the 2D conductivity
↔
σ and resistivity

↔
ρ tensors defined in Eqs. 6.2 and 6.3,

we can write
↔
ρ and

↔
σ in the region of the plateaux as

↔
ρ=





0 −RQ/i

RQ/i 0



 (6.13)

and

↔
σ=





0 i/RQ

−i/RQ 0



 (6.14)
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Figure 6.3: Qualitative behavior for
σxx, ρxx and ρxy of a two–dimensional
electron gas with a fixed carrier den-
sity as a function of the magnetic field.
The dotted lines represent the classi-
cal curves for a 3D electron gas. The
effect of spin degeneracy is not in-
cluded in these curves.
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where RQ = h/e2, and where ρxx = ρyy = 0 and σxx = σyy = 0. At these plateaux the
power dissipation Pdiss vanishes because

Pdiss = ~j · ~E = ~j· ↔ρ ·~j = 1

i

(

jx jy

)





0 −RQ

RQ 0









jx

jy



 =
1

i

[

−RQjxjy+RQjyjx

]

= 0.

(6.15)
Thus at the plateaux we have no power dissipation and ρxy = RQ/e independent of material,
impurity level, sample geometry, and ρxy is just dependent on the fundamental constants h
and e.

To explain the quantized Hall effect, let us first consider the carriers of the two dimen-
sional electron gas to be free electrons at T = 0, but subjected to an applied magnetic field
B normal to the plane of the 2D electron gas. The Landau quantization for B normal to
the film surface gives completely quantized sub–band energies (for a simple band)

En,` = En + (`+ 1/2)h̄ωc ± g∗µBB = En + E` (6.16)

where ωc ≡ eB/m∗c is the cyclotron frequency and g∗ is the effective g–factor as also for
the 3D case, but now En pertains to the z–dependent bound state energy levels of the 2D
electron gas. For the simplest case, the carrier density is arranged to be low so that only
the lowest bound state (n = 1) is occupied. The number of states per unit area is found by
noting that the energy is independent of the harmonic oscillator center.

Since the energy levels do not depend on the central position of the harmonic oscillator
y0, we can sum on all the kx states to obtain the kx degeneracy (see Eq. 4.28) per unit area

g2D =
eB

ch
. (6.17)

This degeneracy factor is the same for each Landau level and is proportional to the magnetic
field B and depends only on fundamental physical constants (i.e., e, c, h). In addition there
is a degeneracy factor of 2 for the electron spin if the electron spin is not considered explicitly
in writing the energy level equation.

Since there is no kz dispersion for the 2D electron gas, the density of states in a magnetic
field in two–dimensions consists of a series of singularities (δ-functions) as shown in Fig. 6.4b
in contrast to the continuum of states in 3D, also shown in the figure. Multiplying (eB/ch)
by h̄ωc gives the number of 2D states in zero magnetic field that coalesce to form each
Landau level. This number increases proportionally to the magnetic field as does also the
Landau level separation. If at a given magnetic field there are `′ filled Landau levels, the
carrier concentration (neglecting spin) is given by n2D = `′(eB/2πh̄c), where n2D is the
carrier density associated with a given bound state n = 1. Thus the Hall resistance RH in
2D becomes

RH =
B

n2Dec
=

h

`′e2
=
RQ

`′
(6.18)

for `′ filled magnetic energy levels. Thus we can see that the unique property of the density
of states of a 2D electron gas in a magnetic field (see Fig. 6.4) leads to a Hall conductance
at T = 0 that is quantized in multiples of e2/h.

Carrier filling in 2D is fundamentally different from that in 3D. As the Fermi level rises
in 3D, because of the kz degeneracy, all the Landau levels with subband extrema below EF
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Figure 6.4: Schematic density of states
in a magnetic field for: (a) three–
dimensions, where the energy is referred
to the bottom of the band (E = 0) and
(b) two–dimensions, where the energy is
referred to the lowest bound state energy
E1. The energy is plotted in units of
the cyclotron energy h̄ωc. Dotted curves
represent the density of states without
a magnetic field. We note that in the
2D case the density of states in zero field
is m/πh̄2, indicated by the dashed line.
The filling per Landau level ` in a mag-
netic field is the degeneracy factor g2D =
eB/(2πh̄c) or eB/hc.

will fill. To the extent that the electron density is low enough so that only one bound state
is occupied, each magnetic subband fills to the same number of carriers at a given B field.
In the region of the plateaux all Landau levels for ` ≤ `′ are filled and all Landau levels for
` > `′ are empty so that for kBT ¿ h̄ωc, very little carrier scattering can occur.

The electrons in the semiconductor heterostructure, however, are not free carriers: their
behavior is influenced by the presence of the periodic ionic potential, impurities, and scat-
tering phenomena (see Fig. 6.5). Therefore the simple explanation given above for a perfect
crystal needs to be extended to account for these complicating effects. In Fig. 6.5 the two–
dimensional density of states in a magnetic field is shown schematically in the presence of
disorder. The δ–functions of Fig. 6.5(a) are now replaced by a continuous function D(E) as
shown in Fig. 6.5(b). The figure shows that the magnetic field range over which conduction
occurs is broadened. The figure further shows that in the tails of each Landau sub–band
there exist regions of localized states (the shaded areas). The electrons associated with the
mobility gap are in localized states that do not contribute to conduction. Much research has
been done to show that the simple model described above accurately describes ρxy and ρxx
for the 2D electron gas within the region of the plateaux in actual semiconductor devices.

Let us consider the diagram for the 2D density of states in a magnetic field shown in
Fig. 6.6 for a single Landau level. Suppose the magnetic field is just large enough so that
the indicated 2D Landau level is completely filled and EF lies at ν = 1, where ν represents
the fractional filling of the 2D Landau level. Then as the magnetic field is further increased,
the Fermi level falls. So long as the Fermi level remains within the region of the localized
states, then σxx = 0. Thus when EF lies in the shaded region, EF is effectively in an
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Figure 6.5: Schematic representation of the 2D density of states in a magnetic field (a)
without disorder and (b) with disorder. The shaded regions correspond to localized states.

energy gap where σxx ≡ 0 and the Hall conductance σxy remains on a plateau determined
by `′e2/h. As B increases further, EF eventually reaches the unshaded region where σxx no
longer vanishes and EF passes through the mobile states (see Fig. 6.6), causing σxy to jump
from `′e2/h to (`′ − 1)e2/h as EF passes through the mobile states. When the magnetic
field is large enough for EF to reach the localized states near ν = 0, then σxx again vanishes
and σxy now remains at the plateau (`′ − 1)e2/h.

From these arguments we can conclude that the steps in ρxy and the zeros in ρxx are
caused by the passage of a 2D Landau level through the Fermi level. When the effect of
the electron spin is included, spin splitting of the Landau levels is expected in the quantum
Hall effect measurements. To see spin splittings effects the measurements must be made at
sufficiently low temperatures (e.g., T = 0.35 K). Spin splitting effects of the ` = 1 Landau
level (1 ↓ and 1 ↑) have been clearly seen. The observation of spin splitting in the Quantum
Hall Effect thus requires high fields, low m∗

c , high mobility samples to achieve ωcτ À 1 and
low temperatures kBT ¿ h̄ωc to prevent thermal excitation between Landau levels.

6.4 Effect of Edge Channels

In the simple explanation of the Quantum Hall effect, it is necessary to assume both localized
states (σxx = 0) and extended states (σxx 6= 0). In taking into account the so-called edge
channels, it is possible to explain more clearly why the quantization is so precise in the
Quantum Hall Effect for real systems.

Referring to the derivation of the Landau levels for motion in a plane perpendicular to
the magnetic field (see §4.4), we assume that only the lowest band state n = 1 is occupied
and we neglect the interaction of the electron spin with the magnetic field. The wave
function for an electron in the 2D electron gas can then be written as

Ψ2D(x, y) = eikxxφ(y) (6.19)

where φ(y) satisfies the harmonic oscillator equation

[

p2y
2m∗

c

+
1

2
m∗
cω

∗
c (y − y0)2

]

φ(y) =

[

p2y
2m∗

c

+ V (y)

]

φ(y) = E`φ(y) (6.20)
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Figure 6.6: The density of states [D(E)],
d.c. conductivity (σxx), and the Hall con-
ductivity (σxy) are schematically shown
as a function of the fractional filling fac-
tor ν for a Landau subband. Shaded re-
gions in the density of states denote the
regions of localized carriers correspond-
ing to an effective energy gap between
magnetic subbands.
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in which the harmonic oscillator center is given by

y0 =
h̄kx
m∗
cω

∗
c

= λ2Bkx (6.21)

and the harmonic oscillator energies are

E` = (`+ 1/2)h̄ω∗
c . (6.22)

The characteristic magnetic length

λB =

√

h̄c

eB
=

250Å
√

B(tesla)
(6.23)

relates to the real space orbit of the electron in a harmonic oscillator state (Eq. 5.11) and
except for universal constants depends only on the magnetic field. Since the energy in
Eq. 6.22 is independent of kx, the electron velocity component xx vanishes

vx =
1

h̄

∂E

∂kx
= 0 (6.24)

and there is no net current along x̂.
The argument that the energy is independent of kx, however, only applies to those

harmonic oscillator centers y0 that are interior to the sample. But if y0 takes on a value
close to the sample edge, i.e., y0 ' 0 or y0 ' Ly, then the electron is more influenced
by the infinite potential barrier at the edge than the harmonic oscillator potential V (y)
associated with the magnetic field. Electrons in these edge orbits will be reflected at the
edge potential barriers and V (y) is no longer strictly a harmonic oscillator potential. Since
the potential V (y) is perturbed, the energy will also be perturbed and the energy will then
become dependent on kx. Since the harmonic oscillator orbit size is λB

√
`+ 1, the energy

of the 2D electron gas depends on kx only for a distance of approximately λB
√
`+ 1 from

the sample edge.
The effect of the sample edges can be understood in terms of the skipping orbits il-

lustrated in Fig. 6.7. All the harmonic oscillator orbits with y0 values within λB of the
edge will contribute to the current density jx by the argument in Fig. 6.7. The current I`
contributed by the `th edge channel is

I` = ev`,x

(

dn

dE`

)

∆µ (6.25)

where (dn/dE`) is the 1D density of states and ∆µ is the drop in chemical potential along
the edge channel. Now we can write

dn

dE`
=

dn

dkx

dkx
dE`

=

(

1

2π

)(

1

h̄v`,x

)

=
1

hv`,x
(6.26)

where v`,x is the velocity of the electrons in the x direction due to the carriers in channel `.
Substitution of Eq. 6.26 into 6.25 yields I` = (e/h)∆µ, which is independent of `, so that
the total current is obtained by summing over the edge channels to yield

Ix = `c
e

h
∆µ (6.27)
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Figure 6.7: Location of the edge skipping orbits in a magnetic field. The edge regions shown
in (a) are defined by the characteristic length λB = (h̄c/eB)1/2. Along each edge, (b) shows
that all orbits give rise to current jx in the same direction but the current direction is
opposite for the two edges. The bulk orbits do not give rise to a current jx.

Figure 6.8: Schematic diagram of cur-
rent flow for edge channels. The dark
circles denote the contacts between the
edge channels and the electron reservoirs
at electrochemical potential µ2 and µ1.
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where `c is the number of edge channels. If the conditions λB ¿ `φ and λB ¿ `e are
satisfied, where `φ and `e are, respectively, the inelastic and elastic scattering lengths,
electrons are not likely to scatter across the sample (backscattering) because of the electron
localization in the variable y (ψ ∼ exp[−y2/λ2B]). The opposing directions of jx along the
two edges guarantees that the continuity equation is satisfied.

Let us now consider the electrochemical potential µ, which has a constant value along
each edge channel, because of the absence of back scattering, as noted above. Two edge
channels are shown in Fig. 6.8. From Eq. 6.27 we obtain the total current Ix in the upper
and lower edges. The quantity ∆µ in Eq. 6.25 denotes the potential drop between two points
where the transmission coefficient T is unity (T ≡ 1). Thus for the upper edge channel,

IA = `cA(e/h)(µ2 − µA), (6.28)

indicating that there is a reflection between the edge channel and µ reservoir and T 6= 1.
For the lower channel

IB = `cB(e/h)(µB − µ2). (6.29)

the number of edge channels for the two edges is the same, so that `cA = `cB = `c. We thus
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obtain:
Ix = IA + IB = `c(e/h)(µB − µA). (6.30)

Since the Hall voltage Vy is given by the difference in electrochemical potential in the y
direction of the sample, we obtain

eVy = µB − µA (6.31)

so that
Ix = `c(e

2/h)Vy. (6.32)

The Hall resistance RH then becomes

RH =
Vy
Ix

=
h

e2`c
=
RQ

`c
(6.33)

where RQ = h/e2 is the fundamental unit of resistance and `c is a quantum number denoting
the number of edge channels. The edge channel picture thus provides another way to
understand why the quantum Hall effect is associated with a fundamental constant of nature.

