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Abstract
Purpose The study aimed to construct a new retinal tack design with high retention forces to prevent spontaneous disentangle-
ment in cases of complicated retinal surgery.
Methods Six new forms for the peak of a retinal tack were developed using computer-aided design (CAD); then a prototype was
produced for each model. Finally, standardised design testing was conducted using human (ex vivo) sclera by logging 15
consecutive measurements for each model.
Results Seven different models underwent pull-out testing (six new models and the original tack model), but two tack models
(Model 4, Model 5) failed to penetrate the human tissue. The highest pull-out forces (median) were measured for Model 3,
followed byModel 6,Model 2 andModel 1. The original Heimann tack (Model H) was found to have the lowest retention forces.
Conclusion The different tack designs altered the penetration and holding forces. The retention forces of the proposed peak
design led to a significant increase in the retention forces that were more than twice as high as those in the original Heimann
Model.
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Introduction

Different repair methods are needed for retinal surgery.
Retinal holes can be fixed using laser coagulation or cryopexy.
Traditionally, retinal detachment was fixed using scleral buck-
ling with or without drainage of subretinal fluid; later, pneu-
matic retinopexy and primary vitrectomy were used [1].
Barrie [1] debated about which surgical technique to choose
to fixate the retina, depending on the location and size of the
retinal breaks, the presence of media opacities, the presence of
proliferative vitreoretinopathy and the surgeon’s ability. An
actual multicentre study by Shu et al. showed high final

success rates in cases with rhegmatogenous retinal detach-
ment that underwent scleral buckling or pars plana vitrectomy
[2]. In some exceptional cases, retinal tacks are useful as an
adjunctive instrument to repair complicated retinal detach-
ments [3–8], for example, in cases of re-detachment with tis-
sue shrinking following severe proliferative diabetic retinop-
athy, giant retinal tears [9] or in traumatic lesions, such as
ruptures [3]. Furthermore, tacks can be used to anchor
epiretinal electrode arrays [10]. Several studies have evaluated
the biocompatibility of retinal tacks [11–15], but no long-term
follow-up examination of tissue changes has been conducted.
Fixation of the retina or the electrodes, respectively, can be
achieved by retinal tacks that fully penetrate the posterior
coats of the retina, choroid and sclera. Clinically, we have used
the retinal tacks in the Heimann Model (Model H).

Unfortunately, in various cases, we observed sponta-
neous luxation of the tacks. In addition to oral reports
of spontaneous disentanglement after fixation of retinal
detachments (Communication with KU Bartz-Schmidt)
(Fig. 1), published studies have described the set of
problems associated with dislocated tacks and concomi-
tant complications [16].
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Thus, the present study aimed to develop a new design for
the peak of a retinal tack with higher retention forces than is
possible with the tacks in the original Heimann Model. The
usability and anchorage of the retinal tack models were tested
using human sclera.

Material and methods

Design and production of the retinal tack models
using surgical steel

Apart from the original Heimann retinal tack model (Fig. 2;
Model H), six additional retinal tack models (Fig. 2, Models 1
to 6) were designed using computer-aided design (CAD)
(AutoCAD®, Autodesk Inc., San Rafael, CA, USA). Each
of the models had different peaks. Further details about the
cone design for each of the models are written in Fig. 2. All of
the tacks had a total length of 2.4 mm with a shaft length of
0.4 mm and a stabilisation plate with a diameter of 1 mm.

Sclera preparation

The human sclera used in this study was from the Eye
Hospital Biobank, and it was obtained from eyes that were
enucleated on the basis of other diseases (e.g. melanoma).
The sclera samples in which the configuration was obviously
normal were processed within 24 h after enucleation.

The specimens were prepared in the following way. Scleral
tissue (15 mm diameter) was excised. We then placed the
tissue on a polystyrene globe (25 mm diameter). The inner
side of the scleral tissue (vitreous side) was positioned so that
it was lying towards the globe. Retention tests were performed
on the outer side of the sclera.

General principles of the pull-out test

In material testing, the pull-out test is a standardised procedure
(EN ISO 6 892-1) for metallic materials. A fixed specimen is
stretched consistently under a low velocity and shock-free
condition until it breaks. During this process, force in

Newton (N) and changes in length in metre (m) are continu-
ously measured. In this way, it is possible to determine the
specific data cluster for different material grades in order to
compare them.