6.5 Applications of the Quantized Hall Effect

Because of the high precision with which the Hall resistance is quantized at integer fractions
of h/e2, we obtain

`′RH =
h

e2
= RQ = 25, 812.200 Ω `′ = 1, 2, 3, . . . . (6.34)

This quantity called the Klitzing (after the man who discovered the Quantum Hall Effect
experimentally) has become the new IEEE resistance standard since 1990 and is known
to an accuracy of ∼ 3 × 10−8. When combined with the high precision with which the
velocity of light is known, c = 299, 792, 458 ± 1.2m/s, the quantum Hall effect has become
the primary technique for measuring the fine structure constant:

α ≡ e2

ch̄
. (6.35)

The fine structure constant must be known to high accuracy in tests of quantum electro-
dynamics (QED). The results for α from the QHE are not only of comparable accuracy to
those obtained by other methods, but this determination of α is also independent of the
QED theory. The QHE measurement thus acts as another verification of QED. It is inter-
esting to note that the major source of uncertainty in the QHE result is the uncertainty in
the calibration of the standard resistor used as a reference.

6.6 Fractional Quantum Hall Effect (FQHE)

When a two–dimensional electron gas is subjected to a sufficiently low temperature and
an intense magnetic field (B‖z–axis), of magnitude greater than necessary to achieve the
lowest quantum state in the quantum Hall effect, all electrons could be expected to remain
in their lowest Landau level and spin state. In this limit, however, the possibility also
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exists, that the electrons will further order under the influence of their mutual interactions.
Such ordering phenomena have been seen in GaAs/Ga1−xAlxAs and other quantum well
structures, where an apparent succession of correlated electron states has been found at
fractional occupations, ν, of the lowest Landau level. This ordering effect is called the
fractional quantum Hall effect (FQHE).

Just as for the quantum Hall effect discussed in § 6.3, the fractional quantum Hall effect
is characterized by minima in the electrical resistance and plateaux in the Hall resistance
for current flow in the two–dimensional layers (x–direction). Whereas the integral quantum
Hall effect occurs because of gaps in the density of mobile electron states at energies between
the 2D Landau levels (see Fig. 6.4), the fractional quantization is interpreted in terms of
new gaps in the spectrum of electron energy levels appearing predominantly at magnetic
fields higher than the plateau for the ` = 0 integral quantum Hall effect and associated with
electron-electron interactions.

The fractional quantum Hall effect (FQHE) was first observed in the extreme quantum
limit, for fractional filling factors ν

ν =
n2Dhc

eB
< 1, (6.36)

where the 2D carrier density n2D is given by

n2D = ν

(

eB

hc

)

. (6.37)

This regime can be achieved experimentally at low carrier densities n2D, high magnetic
fields B, and very low temperatures T . The observations of the FQHE thus requires the
Landau level spacing h̄ωc to exceed the zero field Fermi level

h̄ωc =
h̄eB

m∗
cc

> EF (6.38)

where the Fermi level for a single spin orientation is given by

EF =
2πn2Dh̄

2

m∗ . (6.39)

This condition is equivalent to requiring the magnetic length or cyclotron radius to be less

than the inter–particle spacing n
−1/2
2D , where n2D is the 2D electron density.

To observe electron ordering, it is desirable that electron–electron interactions be large
and that electron–impurity interactions be small. This requires the minimization of uncer-
tainty broadening of the electron levels and inhomogeneous broadening caused by potential
fluctuations and electron scattering. Thus the observation of the fractional quantum Hall
effect is linked to the availability of very high mobility samples containing a 2D electron
gas in the lowest bound state level. The best samples for observing the FQHE are the
modulation–doped GaAs/AlxGa1−xAs interfaces, as shown in Fig. 6.9. In the fabrication
the n–doped regions have been confined to a single atomic layer (i.e., δ–doping), far from
the quantum well to achieve high carrier mobility.

The highest mobility materials that have been reported for modulation–doped MBE
samples have been used for observation of the FQHE. Measurements are made on photo-
lithographically–defined Hall bridges using microampere currents and Ohmic current and
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Figure 6.9: Schematic diagram of
a modulation–doped n–type semi-
conductor GaAs/AlxGa1−xAs hetero-
structure and of its energy band struc-
ture. CB and VB refer to conduction
band and valence band edges; Eg1 and
Eg2 are, respectively, the energy gaps
of the AlxGa1−xAs and GaAs regions,
while ∆E is the energy correspond-
ing to the zero–magnetic–field filling
of the lowest quantum subband of the
two–dimensional electron gas, and EF

is the Fermi energy. W is the step
height (band offset energy) between
the GaAs conduction band and the
AlxGa1−xAs conduction band at the
interface. The two-dimensional elec-
tron gas lies in the GaAs region close
to the undoped AlxGa1−xAs (see low-
est diagram). The dopants used to in-
troduce the n-type carriers are located
in the region called n-doped AlGaAs.
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Figure 6.10: First observation of the FQHE in a GaAs/AlxGa1−xAs modulation–doped
heterostructure with an areal carrier density of n = 1.23 × 1011 electrons/cm2 and an
electron mobility of µ = 90,000 cm2/Vsec. The Hall resistance ρxy assumes a plateau at
fractional filling ν = 1/3 indicating a fractional quantum number ` = 1/3. [D.C. Tsui, H.L.
Störmer and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982)].
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potential contacts. Experimental results for the resistivity and Hall resistance versus mag-
netic field in the fractional quantum Hall effect regime are shown in Fig. 6.10. Minima
develop in the diagonal (in–plane) resistivity ρxx at magnetic fields corresponding both to
integral filling and to certain fractional fillings of the Landau levels. The Hall resistivity ρxy
develops plateaux at the same integral and fractional filling factors. The classical value of
the Hall resistance ρxy for n carriers per unit area is ρxy = B/(nec) and B/n is interpreted
as the magnetic flux per carrier which is the flux quantum φ0 = ch/e divided by the Landau
level filling ν, so that B/n = ch/eν at filling factor ν.

The value of ρxy is h/νe2 at filling factor ν. Plateaux were first measured at ν = 1/3
(see Fig. 6.10) with ρxy equal to h/νe2 to within one part in 104.

In addition to quantization at quantum number 1/3, quantization has been observed at
a number of other fractions ν = 2/3, 4/3, 5/3, 2/5, 3/5, 4/5, 2/7 and others (see Fig. 6.11),
suggesting that fractional quantization exists in multiple series, with each series based on
the inverse of an odd integer. With the highest mobility materials, a fractional quantum
Hall effect has recently been observed for an even integer denominator.

Only a certain specified set of fractions exhibit the fractional quantum Hall effect, cor-
responding to the relation

ν =
1

p+ α1

p1+
α2

p2+...

(6.40)

where the integers p is odd, pi is even, and αi = 0,±1. For example, p = 3, pi = 0 and
αi = 0 for all i yields a fractional filling factor of 1/3, where the most intense fractional
quantum Hall effect is observed. For p = 3, p1 = 1 and α1 = 1 and all other coefficients
taken to be zero gives ν = 2/3. Equation 6.40 accounts for all the observed examples of the
fractional quantum Hall effect except for the case of the recently observed case of ν = 5/2
mentioned above.

To explain the characteristics of the fractional quantum Hall effect, Laughlin proposed
a many-electron wavefunction to account for the electron correlations responsible for the
fractional quantum Hall effect:

ψm(z1, z2, z3, . . . zN ) = C
N
∏

i<j

(zi − zj)m exp

(

− 1

4

N
∏

k

|zk|2
)

(6.41)

where m = 1/ν and ν is the filling factor. Research at the fundamental level is still being
carried out to understand the fractional quantum Hall effect and related phenomena in
more detail.
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Figure 6.11: Present high-field, low-temperature (T ∼ 0.1K) data on the FQHE (fractional
quantum Hall effect) taken from a high mobility (µ ∼ 1.3 × 106cm2/V sec) quantum well
sample of GaAs/Ga1−xAlxAs. The familiar IQHE (integer quantum Hall effect) character-
istics appear at filling factors of ν = 1, 2, 3, . . .. All fractional numbers are a result of the
FQHE. Fractions as high as 7/13 are now being observed. [R. Willett, J.P. Eisenstein, H.L.
Störmer, D.C. Tsui, A.C. Gossard, and J.H. English Phys. Rev. Lett. 59, 1776 (1987)].
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Chapter 7

Magnetic Ordering

References

• Ashcroft and Mermin, Solid State Physics, Chapters 32 & 33.

• Kittel, Introduction to Solid State Physics, 6th Ed., Chapter 15.

7.1 Introduction

Our discussion of magnetism up to this point has been concerned with weak magnetic in-
teractions, corresponding to energies of less than 1 meV for magnetic fields of ∼ 10 tesla.
We shall now consider strong magnetic interactions where the magnetic moments on neigh-
boring atomic sites interact with each other collectively and produce a magnetic ordering
in the crystal. Various magnetic orderings are possible:

↑↑↑↑ ferromagnet

ferromagnet – the magnetic moments (spins) all line up parallel to one another, and

↑↓↑↓↑ antiferromagnet

antiferromagnet – equal magnetic moments (spins) on nearest neighbor sites which tend to
line up antiparallel.

More complicated arrangements are possible like a

⇑↓⇑↓⇑ ferrimagnet

ferrimagnet which has a basic antiparallel arrangement of the magnetic moments (spins)
but the magnitudes of the moments in the two directions are unequal, giving rise to a
net magnetization. Various spiral arrangements of the moments can occur and canted
arrangements of the moments are also common in real materials. These various forms of
magnetism will be discussed in the next few lectures.

All these forms of magnetism have the following common features:

• At high temperatures they are all paramagnetic
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Figure 7.1: Schematic of dipole alignment in
a magnetic field.

• Below an ordering temperature Tc, they all have ordered magnetic moments (spins).

We shall discuss the ferromagnetic ordering first because it is simplest, though similar
arguments can be made for the other magnetically ordered systems. We will start in the
paramagnetic regime with which we already have some familiarity.

7.2 The Weiss Molecular Field Model

In the magnetically ordered regime, we say that under the action of an external magnetic
field ~H, the total magnetization that is achieved depends not only on this applied field but
on a molecular field ~HM generated by the magnetization of the medium itself (see Fig. 7.1).
~Htotal is called the mean field:

~Htotal = ( ~H + ~HM ). (7.1)

The molecular field ~HM is assumed to be proportional to the magnetization M :

~HM = λM ~M (7.2)

and can be considered to arise from the other dipole moments in the medium (see Fig. 7.1).
In the usual derivation of the Curie law (see §3.4), we assume that the magnetic field due
to the other paramagnetic ions is small compared with the external magnetic field and we
ignore ~HM completely. For ferromagnetic systems ~HM is very large, in fact much larger
than the magnetic fields that are achieved in the laboratory.

For a strongly magnetic material in the paramagnetic region, the total magnetic field
~Htotal = ( ~H + ~HM ) tends to line up the magnetic moments along ~Htotal, while the thermal
energy tends to randomize the motion. The derivation given for the magnetization (see
Eq. 3.52) still holds except that the magnetic induction ~B includes the effect of both the
applied field and the molecular field. From Eq. 3.52

M = NgµBj Bj(x) ; x =
gµBjB

kBT
(7.3)
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where N is the atomic density and we now write

x =
gµBjµ̂(H +HM )

kBT
; B = µ̂(H +HM ). (7.4)

At high temperatures (x ¿ 1), the susceptibility will be shown to follow the Curie–Weiss
law. In this limit,

Bj(x) ∼ x
(

j + 1

3j

)

(7.5)

M '
(

Ng2µ2B(j + 1)jµ̂

3kBT

)

(H +HM ) =

(

C

T

)

(H +HM ) (7.6)

where the Curie constant is:

C =
Ng2µ2Bj(j + 1)µ̂

3kB
. (7.7)

Writing HM = λMM , we obtain

M

[

1− CλM
T

]

=

(

C

T

)

H (7.8)

But M = χH so that

χ =
C

T

1

(1− CλM
T )

=
C

T − CλM
(7.9)

and we obtain the Curie–Weiss Law

χ =
C

T − Tc
(7.10)

which is valid for T À Tc and in which the constant CλM , which is independent of T ,
defines the Curie temperature

Tc = CλM . (7.11)

The Curie–Weiss law is valid only in the high temperature limit and is well satisfied for the
common ferromagnetic materials in that limit. As an example, consider iron for which the
ordering temperature is 1043K or 770◦C. The paramagnetic region occurs for T greater
than the magnetic ordering temperatures and the Curie–Weiss law holds for temperatures
much larger than 770◦C. Since the Curie–Weiss law does not hold at Tc, we do not expect
the ordering temperature to be identical with Tc, the temperature at which the χ → ∞
on the Curie–Weiss picture. Nevertheless, a qualitative estimate for the magnitude of the
molecular field can be made by identifying Tc with the ordering temperature.

7.3 The Spontaneous Magnetization

According to the molecular field model for a ferromagnet, the expression for the magneti-
zation M in the paramagnetic region is (see Eq. 7.3):

M = NgµBj Bj(x) (7.12)
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where the argument x of the Brillouin function is

x =
gµBjµ̂(H + λMM)

kBT
(7.13)

in which HM = λMM is written for the molecular field. Clearly this equation has a solution
M = 0 for H = 0 and this solution exists for all temperatures which says that there is no
net magnetization unless there is an applied magnetic field.

However, in ferromagnetic materials, a molecular field HM = λMM is present and a
solution of this equation is possible even in zero magnetic field, provided that λMM is
large enough compared with kBT . We will now see how to determine the value of M for
which spontaneous magnetization occurs. That is, with no external field present, a small
fluctuation in the local magnetization causes the neighboring moments to align, yielding
further magnetization until an ordered state is formed and in this sense, the disordered
state is unstable.

To find the spontaneous magnetization we set H = 0 in the Brillouin function which
enters Eq. 7.12

M = NgµBj Bj(x
′) (7.14)

where x′ denotes the variable x when H = 0:

x′ =
gµBjµ̂λMM

kBT
. (7.15)

The simplest method to find a solution to Eq. 7.14 is the graphical method where we plot
NgµBjBj(x

′) ≡ f(M) as a function of M . For a given material the initial slope increases
as the temperature decreases, and for a given temperature the slope will only depend on
the parameters of the particular magnetic material under consideration. The larger HM

(that is, the larger λM ), the larger the initial slope. This curve for f(M) must intersect the
line M = M if a solution to M = NgµBjBj(x

′) = f(M) exists. The solution to Eq. 7.14
is the intersection point in Fig. 7.2 which defines MS , the spontaneous magnetization, and
MS is present with no applied magnetic field. This means that the intersection of the 45◦

straight line M =M with the curve f(M) will occur at higher values of the magnetization
as T increases. However, since the Brillouin function Bj(x

′) tends to saturate at high values
of the argument x′, the magnetization tends to reach a limiting value as T → 0 which we
will write as MS(0) and call the saturation magnetization. As the temperature increases,
the initial slope of the right hand side of the equation decreases and MS(T ) decreases and
eventually goes to zero at a critical temperature T ′

c. For T = T ′
c the initial slope of f(M) is

exactly unity. Thus for a given λM , the temperature T has to be lowered below a certain
minimum value T ′

c before spontaneous magnetization can occur. We use the prime on T ′
c

to distinguish T ′
c from the Curie temperature Tc which enters the Curie–Weiss law. The

temperature T ′
c represents more closely our understanding of the transition to the ordered

state. A plot of the observed temperature dependence of the spontaneous magnetization
for nickel is given in Fig. 7.3. A qualitative fit of Eq. 7.14 to the experimental points is
obtained, but the agreement is not quantitatively correct neither at low temperatures nor
at high temperatures. A more sophisticated treatment of the internal magnetic field in a
solid is required to provide a quantitative fit to the observed spontaneous magnetization
curve.
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Figure 7.2: Graphical solution of the
equation for the Curie–Weiss model. The
left-hand side of Eq. 7.14 is plotted as
a straight line m with unit slope. The
right-hand side of Eq. 7.14 involves the
function tanh(m/t) which is plotted vs
m where the reduced magnetization m
is given by m = M/(NgjµB). In the
figure, plots are given for three differ-
ent values of the reduced temperature
t = kBT/Nµ

2
BλM = T/T ′

c for s = 1/2
and g = 2. The three curves correspond
to the temperatures 2T ′

c, T
′
c, and 0.5T ′

c.
The curve for t = 2 intersects the straight
line m only at m = 0, as appropriate for
the paramagnetic region (where the solu-
tion corresponds to zero external applied
magnetic field). The curve for t = 1 (or
T = T ′

c) is tangent to the straight line m
at the origin; this temperature marks the
onset of ferromagnetism. The curve for
t = 0.5 is in the ferromagnetic region and
intersects the straight line m at about
m = 0.94NµB. As t → 0 the intercept
moves up to m = 1, so that all magnetic
moments are lined up at absolute zero.

93



Figure 7.3: Phase diagram for a ferro-
magnetic system showing magnetization
vs. T . The points are for Ni and the line
is from mean field theory for S = 1/2.

In Table 7.1, we summarize a few of the pertinent parameters for a few ferromagnetic
materials. These ferromagnetic materials typically involve transition metal atoms and rare
earth atoms with unfilled d or f shells. In Table 7.1, we see, in addition to the values for
the spontaneous magnetization at 300 K and the saturation magnetization at 0 K and the
transition temperature, values for nB is the number of Bohr magnetons/atom. This number
is defined through the saturation magnetization at T = 0 K and the ion density N

MS(0) = nBNµB (7.16)

since Bj(∞) = 1 and therefore MS(0) = NgjµB and

nB = gj. (7.17)

Inspection of Table 7.1 shows that by the definition of nB in Eq. 7.17, nB is not an integer.
For materials based on rare earth constituents, the number of Bohr magnetons per atom

nB calculated from nB = gj tends to be in good agreement with experiment. For example,
gadolinium metal has Gd3+ ions in an 8S7/2 configuration so that g = 2 and j = 7/2 and
nB = 7 are in good agreement with the experimental value of 7.10 given in Table 7.1.
Similarly Dy is in a 6H15/2 configuration yielding j = 15/2, ` = 5 and s = 5/2 and g = 4/3,
so that nB = gj = 10 in good agreement with the value of 10.0 in Table 7.1.

In the case of the transition metals, the orbital angular momentum is largely quenched,
so that nB ≈ 2s. The relation nB ≈ 2s is only approximately obeyed because band theory
applies to transition metals, and the Fermi level is determined by the condition that the
total number of electrons for the 3d and 4s bands is integral. However, the occupation of
each band individually corresponds to a non-integral number of electrons. For example, a
simple model (due to Stoner) for the occupation of the 3d and 4s bands of metallic nickel was
proposed many years ago to explain the non-integral number of Bohr magnetons/atoms (see
Fig. 7.4). In this figure, we see occupation of the 4s and 3d bands of Ni in the paramagnetic
and ferromagnetic phases using the Stoner model.
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Table 7.1: Magnetic parameters for a number of ferromagnetic materials. Here nB is the
number of Bohr magnetons per atom and MS is the spontaneous magnetization in units of
gauss.

material MS(300K) MS(0K) nB(0K) Tc (K)

Fe 1707 1740 2.22 1043
Co 1400 1446 1.72 1400
Ni 485 510 0.606 631
Gd – 2010 7.10 292
Dy – 2920 10.0 85
Cu2MnAl 500 (550) (4.0) 710
MnAs 670 870 3.4 318
MnBi 620 680 3.52 630
Mn4N 183 – 1.0 743
MnSb 710 – 3.5 587
MnB 152 163 1.92 578
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Figure 7.4: Schematic band filling diagram for (a) paramagnetic and (b) ferromagnetic
nickel. (a) Band filling in nickel above the Curie temperature. The net magnetic moment
is zero, as there are equal numbers of holes in both the 3d ↓ and 3d ↑ bands. In the ferro-
magnetic state (b) the bands have shifted so that there is an excess of spin up electrons and
thus a net magnetization arising from the 0.54 hole in the 3d ↓ band. In the ferromagnetic
state, the energies of the 3d ↑ and 3d ↓ sub-bands are separated by an exchange interaction.
The 3d ↑ band is filled while the 3d ↓ band contains 4.46 electrons and 0.54 holes. The
4s band is usually thought to contain approximately equal numbers of electrons in both
spin directions, and therefore it is not necessary to specify any spin sub-bands. The net
magnetic moment of 0.54µB per atom arises from the excess population of the 3d ↑ band
over the 3d ↓ band. It is often convenient to speak of the magnetization as arising from the
0.54 holes in the 3d ↓ band.
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Values for the spontaneous magnetization allow us to calculate the magnitude of the
molecular field. Let us take the values in Table 7.1 for Fe and take g = 2, j = 1. For 3d
transition metals, the orbital moment is quenched. From Table 7.1 we obtain nB = gj = 2.2
for Fe. By setting the slope (∂f(M)/∂M) = 1, we define T ′

c from Eq. 7.6 and solve for λM
and make use of the relation Ms = NgjµB,

λM =
3kBTc

Ng2µ2Bj(j + 1)µ̂
=

3kBTc
MsgµB(j + 1)µ̂

(7.18)

which for Fe becomes λM ∼ 5000. With HM ∼ λMMS (MS(0) = 1740 gauss), we therefore
obtain HM ∼ 107 gauss for the internal field in iron. This magnitude is much larger than
any applied field we can generate in the laboratory. Thus, it is a good approximation for
many magnetic materials to forget about H in comparison with HM in computing Htotal in
the ferromagnetic state.

Let us think about that large magnitude of HM more closely. The old picture of the
Weiss molecular field (see §7.2) in terms of magnetic moments would give a dipole field
of µB/a

3 which might be as much as 104 gauss at the position of the nearest magnetic
moment, but hardly more than that. That is to say, the concept of magnetic dipoles as
the mechanism responsible for the generation of an internal magnetic field of 107 gauss
(103 Tesla) is inconsistent with the magnitude of the magnetic dipole-dipole interaction.
To account for this strong magnetic field we need an electrostatic interaction of much
larger magnitude than the magnetic dipole-dipole interaction. That is, microscopically the
Weiss molecular field theory does not provide a satisfactory mechanism for generating HM .
Therefore, the Weiss molecular field theory provides a simple, useful, classical model for
magnetism, but no explanation on a microscopic level for the origin of magnetism.

Such a microscopic model is provided by the Heisenberg Hamiltonian which was pro-
posed about 25 years ago after the introduction of the molecular field theory by Weiss on
the basis of quantum mechanics.

7.4 The Exchange Interaction

Ferromagnetism is a cooperative phenomenon – an isolated electron or ion cannot become
ferromagnetic. To achieve the high internal fields required by the molecular field theory, an
electrostatic interaction must be introduced. Such an interaction arises through so-called
exchange effects which are associated with the Pauli principle and with the spin of the
electron. We will now discuss the origin of the exchange interaction in atomic systems and
then relate this exchange interaction to magnetism.

To understand the origin of the exchange interaction, consider the Hamiltonian for a
2-electron system

H =
p21
2m

+
p22
2m
−
(

Ze2

r1

)

−
(

Ze2

r2

)

+

(

e2

|~r1 − ~r2|

)

= H1 +H2 + V12 (7.19)

where

H1 =
p21
2m
−
(

Ze2

r1

)

(7.20)

H2 =
p22
2m
−
(

Ze2

r2

)

(7.21)
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V12 =
e2

|~r1 − ~r2|
. (7.22)

The one-electron Hamiltonians H1(~r1) and H2(~r2) can be solved directly each yielding an
energy eigenvalue E0, the energy for an electron in the field of a nucleus of charge Z.

On the other hand, the interaction term V12 expresses the Coulomb repulsion between
the two electrons and cannot be simply written in terms of the one-electron wavefunctions
which diagonalize H1 and H2. The Coulomb energy would be found approximately by
perturbation theory using for our unperturbed states the eigenfunctions of H1 and H2

which are written as ψ1(~r1) and ψ2(~r2). We thus write the so-called Coulomb energy

C12 =

∫

ψ∗
1(~r1)ψ

∗
2(~r2)

(

e2

|~r1 − ~r2|

)

ψ1(~r1)ψ2(~r2)d
3r1d

3r2. (7.23)

In writing down the states for a 2-electron system, we recognize that the two electrons
are identical and indistinguishable. We are also required to satisfy the Pauli Exclusion
Principle which states that the 2-electron wave function must be totally antisymmetric
under the interchange of the 2 electrons (this is equivalent to saying that we cannot put two
electrons in exactly the same state). In writing the wave function for an electronic system,
we normally write the total wave function as a product of a spatial wave function with a
spin function. In this situation, we have two options in making an antisymmetric state:

1. the spin function is symmetric and the spatial function is antisymmetric, or

2. the spin function is antisymmetric and the spatial function is symmetric.

The symmetric two electron spin function can be made in one of three ways:

χS(1, 1) = α(1) α(2) (7.24)

χS(1,−1) = β(1) β(2) (7.25)

χS(1, 0) =
1√
2
[α(1)β(2) + α(2)β(1)] (7.26)

where α denotes the spin up function and β the spin down function. The notation (1) and
(2) in Eqs. 7.24–7.26 refers to spin coordinates for electrons 1 and 2, respectively. Electrons
(1) and (2) are identical and cannot be distinguished in any other way. Thus the symmetric
spin function is a triplet state which goes with the antisymmetric spatial wave function

ψA12 =
1√
2
[ψ1(1)ψ2(2)− ψ1(2)ψ2(1)] (7.27)

where the (1) and (2) refer to ~r1 and ~r2 for electrons 1 and 2 and the subscript on ψ
refers to the quantum numbers labeling the one-electron eigen-states of the unperturbed
Hamiltonians H1 and H2.

On the other hand, the antisymmetric spin function can only be constituted in one way

χA12 =
1√
2
[α(1)β(2)− α(2)β(1)] (7.28)
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and this forms a product with the symmetric spatial function

ψS12 =
1√
2
[ψ1(1)ψ2(2) + ψ1(2)ψ2(1)]. (7.29)

Although the Hamiltonian in Eq. 7.19 does not contain any explicit dependence on the
electron spin, the energy of the system will be different if we calculate the expectation value
for the Coulomb repulsion energy V12 in the symmetric or antisymmetric spatial state.
Explicitly this difference arises from

1

2

∫

[ψ∗
1(1)ψ

∗
2(2)± ψ∗

1(2)ψ
∗
2(1)]V12[ψ1(1)ψ2(2)± ψ1(2)ψ2(1)]d

3r1d
3r2 = C12 ± J12 (7.30)

where J12 is the so-called exchange energy defined as:

J12 ≡
∫

ψ∗
1(1)ψ

∗
2(2)[e

2/|~r1 − ~r2|]ψ1(2)ψ2(1)d
3r1d

3r2 (7.31)

and J12 = J21. If J12 > 0, the triplet state (with a symmetric spin function and an
antisymmetric spatial function) lies lower. Here the spins are lined up and S = 1. For the
singlet state we have S = 0. We then can write:

~S = ~S1 + ~S2 (7.32)

so that
S2 = ( ~S1 + ~S2) · ( ~S1 + ~S2) = S2

1 + S2
2 + 2 ~S1 · ~S2. (7.33)

Consider the eigenvalues for Eq. 7.33. For the triplet state, Eq. 7.33 yields

2 ~S1 · ~S2 = s(s+ 1)− s1(s1 + 1)− s2(s2 + 1) = 2− (3/4)− (3/4) =
1

2
(7.34)

and for the singlet state we write

2 ~S1 · ~S2 = 0− (3/4)− (3/4) = −(3/2). (7.35)

Therefore we can write
(

1

2

)

+ 2 ~S1 · ~S2 = 1 (7.36)

for the spin symmetric (triplet) state, and

(

1

2

)

+ 2 ~S1 · ~S2 = −1 (7.37)

for the spin antisymmetric (singlet) state, which allows us to write the expectation value
for the Coulomb potential V12 as

∆E = C12−
(

1

2

)

J12 − 2 ~S1 · ~S2J12. (7.38)

The term [−2 ~S1 · ~S2]J12 is called the Heisenberg Hamiltonian.
To see how to generalize the exchange interaction to more than one electron we write

the wave function in the form of a determinant (called the Slater determinant) in which the
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columns label the kinds of wave functions (e.g., a ls state with spin up) and the rows label
the coordinates for each electron ~x = ~r, ~σ, including both spatial and spin coordinates. The
two electron wave function is thus written as

ψ(~x1, ~x2) =
1√
2

∣

∣

∣

∣

∣

ψ1(~x1) ψ1(~x2)
ψ2(~x1) ψ2(~x2)

∣

∣

∣

∣

∣

(7.39)

The determinantal form of this two electron wave function guarantees that two electrons
in the same state give a null wave function. Two electrons in the same state would result
in two identical rows in the determinant, thereby yielding a zero value. Expansion of the
Slater determinant in Eq. 7.39 gives

ψ(~x1, ~x2) =
1√
2
[ψ1(~x1)ψ2(~x2)− ψ1(~x2)ψ2(~x1)] (7.40)

which gives rise to four antisymmetric wave functions (which we will denote by a subscript
index). In particular we will show that this determinant is equivalent to the ψAχS and
ψSχA wave functions given in Eqs. 7.24–7.29.

For example, if both electrons have the same spin functions α1 and α2 (both spin up or
↑↑), then Eq. 7.40 becomes

ψ1(~x1, ~x2)=

(

1√
2

)

[ψ1(~r1)α1ψ2(~r2)α2 − ψ1(~r2)α2ψ2(~r1)α1]

=α1α2

(

1√
2

)

[ψ1(~r1)ψ2(~r2)− ψ1(~r2)ψ2(~r1)] ≡ χS(1, 1)ΨA

(7.41)

in which χS(1, 1) denotes the symmetric spin state with s = 1 and ms = 1. Similarly if
both electrons are in the symmetric spin down state β1 and β2, then s = 1 and ms = −1 so
that in this case ψ(~x1, ~x2) in Eq. 7.40 becomes

ψ2(~x1, ~x2) = β1β2

(

1√
2

)

[ψ1(~r1)ψ2(~r2)− ψ1(~r2)ψ2(~r1)] ≡ χS(1,−1)ΨA (7.42)

More interestingly, when each electron is in a different spin state α1β2 or β1α2, then we can
make the two possible linear combinations from ψ(~x1, ~x2), namely

(

1

2

)

[ψ1(~r1)α1ψ2(~r2)β2 − ψ1(~r2)α2ψ2(~r1)β1]± (
1

2
)[ψ1(~r1)β1ψ2(~r2)α2 − ψ1(~r2)β2ψ2(~r1)α1]

(7.43)
in which the + sign in Eq. 7.43 gives rise to a symmetric spin state with s = 1 and ms = 0

ψ3(~x1, ~x2) =

(

1√
2

)

[α1β2 + α2β1]

(

1√
2

)

[ψ1(~r1)ψ2(~r2)− ψ1(~r2)ψ2(~r1)] ≡ χS(1, 0)ΨA (7.44)

and the − sign in Eq. 7.43 gives rise to an antisymmetric spin state with s = 0 and ms = 0

ψ4(~x1, ~x2) =

(

1√
2

)

[α1β2−α2β1]
(

1√
2

)

[ψ1(~r1)ψ2(~r2)+ψ1(~r2)ψ2(~r1)] ≡ χA(1, 0)ΨS . (7.45)
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For n electrons the Slater determinant (see Eq. 7.39) is written as

Ψ(~x1 . . . , ~xn) =
1√
n!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1(~x1) ψ1(~x2) . . . ψ1(~xn)
ψ2(~x1) ψ2(~x2) . . . ψ2(~xn)

...
...

...
ψn(~x1) ψn(~x2) . . . ψn(~xn)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(7.46)

and this determinantal form of the wave function guarantees that no two electrons are in
the same set of quantum states.

We now show that the Heisenberg Hamiltonian accounts for the large molecular fields
which are encountered in ferromagnetic, antiferromagnetic and ferrimagnetic systems. The
Heisenberg Hamiltonian is written as

H = −2
′
∑

i,j

Jij ~Si · ~Sj (7.47)

where the sum is over pairs of electrons. Suppose that we are only considering nearest
neighbor interactions and all the neighbors are identical; assume that there are z such
neighbors. Then Eq. 7.47 becomes

H = −2zJij ~Si · ~Sj . (7.48)

We will now show how the Heisenberg Hamiltonian gives rise to a relation for the mean
or molecular field of the Weiss theory. The spin ~Sj can be identified with a magnetic moment
~µj by the relation

~µj = gµB ~Sj . (7.49)

This magnetic moment sees a field ~Bj = 2
∑′

i Jij
~Si/gµB since H = −∑j ~µj · ~Bj . If all the

nearest neighbors are identical, then the effective magnetic field can be written as:

~Bj =
2zJij ~Si
gµB

. (7.50)

We will now identify this magnetic field with the molecular field. The spontaneous magne-
tization at T = 0 is achieved by writing

~MS = N ~µj = NgµB ~Sj (7.51)

where N is the atomic density and ~µj is the moment on each atom. Thus the molecular
field can be written as

µ̂λM ~MS = ~B =
2zJij ~Si
gµB

=
2zJij ~MS

gµBNgµB
(7.52)

so that

~B =
2zJij ~MS

Ng2µ2B
. (7.53)

From Eq. 7.52 we obtain

λM =
2zJij

Ng2µ2Bµ̂
. (7.54)
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which provides us with an identification between λM and Jij . Since the molecular field
theory gives an independent value of λM , the exchange integral Jij for spins on neighboring
lattice sites can be estimated from the measured Curie temperature. From Eqs. 7.7 and
7.11 we have

λM =
Tc
C

=
3kBTc

Ng2µ2Bj(j + 1)µ̂
(7.55)

where C is the Curie constant (see Eq. 7.7) so that the exchange interaction from Eq. 7.54
and Tc from Eq. 7.55 can be related

Jij =
Ng2µ2BλM µ̂

2z
= (3/2)

kBTc
zj(j + 1)

. (7.56)

For iron, we have a BCC structure so that z = 8 for the magnetic species. From Table 7.1
we have Tc = 1043 K and because of the orbital quenching we can take j = 1. Thus we
would estimate for the exchange interaction energy

Jij ∼
3

2

0.024(1043/300)

8(1)(2)
eV ∼ 0.008eV (7.57)

which is a reasonable value for an exchange interaction.
The Heisenberg Hamiltonian can be used to obtain the saturation magnetization di-

rectly and this type of analysis is carried out in great detail in a semester length course on
magnetism. To the level of approximation given here, we identify λMMS with the internal
field, usually called the Weiss Molecular Field, and the corresponding theory is called the
Weiss Molecular Field Theory, which is the simplest approximation.

In the next order of approximation, we say that each spin is surrounded by a shell of
nearest neighbor spins. We will treat the Heisenberg interaction explicitly for these spins,
but will replace the effect of all the other spins acting on the nearest neighbors through an
effective field ~Beff . The Hamiltonian for this next order approximation is then

H = −2J ~Si ·
z
∑

j=1

~Sj − gµB ~Beff ·
z
∑

j=1

~Sj − gµB ~B · ~Si (7.58)

where ~Si is the central spin and the first term represents the effect of nearest neighbors
which is treated explicitly. The second term in Eq. 7.58 represents the effect of all the
spins in the nearest neighbor shell ~Sj on the outer shell of spins and is treated in terms

of an effective field ~Beff . The last term in Eq. 7.58 represents the effect of the external

field on ~Si. In this way the Heisenberg interaction is treated for a cluster (a central atom
and its nearest neighbors) in an explicit manner and the interaction of the cluster with
the external world is treated through an effective field. This effective field is determined
through a consistency condition as for example requiring the magnetic moment on the
central atom to be the same as that on the nearest neighbor sites. This method is known as
the Bethe-Peierls-Weiss Method. It is also a mean field method except that here we treat
a whole cluster of spins by the Heisenberg interaction, not only the central spin as in the
Weiss molecular field theory.

In carrying out practical calculations involving the Heisenberg Hamiltonian, one often
introduces an approximation to make the Heisenberg interaction a scalar interaction. This
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Figure 7.5: Ordered arrangements of
spins of the Mn2+ ions in MnO, as deter-
mined by neutron diffraction. The lattice
for MnO is a NaCl structure, though the
O2− ions are not shown in the figure. The
chemical and magnetic unit cells are in-
dicated in the figure.

is called the Ising model. The Heisenberg Hamiltonian can be written in terms of vector
components as

H = −2
′
∑

Jij ~Si · ~Sj = −2
′
∑

Jij(SxiSxj + SyiSyj + SziSzj) (7.59)

where the prime on the summation indicates a sum over electron pairs. The assumption
that is made to obtain the Ising model is that the x and y components Sx and Sy average
to zero. That is, only along the axis of quantization do we expect a time average value
for ~Si · ~Sj to be different from zero. This approximation is a gross oversimplification, but
it makes the mathematics much easier and is usually used as a first order approximation.
That is, according to the Ising model, the Heisenberg Hamiltonian is written as a scalar
interaction

H = −2
′
∑

JijSziSzj (7.60)

where the z direction is along the magnetization direction. Another case of interest is the
xy model for which the spins are constrained to lie in the xy plane normal to the axis of
quantization.

7.5 Antiferromagnetism and Ferrimagnetism

We would now like to make some comments on the molecular field theory as applied to
ferrimagnetic and antiferromagnetic systems. In a ferromagnet, the exchange energy is
positive J > 0 so that the ground state is an ordered state with all the spins lined up.
In an antiferromagnet, J < 0, the spins are lined up antiparallel in the ordered state as
shown in Fig. 7.5 for MnO (which crystallizes in the NaCl structure). To describe an
antiferromagnet, it is convenient to introduce two sublattices: an A sublattice for the spin↑
sites and a B sublattice for the spin ↓ sites, for example. In terms of these sublattices we
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will now discuss the Curie–Weiss law on the basis of the molecular field theory presented
in §7.2 for ferromagnetic systems.

Having introduced the antiferromagnet in terms of this 2-sublattice picture, it is a
simple extension to define the ferrimagnet as a material where the size of the individual
magnetic moments on the 2 sublattices, though opposite in sign, are of different magnitudes.
Consider magnetite which is Fe3O4 and crystallizes in the spinel structure where 1/3 of the
iron atoms are on tetrahedral A sites, and the other 2/3 on octahedral B sites. Different
exchange integrals JAA, JAB, JBB govern the interactions between Fe atoms depending on
which sublattices each of the Fe atoms is located. This physical situation can be represented
in terms of the molecular fields ~HA and ~HB which depend on the magnetization ~MA and
~MB for each of the sublattices:

~HA = −λMAA
~MA − λMAB

~MB (7.61)

~HB = −λMBA
~MA − λMBB

~MB (7.62)

The minus signs indicate that the molecular fields are antiparallel to the applied field. The
minus sign is associated with antiferromagnetic interactions (J < 0) between ions on the A
and B sublattices and on the same sublattices (A and A) or (B and B).

By reciprocity λMBA
= λMAB

. The interpretation of these relations is that the molecular

field ~HA is determined by both the nearest neighbor interaction with sublattice B and by
the next nearest neighbor interaction with sublattice A. In contrast, for a ferromagnet we
have ~HA = ~HB, there are no sublattices, and we have only one molecular field constant λM ,
even though we may consider interactions beyond the nearest neighbor interaction. For a
simple antiferromagnet, we have two sublattices and if we consider only nearest neighbor
interactions, then the molecular fields are simply written as

~HA = −λMAB
~MB, ~HB = −λMAB

~MA. (7.63)

Reciprocity still requires that the coupling of sublattice A to that of B be consistent with
that of B to A, and hence the same molecular field constant λMAB

appears in both equations
of Eq. 7.63.

Returning now to a ferrimagnet, the arguments presented following Eq. 7.14 can be
applied to each sublattice independently. For the individual sublattices, the analysis of §7.2
yields a Curie law:

MA =

(

CA
T

)

HAtotal =

(

CA
T

)

(H − λMAA
MA − λMAB

MB) (7.64)

MB =

(

CB
T

)

HB total =

(

CB
T

)

(H − λMAB
MA − λMBB

MB) (7.65)

where

CA =
NAg

2µ2Bj(j + 1)µ̂

3kB
, (7.66)

and likewise for CB. HereH is the applied magnetic field, CA and CB are the Curie constants
for sublatticesA andB, the λMAB

coefficients represent the internal field arising from nearest
neighbor interactions and the λMAA

and λMBB
coefficients represent contributions from

second neighbor interactions on the same sublattice. Equations 7.64 and 7.65 represent two
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coupled linear equations which have a non-trivial solution when the coefficient determinant
for the variables MA and MB vanishes. This condition determines the ferrimagnetic Curie
temperature

∣

∣

∣

∣

∣

Tc + CAλMAA
λMAB

CA
λMAB

CB Tc + λMBB
CB

∣

∣

∣

∣

∣

= 0. (7.67)

This is a quadratic equation which can always be solved exactly to obtain Tc. The suscep-
tibility is related to the total magnetization and is defined by the equation:

χ =
MA +MB

H
. (7.68)

This relation can also be evaluated explicitly by solving the simple coupled equations. The
result is rather messy for the case of a ferrimagnet.

However, for the antiferromagnetic case, the result is quite simple. Assuming that only
the nearest neighbor interaction contributes to the magnetization, we can write λMAA

= 0,
λMBB

= 0, CA = CB = C
∣

∣

∣

∣

∣

Tc λMAB
C

λMAB
C Tc

∣

∣

∣

∣

∣

= 0 (7.69)

or Tc = λMAB
C. For simplicity, let us write λMAB

= λM in Eq. 7.69. Therefore

MA =

(

C

T

)

(H − λMMB) (7.70)

MB =

(

C

T

)

(H − λMMA) (7.71)

MB =

(

C

T

)

[H−
(

λM
C

T

)

(H − λMMB)] (7.72)

MB(1− λ2MC2/T 2) =

(

C

T

)(

1− λM
C

T

)

H (7.73)

MB

(

1 + λM
C

T

)

=
CH

T
(7.74)

MB =
CH

(T + λMC)
(7.75)

where

Tc = λMC and C =
Ng2µ2Bj(j + 1)µ̂

3kB
. (7.76)

Similarly

MA =
CH

(T + λMC)
(7.77)

so that

M =MA +MB = 2
CH

(T + λMC)
(7.78)

yielding

χ =
2C

(T + Tc)
(7.79)
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Figure 7.6: Temperature dependence of
the magnetic susceptibility in param-
agnets, ferromagnets, and antiferromag-
nets. Below the Néel temperature of an
antiferromagnet, the spins have antipar-
allel orientations; the susceptibility at-
tains its maximum value at TN where
there is a well-defined kink in the curve of
χ versus T . The phase transition is also
marked by peaks in the heat capacity and
the thermal expansion coefficient. The
dashed extrapolated curve for the anti-
ferromagnetic case is not physical below
TN .

where
Tc = λMC. (7.80)

Equation 7.79 is in the form of the Curie–Weiss law where the susceptibility diverges for
T = −Tc (see Fig. 7.6).

If we plot χ vs. T for an antiferromagnet, we distinguish:

1. The paramagnetic region above the antiferromagnetic ordering temperature TN , the
Néel temperature. The Curie–Weiss law given in Eq. 7.79 holds for T À TN .

2. The temperature −Tc below T = 0 K at which the extrapolated susceptibility func-
tion diverges as shown in Fig. 7.6. In this figure we show the susceptibility in the
paramagnetic regime for ferromagnetic, antiferromagnetic and paramagnetic materi-
als.

From this discussion we see that the susceptibility relation for antiferromagnetic materi-
als is very similar to that for ferromagnetic materials. In both cases there is a temperature
Tcritical below which there is an onset of the magnetic state. For the ferromagnetic case, Tc
and Tcritical would be the same if the Curie law were to be valid all the way down to the
transition temperature; but since significant departures from the Curie law occur, there are
two different temperature parameters to be considered as shown in Fig. 7.7 for nickel (a
ferromagnet). While these two parameters are quite close for a ferromagnetic material, the
situation for antiferromagnets is quite different. Here Tc and TN are not simply related by
|Tc| ∼ |TN |, where TN is the Néel temperature, denoting the onset of antiferromagnetism.
Sometimes these two quantities are of the same magnitude – e.g., MnF2 has TN = 67 K and
Tc = 82 K. They can also be quite different – e.g., FeO has TN = 198 K and Tc = 570 K.

In discussing ferromagnetism, we have found two quantities to be of particular signif-
icance – the critical temperature and the saturation (or spontaneous) magnetization. For
the antiferromagnetic case, we still have a critical temperature, though no saturation mag-
netization. Since half of the spins point in one direction and half point the opposite way,
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Figure 7.7: Plot of the reciprocal suscep-
tibility per gram vs T of Ni (points) in the
neighborhood of the Curie–Weiss temper-
ature (Tc = 358K), and the dashed curve
shows an extrapolation of the Curie–
Weiss law from high temperatures. Here
ρ denotes the mass density.

Figure 7.8: Schematic calculation of the
effect of an applied field H on the mag-
netization, where ~H is (a) perpendicular
and (b) parallel to the sublattice magne-
tizationsMA andMB at 0 K, in the mean
field approximation.

we have MA =MB (which can be considered as the order parameter is also called the stag-
gered magnetization). Thus, there is no net magnetic moment per unit volume. There is,
however, some susceptibility, but the susceptibility now depends upon the direction between
the applied magnetic field ~H and the magnetization of the sublattices.

In the parallel orientation, where the applied field ~H is parallel to the sublattice mag-
netization (see Fig. 7.8b), we have MA = MB at T = 0 K, and H has no effect on the
magnetization because H ¿ MA,MB. Thus, for this case, we have the result χB → 0 as
T → 0 K.

In the perpendicular orientation, where the applied field ~H is normal to the sublattice
magnetization (see Fig. 7.8a), however, the effect of the magnetic field is to try to orient the
sublattice magnetization along the applied field. If the molecular field constants are large,
then a large applied field is needed, while if λMAB

is smaller, then a modest applied field
will be effective in creating a net magnetization. Thus

χ⊥ →
1

λMAB

(7.81)

as T → 0 K and the susceptibility for an antiferromagnetic material in the ordered anti-
ferromagnetic region has two branches as shown on the diagram in Fig. 7.9 for MnF2, a
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Figure 7.9: Magnetic susceptibility of
MnF2, parallel and perpendicular to the
tetragonal axis.

typical antiferromagnetic material.

At this point we might ask whether there is a simple way to tell whether a material
will be ferromagnetic or antiferromagnetic from first principles. Generally speaking, this is
difficult to predict, although some arguments can be given which tend to apply. To make
a magnetic state, the exchange integral must be large and to accomplish this, we need
orbitals that stick out from the atom sites (like d-orbitals). These electronic orbitals give
rise to bonding as well, since the electrons tend to spend more time in the region between
two atoms than away from these atoms. If the electrons on neighboring atoms tend to
be in the same spatial location, it is energetically favorable for them to have their spins
antiparallel. If we have atoms with d-shells that are less than half-full we can arrange to
have the spins on neighboring atoms antiparallel. Thus, if the d-shells are less than half-
filled, antiferromagnetic ordering is preferred. On the other hand, if we have atoms with
d-shells that are more than half-filled, we cannot always arrange the spins to be antiparallel
on neighboring sites, because most of the states are already filled in making the atomic
configuration. Thus the spins on neighboring atoms tend to be aligned parallel to each
other and more than half-filled shells tend to favor ferromagnetism. From measurement
of the Curie–Weiss law and the sign of Tc in the paramagnetic region (Eq. 7.79), we can
usually distinguish between materials that will order magnetically, and if the ordering will
be ferromagnetic or antiferromagnetic.

7.6 Spin Waves

In the ground state (or lowest energy state) at T = 0 K, all the spins in a ferromagnet tend
to be aligned parallel to one another (see Fig. 7.10a). At a finite temperature, some of the
spins will become misaligned, as for example by thermal excitation, and an excited state
is produced. We might imagine that the lowest energy excited state could be achieved by
flipping one spin, and this is represented schematically by Fig. 7.10b. Let us now consider
how much energy it takes to flip this spin. If we only include nearest neighbor exchange

108



Figure 7.10: (a) Classical picture of the ground state of a simple ferromagnet; all spins
are parallel. (b) A possible excitation; one spin is reversed. (c) The low-lying elementary
excitations are spin-waves. The ends of the spin vectors precess on the surfaces of cones,
with successive spins advanced in phase by a constant angle.

Figure 7.11: Schematic of a spin wave on a line of spins. (a) The spins viewed in perspective.
(b) Spins viewed from above, showing one wavelength. The wave is drawn through the ends
of the spin vectors.

interactions, the Heisenberg Hamiltonian becomes

H = −2J
N ′
∑

n=1

~Sn · ~Sn+1. (7.82)

When written in this form, we note that J has the units of energy so that ~S is dimensionless
and for this reason the spin angular momentum is h̄~S. For the ground state energy EG.S.

for the N aligned spins (each with spin 1/2) we can write

EG.S. = −2(N − 1)JS2 (7.83)

where (N − 1) is the number of spin pairs. To flip one spin (some interior spin) we change
the interaction energy between two pairs from −2JS2 to +2JS2, so for each pair we effect
a change of 4JS2 and for the two pairs we produce a net increase in energy of 8JS2. It is
clear that when the spin flip is made gradually, the net increase in energy can be smaller.
Thus a wave-like spin flip occurs, called a spin wave and is shown schematically in Fig. 7.11
for two views of the spin wave. We will now show that the dispersion relations for spin
waves in a ferromagnetic system are of the form ω ∼ k2 (for small k) whereas for lattice
vibrations ω = vk (where v is the velocity of sound). Of course, for the electron system,
the dispersion relations for a simple metallic band are also of the form ω ∼ k2

E(~k) =
h̄2k2

2m∗ . (7.84)
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A simple derivation of the spin-wave dispersion relation is given in Kittel ISSP and is
reproduced here. The identification of the Heisenberg Hamiltonian is made by looking at
the pth site. Here we have a spin ~Sp with a magnetic moment given by

~µp = gµB ~Sp (7.85)

in which ~Sp has been written in dimensionless units. Spin p sees a magnetic field due to its
neighbors on either side:

~Hp =

(

2J

gµB

)

(~Sp−1 + ~Sp+1). (7.86)

where ~Hp denotes the exchange field or molecular field and ~Hp = λM ~Mp. In the derivation
we make use of the relation that the time rate of change of angular momentum is the torque
~µp × ~Hp so that we obtain

h̄

(

d~Sp
dt

)

= ~µp × ~Hp (7.87)

which upon substitution of ~Hp from Eq. 7.86 and ~µp from Eq. 7.85 yields:

d~Sp
dt

=

(

gµB
h̄

)

~Sp×
[

2J

gµB
(~Sp−1 + ~Sp+1)

]

=

(

2J

h̄

)

~Sp × (~Sp−1 + ~Sp+1). (7.88)

We will now write Eq. 7.88 in Cartesian coordinates with ẑ chosen as the alignment di-
rection for the spins in the ground state. Assuming that the spin wave represents a small
perturbation, we assume that Sx and Sy are small in comparison to Sz so that products
of the form S2

x, SxSy and S2
y will be neglected in comparison with S2

z , SxSz, SySz. We will
also assume that S ∼ Sz resulting in linearized classical equations of motion (neglecting
quantum mechanical properties of ~S)

dSxp
dt

=

(

2JS

h̄

)

(2Syp − Syp−1 − S
y
p+1) (7.89)

dSyp
dt

= −
(

2JS

h̄

)

(2Sxp − Sxp−1 − Sxp+1) (7.90)

dSzp
dt

= 0. (7.91)

Solutions to these equations of motion can be written in the traveling wave form:

Sxp = uei(pka−ωt) (7.92)

and

Syp = vei(pka−ωt) (7.93)

where u and v are amplitudes for the spins in the x and y directions, respectively, k is a
wave vector and a is a lattice constant. Substitution of these harmonic solutions into the
differential equations (Eqs. 7.89 and 7.90) results in

−iωu =

(

2JS

h̄

)

(2− 2 cos ka)v (7.94)
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Figure 7.12: Dispersion relation for spin
waves in a one dimensional ferromagnet
considering only nearest-neighbor inter-
actions.

−iωv = −
(

2JS

h̄

)

(2− 2 cos ka)u (7.95)

which has a solution when the coefficient determinant vanishes or
∣

∣

∣

∣

∣

∣

∣

∣

iω

(

4JS
h̄

)

(1− cos ka)

−
(

4JS
h̄

)

(1− cos ka) iω

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (7.96)

which gives the equation

ω2 =

[(

4JS

h̄

)

(1− cos ka)

]2

, (7.97)

so that

h̄ω ' 2JSa2k2 (7.98)

which is valid for ka¿ 1. A plot of the dispersion relation for a ferromagnetic spin wave is
shown in Fig. 7.12. The initial slope is not constant as it is for the case of lattice vibrations.
Instead, for ferromagnetic spin waves the dispersion curve comes into k = 0 with zero slope
as shown in Fig. 7.12.

The interpretation of the wave vector for spin waves can be understood from the diagram
in Fig. 7.13. For a given mode labeled by wave vector k, the angle between neighboring
spins is seen to be φ = ka. On the other hand, the situation for spin waves and for lattice
vibrations is similar, in that quantum mechanics restricts the kinds of possible excitations.
In particular, Sz can change only by integral units of h̄ in creating a spin wave. This
quantization condition results in the magnon, which (like the phonon) is a unit of possible
excitation of the magnetic system. Thus we can write the excitation energy of magnons at
wave vector ~k as

Ek = nkh̄ωk (7.99)
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Figure 7.13: Construction relating the
angle φ between two successive spin vec-
tors to the spin wave amplitude u and
phase angle ka. The length of the dashed
line is 2u sin(ka/2). If the length of a spin
is S, then it follows that S sin(φ/2) =
u sin(ka/2).

where nk is the number of magnons at wave vector ~k and ωk is the energy per magnon
where ωk and k are related by the dispersion relation

ωk = (4JS/h̄)(1− cos ka). (7.100)

A typical magnon spectrum for a ferromagnetic material is shown in Fig. 7.14. This spec-
trum was taken using neutron scattering techniques. Neutron diffraction techniques are
very important in studying magnetic materials because the neutron itself has a magnetic
moment which is sensitive to the ordering of the magnetic moments in the magnetic mate-
rial. In contrast, x-rays are scattered predominantly by the electronic charges about each
atomic site, and magnetic effects are only observed in higher order interactions. Thus the
elastic scattering of neutrons gives information on the magnetic structure of the magnetic
unit cell.

If we use as our neutron probe a beam of thermal neutrons with de Broglie wavelengths
comparable to lattice dimensions, we can also observe the inelastic scattering of neutrons
whereby a magnon is created (or absorbed) (see Fig. 7.15). The magnon spectrum in
Fig. 7.14 was obtained using the inelastic neutron scattering technique. Inelastic light
scattering processes also occur, and therefore magnon spectra can also be studied by the
Raman effect. Because of the small k vector for light, the Raman effect is most sensitive to
magnons with small wavevector (see Fig. 7.15). To find the mean energy due to spin wave
excitations at a given temperature we must take a thermal average, as we did for phonons
in finding the heat capacity. The number of magnons excited at a given temperature is
given by the Bose factor

nk =
1

(eh̄ωk/kBT − 1)
. (7.101)

where kB is Boltzmann’s constant
To find the total number of magnons excited at a temperature T , we have to perform a

sum over states, which is more readily done as a function of frequency ωk. Making use of
the density of states function

ρ(ωk) dωk =
1

(2π)3
4πk2

(

dk

dωk

)

dωk (7.102)
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Figure 7.14: Magnon dispersion curve of
a FCC cobalt alloy (92% Co, 8% Fe) at
room temperature as measured by neu-
tron scattering.

Figure 7.15: Schematic diagram for in-
elastic neutron scattering.
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and the weighted magnon density is found from

∑

k

nk =

∫

nkρ(ωk)dωk. (7.103)

From the spin wave or magnon dispersion relation given in Eq. 7.100, we have

dωk
dk

=

(

4JS

h̄

)

a sin ka ∼ 4JS

h̄
a2k (7.104)

The small k approximation (for ka ¿ 1) of Eq. 7.104 is useful because at temperatures
where the spin wave theory applies, it is predominantly the small k magnons which are
excited, so that

ωk =

(

4JS

h̄

)

(1− cos ka) ∼
(

2JS

h̄

)

k2a2 (7.105)

and

k ∼
(

1

a

)

√

h̄ωk
2JS

. (7.106)

Thus the total number of magnons excited at low temperature will be

∑

k

nk '
1

2
π2
∫

(h̄kdωk)

(4JSa2)(eh̄ωk/kBT − 1)
(7.107)

which becomes
∑

k

nk =

(

h̄

8π2JSa3

)

√

h̄

2JS

∫

ω
1
2
k dωk

eh̄ωk/kBT − 1
(7.108)

and writing

x =
h̄ωk
kBT

(7.109)

we obtain
∑

k

nk ∼= (
1

4π2
)

(

kBT

2JSa2

)3/2 ∫ ∞

0
x

1
2

dx

ex − 1
(7.110)

from which we conclude that the total number of magnons excited at a temperature T is
proportional to T 3/2. This implies that the temperature dependence of the magnetization
near T = 0 K (where all the spins are aligned in the ferromagnet) also shows a T 3/2

dependence and this T 3/2 dependence is verified experimentally.
Spin waves and magnons also are present in antiferromagnetic materials (see Kittel

ISSP). Of particular interest is the difference in the magnon dispersion relation between
ferromagnets and antiferromagnets. For an antiferromagnet the magnon dispersion relation
is found to be (using the same argument as given above)

ωk =
2|J |S
h̄

sin ka ∼
(

2|J |S
h̄

)

ka (7.111)

so that the initial slope is expected to be finite in contrast to the magnon dispersion relation
for ferromagnets, which is given by

ωk =
4JS

h̄
(1− cos ka) ∼

(

2JS

h̄

)

k2a2 (7.112)
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Figure 7.16: Schematic diagram of
electronic wave functions showing their
anisotropy. Asymmetry of the overlap of
electron distributions on neighboring ions
[note difference between spin configura-
tions (a) and (b)] is one mechanism for
producing magnetocrystalline anisotropy.
The spin-orbit interaction changes the or-
bital charge distribution when the spins
are aligned.

where the initial slope at k = 0 vanishes. Experimentally, the magnon dispersion relations
for an antiferromagnet are also observed to have zero initial slope

(

∂ωk
∂k

)

k=0
= 0. (7.113)

This discrepancy with Eq. 7.111 is attributed to the anisotropy field interaction which is
discussed in §7.7.

7.7 Anisotropy Energy

The magnetic moments in a magnetic material tend to line up preferentially along certain
crystallographic directions. The exchange energy Jij depends on the orbital overlap of
electronic wavefunctions between electronic orbitals on different atomic sites. The spin-
orbit interaction couples the orbital motion to the spin direction as indicated schematically
in the diagram in Fig. 7.16. This propensity for the spins (or magnetic moments) to line
up along specific crystallographic directions is expressed in terms of an anisotropy energy
which is written in terms of anisotropy constants Ki and angular factors given in Eq. 7.114
in terms of the direction cosines. For example, for cubic materials the anisotropy energy
density UK is written as

UK = K1(α
2
1α

2
2 + α22α

2
3 + α23α

2
1) +K2α

2
1α

2
2α

2
3 + · · · (7.114)

in which αi represents the direction cosine in the ith direction and K1, K2 are the magnetic
anisotropy constants having units of energy density. Because of inversion symmetry, we can
only have even powers of αi and the cubic symmetry requires invariance under interchange
of any αi with any αj . For cubic symmetry, the lowest order term in Eq. 7.114 would go as
α21 + α22 + α23 = 1 and therefore is a constant independent of crystalline direction, and for
this reason can be neglected. This leaves us with higher even powers of the direction cosines
as indicated above. The anisotropy constants are temperature dependent and vanish when
the Curie temperature is reached and the material goes paramagnetic (see Fig. 7.17). In
magnetic device applications, it is necessary to consider both the exchange and anisotropy
energies, as is elaborated in §7.8 and in Chapter 8.
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Figure 7.17: Temperature dependence of
the anisotropy constants for single crys-
tal iron. The anisotropy constants are
defined in the text.

Figure 7.18: Various possible ferromag-
netic domain structures in a single crys-
tal of Fe where the preferred direction
of magnetization is along (100). Note
that in a magnetic field H, the favorably
aligned domains grow at the expense of
the unfavorable domains.
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Figure 7.19: Schematic structure for do-
mains in a sample of finite size. To keep
magnetic flux within the sample, the do-
mains near the surface will be magnetized
parallel to the surface.

7.8 Magnetic Domains

Macroscopic samples of ferromagnetic materials are not uniformly magnetized, but break
up into regions called domains. The magnetization for each domain will, in general, have a
different orientation. This happens because of the magnetic dipole interaction between the
spins is much weaker than the short-range exchange interaction which aligns neighboring
spins. However, over longer distances, the magnetic dipole interaction forces neighboring
regions to have opposite magnetization. The anisotropy energy determines the crystallo-
graphic direction of the magnetization within a domain, as illustrated in Fig. 7.18 for iron,
where the preferred direction is along the (100) axes. When an external magnetic field is
applied, the domains having moments along the magnetic field grow at the expense of the
domains having moments in other directions, as is shown in Fig. 7.18 for application of a
field along (100). The preferred directions for magnetization are called easy axes. Magne-
tization does sometimes occur along an axis other than an easy axis, and this can happen
when domains are formed to keep the magnetic flux within the sample as for example in
the end regions of the domain structure shown in Fig. 7.19 where the magnetization is
along the x-axis in contrast with the dominant y-axis direction for the magnetization of
the domain. We note that with this domain arrangement, the component of the magneti-
zation vector along the domain boundary is continuous across this boundary and therefore
there is no magnetic flux leakage outside of the magnetic material. When magnetization
occurs along an axis other than the easy axis, a strain energy results and this effect is called
magnetostriction. This effect is due to a magnetoelastic coupling between the spins and the
lattice. Magnetostriction effects can be used to probe magnetic phase transitions in areas
of basic science. The magnetoelastic coupling effect can also be used in signal processing
applications.

In real materials, the separation between magnetic domains is gradual and not abrupt (as
suggested by Figs. 7.18 and 7.19), and the transition occurs over many atomic planes. The
transition region is called a Bloch wall and is shown schematically in Fig. 7.20. Evidence for
magnetic domains comes from direct photographs using magnetic powders which tend to
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Figure 7.20: Schematic structure of a
Bloch wall separating magnetic domains.
In iron the thickness of the transition re-
gion is about 300 lattice constants.

concentrate at the domain boundaries where strong magnetic fields exist (e.g., the proximity
of a North and South magnetic pole). This magnetic powder technique was developed by
Professor Bitter of MIT, who was also responsible for the basic design of high current
magnets which led to the generation of magnetic fields in the 10 tesla (100 kG) range and
the establishment of the National Magnet Laboratory Facility.

The size of a domain boundary (Bloch wall) can be estimated on the basis of a simple
calculation. From Eq. 7.82 we have the Heisenberg Hamiltonian for a pair of spins

H = −2J ~Si · ~Sj . (7.115)

Assuming a small angle φ between spins ~Si and ~Sj we can apply the Heisenberg Hamiltonian
to the Bloch wall to obtain

H = −2JS2 cosφ ' −2JS2
(

1− φ2

2

)

= −2JS2 + JS2φ2. (7.116)

This tells us that the energy is decreased by making φ as small as possible. We will denote
the exchange energy Eex by Eex = JS2φ2 which represents the energy we must supply when
we do not line the two spins up perfectly. If we have N spins in a Bloch wall and the total
angle of spin rotation is π, then φ = π/N so that the total exchange energy that must be
supplied is

Eex = NJS2π2/N2. (7.117)

On the other hand, because of the anisotropy energy, it is unfavorable for spins to be
directed along crystalline directions other than the easy axes. Along the Bloch wall most
of the spins are not directed along the easy axes, and therefore the anisotropy energy that
must be supplied to support a Bloch wall is approximately proportional to the size (length)
of the Bloch wall. If K is the anisotropy energy density, then the anisotropy energy per
unit area is (K)(Na), where Na is the length of a Bloch wall and a is the lattice constant.
We then say that the energy per unit area that must be supplied to maintain a Bloch wall
σW is

σW = σex + σanis. (7.118)
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Substitution into Eq. 7.118 then yields:

σW =

(

JS2π2

Na2

)

+KNa. (7.119)

At equilibrium
∂σW
∂N

= 0 = −JS
2π2

N2a2
+Ka (7.120)

so that

N =

√

JS2π2

Ka3
(7.121)

and upon substitution of values for J, S,K and a, we find N ∼ 300 lattice constants for
iron.

The equilibrium condition (Eq. 7.120) also gives the energy of the Bloch wall. Using the
value of N at equilibrium we obtain for σW :

σW =

(

JS2π2

a2

)

√

Ka3

JS2π2
+Ka

√

JS2π2

Ka3
= 2

√

KJS2π2

a
(7.122)

which for iron is ∼ 1 erg/cm2 which is a very small energy, which tells us that Bloch walls
in Fe can be moved easily by an external perturbation. This idea is used in various device
applications.

One type of domain that is particularly important for device applications is a small
domain formed in thin films of certain ferrimagnetic materials (e.g., orthoferrites such as
Y3Fe5O12) and these domains are called a magnetic bubble. When a magnetic field is
applied normal to one of these thin films, it is possible to shrink the size of domains magne-
tized oppositely to the applied field direction to a size of several microns. These magnetic
bubbles can be moved and manipulated with magnetic fields applied in the plane of the
film. Because of their small size, they can be used for computer memory applications.
Some advantages of magnetic bubbles for such applications involve long term stability of
the memory element and durability of the material. Although much research went into
computer memory applications for these magnetic bubbles, their application thus far has
been limited.

In many commercial applications of ferromagnets, the coercive force is important. The
coercive force is defined as the magnetic field – Hc which is required to reduce the magneti-
zation in the material to zero (see Fig. 7.21). For some applications we want Hc to be very
small (soft magnetic materials), so that we can easily change the magnetization in the ma-
terial; such materials for example are needed for transformer core materials. On the other
hand, for other applications we need to have materials with a highly stable magnetization
and hence a very high coercive force; such materials are used to build high field permanent
magnets and are called hard magnetic materials. The magnitude of the coercive force varies
over a very wide range – from much less than one gauss to values in excess of 104 gauss.

The coercive force is often pictured on a hysteresis diagram which relates the magneti-
zation M to the applied field H. Such a diagram is shown in Fig. 7.21: curve OA gives the
evolution of the original magnetization. Upon demagnetization, we reach Mr the remanent
magnetization which is present when the external field is reduced to zero. As the external
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Figure 7.21: Magnetization curve for a
ferromagnet showing a hysteresis loop.

field is applied in the opposite direction, the magnetization is further decreased and even-
tually vanishes at −Hc (the coercive force). The loop traced out by the magnetization M
and applied field H cycle in Fig. 7.21 is called a hysteresis loop and the larger the coercive
force, the larger is area enclosed in this loop. Very pure, single crystal, unstrained materials
generally have narrow hysteresis loops while impure, small particle or amorphous magnetic
materials tend to have wide hysteresis loops.
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Chapter 8

Magnetic Devices

References

• E.W. Lee, Magnetism: An Introductory Survey, Dover, New York, 1970.

• S. Chikazumi, Physics of Magnetism, Wiley, New York 1966.

• R.S. Tebble and D.J. Craik, Magnetic Materials, Wiley–Interscience, New York 1969.

• R.J. Gambino, “Optical Storage Disk Technology”, Mat. Res. Soc. Bull. 15, 20 (1990).

• J.A.M. Greidanus and W. Bas Zeper, “Magneto-optical Storage Materials”, Mat. Res.
Soc. Bull. 15, 31, (1990).

8.1 Introduction

In this chapter we briefly survey a number of magnetic devices. Many people are aware of
the huge magnitude of the semiconductor industry. Far fewer people are aware of the fact
that the magnetic device business is about 2/3 of the size of the semiconductor business.
Therefore a brief review of some common magnetic and magneto–optic devices is in order.

8.2 Permanent Magnets

Permanent magnetic fields having strengths of the order of 10 kilogauss can be obtained
using the remanent magnetization of so-called “hard” magnetic materials. These are char-
acterized by (1) large permeabilities and (2) high coercive fields (Hc). Important to the
development of radar as components in magnetron microwave amplifier tubes, the most
widespread modern applications are small motors and loudspeakers. Alloys of aluminum,
nickel and cobalt (Alnico) and other more recent cobalt alloys are in common use. In the
last few years a new NdFeB (Nd2Fe14B alloys) compound has been developed with a very
high BH product.
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Figure 8.1: Slopes of the B −H curve that is
exploited in designing a magnetic amplifier.

8.3 Transformers

Reference:

• Magnetic Circuits and Transformers, M.I.T. Press, Cambridge, 1943

Transformers consist of two or more coils linked by a magnetic flux path in which the
driving (or primary) coil induces currents in the driven (or secondary) coils. The important
features of the material used to couple the coils magnetically are (1) large permeabilities for
efficient coupling through minimization of “leakage” flux, (2) very small coercive fields Hc,
and (3) linear magnetization curves having little hysteresis. Hysteresis causes both distor-
tion and power loss. Large permeabilities and small Hc define “soft” magnetic materials.
Pure iron is a good example of a soft magnetic material, especially when used in multi-layer
or laminated construction in which the cross-section normal to the flux direction is com-
posed of insulated stacks of thin plates. This construction prevents large induced circulating
currents in the iron (“eddy” currents) and their attendant losses due to Joule heating.

8.3.1 Magnetic Amplifiers

Reference:

• H.F. Storm, Magnetic Amplifiers, John Wiley, NY, 1955

A transformer with a non-linear B-H curve may be used as a signal multiplier or mag-
netic amplifier if an additional coil, the control winding, is used to change the differential
permeability at which the device is operating. In the diagram of Fig. 8.1, the local slope
of the B-H curve is a function of the control current, ic. The transfer characteristics of the
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device will have the input and output currents related by

iout ∝
(

dB

dH

)

iin (8.1)

and if
dB

dH
= f(ic) ≈ f0ic (8.2)

so that the function f(ic) is linear in ic, then

iout ≈ (f0iin)ic (8.3)

where iout is proportional to ic and the product (fciin) may represent a large gain factor.

8.4 Data Storage

8.4.1 Magnetic Core

Reference:

• T.C. Chen and A. Papoulis, Domain Theory in Core Switching, Proc. IRE, 1958, Vol
46, pp. 839–849.

Remanent magnetism may be used to provide a fast, reliable electrical recording tech-
nique. For digital storage materials, (1) large permeabilities, and (2) intermediate but
well-controlled coercive fields are desirable. In particular, toroidal-shaped elements called
cores in which the magnetization is circumferentially directed became the main stay of com-
puter mass memory (although continuing advances in semiconductor technology have made
this form of memory largely obsolete). A typical B-H curve for a core is given in Fig. 8.2.
In practice, the cores are threaded in a matrix of wires, as shown below. Data is entered
(“written”) into the array by applying a current i to each of the horizontal and vertical
wires called address lines. The magnitude of i is such that its H-field is insufficient to cause
a change in the magnetization of a core, but the coincidence of currents from two wires at a
single core is sufficient to magnetize it. With the current returned to zero, the magnetiza-
tion is at position (1) on the B−H curve. To reverse the magnetization (“erase” the core),
a coincidence of currents - i are applied to the core, leaving the remanent magnetization at
position (2) on the curve in Fig. 8.2. To determine (“read”) the state of the core, a pair
of currents i are addressed to the core; if the previous state of the core was (2), there will
be a sudden change in the core magnetization, which will induce a current in the third wire
threading the cores (see Fig. 8.3), the output or “sense” wire. This current is then amplified
to usable levels. If the core had been in state (1), there would be no magnetization change,
and hence no “sense” current. Note that a “read” operation destroys the original state of
the core, so that it must be “rewritten” if it is needed in subsequent operations.

8.4.2 Data Storage: Magnetic Tape

Reference:

• H.G.M. Spratt, Magnetic Tape Recording, Temple Press Books, London, 1964
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Figure 8.2: B − H curve with a nearly rect-
angular hysteresis loop.

Figure 8.3: Schematic diagram of a
magnetic core memory, showing the
address wires on the x and y axes,
and the “sense” wire threading the
cores.
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Figure 8.4: θ the angle between ~H0

and ~Ha

Magnetic tape is a continuous strip of flexible dielectric (such as mylar plastic) to which
is bonded a thin layer of magnetic particles dispersed in an insulating base. The particles
have

1. large permeability,

2. intermediate coercive field values, and

3. large anisotropy.

The anisotropy of the particles determines the direction of their remanent magnetization.
That is, for large applied fields (H0 À Ha) normal to the tape, the normal component of
the remanent magnetization is

Br = µ̂Ĥ0 · ~Ha = ±µ̂|Ha| cos θ (8.4)

where µ̂ is the particle permeability, ~Ha its anisotropy field, and θ the angle between the
applied field ~H0 and the anisotropy field ~Ha, as in Fig. 8.4. This means that only the sign of
the particle magnetization may be changed. The external magnetization of the tape will be
an average over all possible θ, with the additional complication of variation in the shapes
of the particles causing variations in their external fields. A typical Br − H curve for a
magnetic tape is shown in Fig. 8.5, where Br is the remanent induction of the tape after
the removal of the field H. If the field H0 applied by an electromagnet (the recording head)
changes with time, and the tape is simultaneously translated along its length `, then

Br(`) = f [H0(t)] (8.5)

and the recorded Br(`) can be subsequently detected by moving it under another coil (the
playback head). For faithful reproduction we would like

f [H0(t)] = f0H0(t) (8.6)

which, from the shape of the Br −H curve, will clearly not be the case. A clever trick is
used in nearly all modern audio recording to overcome this problem. The signal H0(t) is
added to a high frequency (∼ 100kHz) bias field HB(t) which has sufficient magnitude to
span the non-linear region in the Br−H curve as shown in Fig. 8.6 The remanent induction
〈Br(`)〉 averaged over several cycles of the bias field will then be approximately

〈Br(`)〉 ≈ f0H0(t) (8.7)

where f0 is the local slope of the effective recording characteristic.
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Figure 8.5: Typical Br −H curve for
a magnetic tape.

Figure 8.6: Use of bias field to improve recording fi-
delity for magnetic storage tape.

Figure 8.7: Geometry of a magnetic bub-
ble film.
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Figure 8.8: Schematic of TI bar struc-
ture used to propagate magnetic bub-
bles.

8.4.3 Magnetic Bubbles

References:

• T.H. O’Dell, Magnetic Bubbles, John Wiley, NY, 1974

• H. Chang, Ed.,Magnetic Bubble Technology: Integrated-Circuit Magnetics
for Digital Storage and Processing, I.E.E.E. Press, 1976.

One interesting development in magnetic memory devices is that of magnetic bubble
technology. Small (∼ 1 micron diameter) circular domains in thin magnetic films can be
generated, so that the magnetization of these domains is normal to the plane of the film
and opposite to that of the surrounding material as shown in Fig. 8.7. The film material,
usually one of the many insulating magnetic garnets, is arranged to have its easy magnetic
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Figure 8.9: Schematic diagrams of (a)
bubble (b) flux lines (c) forces for mag-
netic bubble recording media.

axis normal to the plane. Magnetic materials used for magnetic bubble memories should
have

1. high uniaxial anisotropy energy in order to maintain the simple domain structure
shown in Fig. 8.7;

2. low saturation fields, so that domains may be created with practical applied fields;

3. low value for Hc, so that the domains may be propagated with reasonably small field
gradients, and

4. high domain wall mobility, allowing high propagation velocities and hence high data
rates.

Bubbles may be created by sudden changes in the bias field of uniformly magnetized
material. Hydrodynamic instabilities prevent the film magnetization from changing in-
stantaneously, and domains form analogously to the formation of fluid droplets due to
surface-tension. Once formed, a bubble domain may be stably located by placing it in an
in-plane field gradient, induced, perhaps, by the presence of an overlying “soft” magnetic
structure of high permeability, such as rectangular layers of permalloy (80% nickel/20%
iron alloy) (see Fig. 8.9a). The high permeability layer concentrates the flux of the in-plane
B-field (see Fig. 8.9b), yielding a magnetic well at one end of the bar which can stabilize
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Table 8.1: Properties of bubble film materials.

MATERIAL h, (µm) µ̂0M, (T) µ̂w,(m/s) per T τ ∗,(ns)
Gd2.3Tb0.7Fe5O12 12.5 0.0142 1.08× 104 82
Y2.4Eu0.6Ga1.1Fe3.9O12 10.8 0.0210 ≈ 104 ≈ 50
DyFeO3 42 0.0128 3.3× 104 100
Sm0.55Tb0.45FeO3 50.0 0.0126 9.0× 104 44
EuEr2Ga0.7Fe4.3O12 5.7 0.0250 0.96× 104 24

a bubble, as shown in Fig. 8.9c. If the field well can be moved, the bubble will follow. A
simple scheme for accomplishing this is the so-called TI bar structure shown in Fig. 8.8. An
in-plane magnetic drive induction BD is applied which rotates in the plane at a constant
angular frequency. The demagnetization effect of the permalloy bars is largest when they
are parallel to BD, so that the field well minimum will always lie at the ends of the bar
sections which have the longest cross sections in the direction of the applied field. As the
direction of BD rotates, the field minima will propagate down the array carrying bubbles
with them. Figure 8.8 shows four intermediate steps in this process, and demonstrates how
bubbles are “copied” from a large source domain. The “copy” process can be inhibited by
an in-plane field, applied by a current loop at the “neck” of the source domain. In this
way, a serial pattern of bubbles and vacancies can be propagated down the array, forming
a digital shift register. The bubbles may be detected by a sense coil in a manner similar to
that of magnetic tape playback.

The speed of propagation is limited by the domain wall mobility, µw, which is related
to vb, the bubble velocity, by the magnetic drive induction BD by

vb = µwBD. (8.8)

The properties of a number of possible bubble domain materials are listed in Table 8.1.
Given are the film thickness h in microns, the saturation magnetization µ0M in tesla (1
tesla = 104 gauss), the wall mobility µw, and a time constant τ ∗ which characterizes the
effective inertial response of bubbles in these materials.

τ∗ =
h

µwµ0M
(8.9)

8.4.4 Magneto-optical Storage

Reference:

• Iwamura et al., Electronic Letters 15, 830 (1979).

Magneto–optical storage of digital information exploits the optical properties of mag-
netic materials, in particular, their magneto–optical Kerr rotation and Faraday rotation.
The media used is a thin magnetic film with the following characteristics:
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Figure 8.10: Principle of magneto–optical
read–out. The direction of the magne-
tization is detected by the rotation of a
plane–polarized light wave upon reflec-
tion.

1. Large uniaxial anisotropy to insure that the magnetization is directed normal to the
plane of the film;

2. A high room temperature coercive field to insure stable magnetic domains;

3. A rectangular hysteresis loop; and

4. Small grain (crystalline) size for regularly–shaped magnetic domains.

Data is stored on the magnetic film as circular domains approximately 1µm in diameter.
The magnetization of a domain is either up or down with respect to the film, indicating a
0 or 1 bit. A bit is read (see Fig. 8.10) by examining the polarization of laser light reflected
from such a domain. Polarized light will suffer a positive or negative Kerr rotation upon
reflection, depending on whether the magnetization of the domain is up or down.

To write a bit of information, a magnetic field (see Fig. 8.11) is applied to the film in
the desired direction. Focused laser light then raises the temperature of the domain to be
written, causing the coercive field, Hc(T ), to drop to a value at which the applied field is
strong enough to switch the magnetization of the domain. Note that the coercive field of the
material at room temperature Hc(TRT ) is large enough, and the hysteresis loop rectangular
enough so that all other domains are unaffected by the applied magnetic field.
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Figure 8.11: Principle of the thermo-
magnetic writing process. (a) A laser
generates a temperature profile T (x) in
the perpendicularly magnetized layer M ;
consequently, the coercive field Hc de-
creases with temperature T as in (b).
When a magnetic field of suitable mag-
nitude is now applied, the magnetization
direction will be reversed for this domain,
while all other domains have a sufficiently
high coercive field to maintain their direc-
tion of magnetization.

Using a similar principle, an optical circulator can be built (see Fig. 8.12). Shown in
this figure is an optical circulator used in fiber–optic communication links which has the
virtue of being unaffected by the polarization of the input light. Unpolarized light enters
port 1 and is split by a polarization beam splitter into two orthogonally polarized beams.
Referring to Fig. 8.12, rotator 1 is a Faraday rotator which rotates polarizations by +45◦.
Rotator 2 is birefringent rotator which also rotates the polarization by +45◦ giving a total
rotation of 90◦ to the polarized beams. This allows unpolarized light to exit at port 2 after
being recombined at the second polarization beam splitter.

Unpolarized light entering port 2 will also be split into two orthogonal polarizations.
But, the birefringent rotator (2) will rotate the polarizations by –45◦. This gives a net
rotation of 0◦ to the two beams allowing light to exit at port 3 rather than port 1. In this
way, signals can be sent and received simultaneously along the same optical fiber.

8.5 Faraday Effect

Reference:

• R.E. Collins, Foundations for Microwave Engineering, McGraw–Hill, NY (1966).

The Faraday effect results from the presence of two different propagation constants
β+ and β− for right– and left–circularly polarized radiation, respectively, in response to a
magnetic field applied along the axis of propagation of the electromagnetic wave. This is
equivalent to a rotation of the linear polarization about the z−axis (or propagation axis)
with θ`, the angular rotation per unit length of propagation given by

θ` = (β− − β+)/2 (8.10)

the evolution of the rotation angle is shown in Fig. 8.13 as the electromagnetic wave propa-
gates through the medium. Note that the Faraday effect is non–reciprocal in the sense that
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Figure 8.12: Polarization–independent optical circulator. Device #1 denotes a 45◦ YIG
(Faraday) rotator, while device #2 denotes a 45◦ quartz (birefringent) rotator. Devices #3
and #4 denote polarization beam–splitting cubes and devices #5 and #6 denote right–
angle prisms. The circulation scheme is Port 1 → Port 2; Port 2 → Port 3; Port 3 → Port
4; Port 4 → Port 1.

Figure 8.13: Angles defining rotation for
the Faraday effect.
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Figure 8.14: Schematic of a microwave gyrator

(a) (b)Figure 8.15: (a) A “magic T” microwave device (see text). (b) A four–port circulator
consisting of a gyrator and two “magic T”s.

a wave passing through a thickness of material `, then reflected, and returning through the
thickness `, would suffer successive rotations of the plane of polarization

θ = θ`(2`) = (β− − β+)` (8.11)

rather than being returned to its initial polarization state, θ = 0. A number of different
devices utilize this effect, including certain types of gyrators, circulators and isolators.

A gyrator (in microwave technology) is defined as a two–port device that has a relative
difference in phase shift of 180◦ for transmission from port 1 to port 2 as compared with
the phase shift from port 2 to port 1 (see Fig. 8.14). Going from 1 → 2 the polarization
rotations of the 90◦ twist and the 90◦ rotation of the ferrite rod add, giving a total phase
shift of 180◦. However, going from 2→ 1, they cancel, for a net shift of 0◦ (see Fig. 8.14).
The chief use of gyrators is as components in the construction of microwave circulators.

A circulator is a multiport device having the property that a wave incident in port 1 is
coupled into port 2 only, port 2 is coupled only into port 3, etc. A four–port circulator is
shown in Fig. 8.15b, fabricated from a gyrator and two so–called “magic T” junctions (see
Fig. 8.15a). A magic–T microwave junction utilizes the E–field orthogonality of the TE10

waveguide modes of different orientations, together with proper wave impedance matching
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elements, to effect the following coupling situation (see Eq. 8.12):
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(8.12)

The An,0 are the outgoing wave amplitudes at ports n = 1, 2, 3, 4 and the An,i are the
corresponding incoming amplitudes. The matrix denotes which linear combination of input
amplitudes contribute to each output amplitude. For example

A10 =
1√
2

(

A2i +A3i

)

(8.13)

or ports 2 and 3 couple to port 1 in phase, and

A40 =
1√
2

(

A2i −A3i

)

(8.14)

ports 2 and 3 couple to port 4 out of phase.
A wave entering (1) is split into two in–phase components which add constructively and

are coupled out through port (2). An input at (2) is split likewise, but one are is shifted
180◦ in this direction by the gyrator so that the sum interferes destructively for port (1)
but constructively for port (3). Similarly, port (3) is coupled to (4), and (4) to (1). (For
details of the properties of “magic–T’s,” (see Collins Ref., p. 282).

Non–reciprocal rotations of 45◦ can be used to build isolators, which have low loss in
one direction, and very high loss in the other. Such devices are used to protect microwave
equipment from damage due to power reflected from mis–matched antennas.

We illustrate here also a device application at optical frequencies. High–power pulse laser
systems (as is used for laser fusion and isotope separation) are currently built in separate
stages, starting with an oscillator and followed by subsequent amplifier stages. This is done
so that each laser amplifier stage can be optimized for the power levels it must handle.
An amplifier stimulated by extraneous radiation can be driven to catastrophic oscillation
and destruction. Hence it is critically important that an amplifier be isolated from light
generated or reflected by subsequent stages.

This can be done as shown in Fig. 8.16. The laser beam is plane–polarized at 45◦ to
the vertical, and passes unattenuated through a polarization analyzer which is oriented at
the same angle. The beam then goes through a 45◦ Faraday rotator, is brought to vertical
polarization, and excites the next stage. Any reflected or regenerated light passes through
the rotator again and is shifted by a further 45◦. The resulting polarization is orthogonal
to the analyzer, and is therefore blocked.

8.6 Magnetic Multilayer Structures

8.6.1 Introduction

Magnetic multilayers are usually made of alternating layers of magnetic and non-magnetic
species, with the non-magnetic substance referred to as the spacer. The layer thickness for
both spacer and magnetic species roughly ranges from a few angstroms to a few hundred
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Figure 8.16: Schematic of an optical isolator.

angstroms. Due to the small dimension in the z-direction we may regard the research on
magnetic multilayers as a subset of studies on thin films.

The physical phenomena to be studied include magneto-optics, magnetoresistance, mag-
netostriction, magnetostatics, magnetic exchange coupling, microwave properties and anisotropy
at magnetic surfaces and interfaces. Not all these properties will show up in a single mag-
netic multilayer structure, which leads to the classifications of magnetic multilayers ac-
cording to their different characteristics. One of these distinguishing characteristics is the
electrical conductivity, i.e. magnetic multilayers can be divided into metallic magnetic mul-
tilayers and insulating magnetic multilayers. This choice of division is not arbitrary because
magnetism is an electronically driven phenomenon, so that it is closely related to electrical
conductivity.

8.6.2 Metallic Magnetic Multilayers

In this category, the most commonly used ferromagnets are Fe, Co, Ni, Ni-Fe, Fe-Co, Dy,
Er, Gd, Ho and Tm. The most commonly used spacers are Cu, Ag, Au, Mg, Sn, V, Nb,
Ta, Cr, Mo, W, Mn, Pd, Y and Lu. Notice that we have used the word ferromagnets

to describe magnetic components of metallic magnetic multilayers. That is because most
conducting magnetic materials are ferromagnets and most insulating magnetic materials
are antiferromagnets.

Metallic magnetic multilayers exhibit two interesting properties: oscillating interlayer
coupling and giant magnetoresistance1. Research demonstrating those two effects has
focused on Fe, Co, and Ni separated by Cr, Ru, Re, Cu and Ag.

Interlayer Coupling

Adjacent ferromagnetic layers, which are separated by a non-magnetic metal spacer, have
their magnetization vectors either parallel (ferromagnetic coupling) or antiparallel (anti-
ferromagnetic coupling) to each other (see Fig. 8.17). Shown in Fig. 8.17 is a magnetic
configuration whereby the magnetization vector lies in the plane of the layers, and the
oscillation in the interlayer coupling is a function of spacer thickness. Typical oscillation
periods reported in the literature are: PCu= 10 Å, PRu= 11 Å, and PCr=18-20 Å2. Further-
more, the experimental results also show that for sharp magnetic/spacer interfaces (MBE
grown superlattices) the oscillation period is about two atomic layers, approximately three
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Figure 8.17: Schematic representa-
tion of a magnetic metallic multilayer.
(a) Successive magnetic layers are ar-
ranged with their magnetizations an-
tiparallel. In this arrangement the
electrical resistance of the film is high.
(b) Parallel magnetization configura-
tion results from applying a magnetic
field to the magnetic arrangement in
(a). The new arrangement has a lower
electrical resistance. The film thus ex-
hibits a negative magnetoresistance.

Figure 8.18: Magnetoresistance of a
GaAs[Fe(30 Å)/Cr(9 Å)]60 multilayer
at 4.2 K. The current voltage drop and
magnetic field are all in the plane of
the layers.

angstroms3. For all spacer materials, the oscillation (i.e., interlayer coupling) ceases to exist
when the thickness of the spacer exceeds 50 Å3,4. Although the coupling mechanism is not
completely understood yet, theoretical calculations based on different models such as the
RKKY mechanism, Fermi surface nesting, and quantum-size effect give good fits to the
experimental data5,6.

Giant Magnetoresistance (GMR)

The giant magnetoresistance effect shows up in samples in which the magnetic alignment
is antiparallel. As the external magnetic field is gradually increased from zero gauss, the
magnetic moments of different layers tend to line up with the field. At the same time
the electrical resistivity decreases (see Fig. 8.18). This negative magnetoresistance can
be as large as 65% in samples that exhibit an initial resistance within a range useful for
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practical applications. The resistivity of metallic magnetic multilayers can be calculated by
solving the Boltzmann transport equation with spin-dependent scattering at the interfaces.
Calculations show in general the scattering is weaker and less effective when the arrangement
between successive ferromagnetic layers is parallel7.

8.6.3 Insulating Magnetic Multilayers

As the name implies, the fundamental difference between metallic magnetic multilayers
and insulating magnetic multilayers is their electrical resistivities. Different electrical con-
ductivities lead to different kinds of magnetism. The magnetism of conducting magnetic
materials can be described by the itinerant electron theory, whereas the magnetism of non-
conducting magnetic materials can be better described by the local moment theory, i.e.,
mean-field theory. Therefore, it is intuitively simpler to consider interlayer couplings and
general magnetic properties of insulating magnetic multilayers. Incidentally, magnets with
localized moments are also called Heisenberg magnets.

Insulating magnetic multilayer structures that have been considered so far are FeF2/CoF2,
MnTe/ZnTe, Fe3O4/NiO, CoO/NiO and EuTe/PbTe.

FeF2/CoF2 and CoO/NiO belong to the same family of magnetic multilayers that consist
of two antiferromagnetic materials. Studies show that, while the superlattices retain the
antiferromagnetic spin order of the constituents, the magnetic behavior near the phase
transition reflects the influence of one material on the other8,9. Specifically, measurements
of the spatially modulated order parameter in a 72 Å period sample [NiO(43 Å)/CoO(29 Å)]
suggest that the Ni and Co moments order at separate temperatures shifted from the TN ’s
for bulk CoO and NiO (291 and 520 K respectively). In contrast, magnetic order develops
simultaneously within the CoO and NiO layers, for two superlattices with 36 Å periods.
The measured transition temperatures fall between the Neel temperatures for bulk CoO
and NiO depending on the relative CoO and NiO layer thicknesses.

There is an ongoing study on the magnetic properties of EuTe/PbTe at Prof. M.S. Dres-
selhaus group at M.I.T. EuTe is an antiferromagnetic insulator and PbTe is a nonmagnetic
semiconductor. The lack of free carriers in the spacer, PbTe, effectively rules out the pos-
sibility for successive EuTe layers interacting through PbTe by a RKKY-like mechanism.
Thus EuTe/PbTe is truly a Heisenberg multilayer structure of the simplest kind. The mag-
netization results on EuTe/PbTe superlattices (SL) show that Tc has remained essentially
the same as that of the bulk even when the thickness of EuTe is reduced to 3 atomic
monolayers. EuTe is a type II antiferromagnet which has ferromagnetically ordered (111)
planes and adjacent (111) planes are antiferromagnetically aligned (see Fig. 8.19). Thus,
intuitively one would expect that a multilayer structure made of repeated periods with three
or five (111) planes in one period would show a ferrimagnetic phase transition, whereas a
multilayer structure with four (111) planes in one period would show an antiferromagnetic
phase transition. This difference is observed in short-period EuTe/PbTe SLs (see Fig. 8.20).
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Figure 8.19: The EuTe structure showing both the chemical unit cell and the magnetic unit
cell.
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Figure 8.20: Magnetization curves for various EuTe/PbTe superlattices.
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