The test setting is illustrated in Fig. 3 (left). The
modified boring socket enabled us to clamp different
tacks. Due to the stiff connection between the tack
holder and the force gauge, it is possible to measure
both the compressive and drag forces. The holding fix-
ture for the sclera samples can be rotated after each
measurement with a defined angle to avoid multiple
insertions on the same localisation and to ensure that
comparable initial conditions are used.

The following test sequence was used and resulted in mea-
surement curves, as shown in Fig. 3 (right):

1. The retinal tack is pressed into the sclera model using a
maximum force of 4 N (velocity of 0.14 mm/s) via a stiff
connection with the force gauge in a vertical direction.

2. The tack remains in the sclera with a force of 1 N for 25 s
in order to anchor it completely (dynamics/elasticity of
the tested material).

3. The sclera and tack are unstressed for 3 s (pressure <
0.3 N).

4. The tack is removed backwards in a vertical direction with
a velocity of 0.14 mm/s.

5. A maximum holding force (N) is noted.
6. The holding fixture for the silicone/sclera samples is

turned to a new position, and the entire process is
repeated.

Statistics

The measurement data were analysed using JMP 13
statistical software (SAS Institute, Inc., Cary, NC,
USA). The Wilcoxon signed rank test was performed
to evaluate the changes and homogeneity, and the level
of significance was set at p = 0.05. This study followed
the tenets of the Declaration of Helsinki. Approval was
obtained from the local ethics committee.

Fig. 1 (Left) a, b retinal tacks
fixating the retina in proliferative
vitreoretinopathy (a fixated, b
partially released); (right) c retinal
tack after disentanglement
(Heimann Model)
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Fig. 2 Retinal tack design versions. On the left side for each model, a photograph is shown. On the right side for each model, computer designs in two
different perspectives (side, from top) are shown
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Results

After completing the first step, which entailed theoretical plan-
ning using CAD, it was technically possible to produce all of
the designed models using surgical steel.

For the test rows, probes of three different eyes were used.
Tack Model 4 and Model 5 failed to reliably penetrate the
human tissue because of very high penetration forces.
Therefore, these tacks had to be excluded from further
measurements.

Fifteen consecutive measurements (Table 1) were per-
formed for each tack model. While performing the pull-out
tests, the movement of the tacks was observed; if the objects
were displaced (e.g. because of possible misalignment in the
tissue), the measured value was excluded.

The Wilcoxon signed rank test showed that the pull-out
forces were significantly higher for Model 3 than Model 1
(p = 0.003), Model 6 (p = 0.02) and Model H (p < 0.0001)
(Fig. 4). Moreover, the retention values were significantly
higher for Model 2 than Model H (p = 0.027). In all the other
comparisons between the different models, no statistically sig-
nificant differences were found.

Discussion

The present study’s findings show that the alternative tack
designs had a significantly higher anchorage in comparison
with the original Heimann tack (Model H). Of the six devel-
oped models, Model 4 and Model 5 failed to penetrate the
donor tissue, but the other four models showed higher anchor-
age values than Model H (the original tack model).

The original research question sought to determine how to
construct a new design for a retinal tack with high retention
forces to prevent spontaneous disentanglement after fixation
within special surgical situations, for example, for anchoring
epiretinal electrodes [10]. The Heimann retinal tack (Model
H) has a peak with sharp edges, so it cuts the underlying tissue
by the width of its peak. Therefore, the holding forces of the
barbed hook could be reduced. Because we observed retinal
tack disentanglement in clinical settings, we wanted to create
new peak forms for the retinal peak, as shown with the design
alternatives (Model 1 to Model 6). We presumed that a cone-
shaped retinal tack might penetrate the scleral model better
and it would displace the underlying tissue without cutting it
in order to maintain higher retention forces. The results from

Fig. 3 (Left) Measurement setting scheme: (1) desk; (2) stiff framework;
(3) force gauge; (4) positioner; (5) stepping motor; (6) driving belt; (7)
boring socket holding the retinal tack (yellow); and (8) test material.
(Right) Standard example of the pull-out test: typical test frequency.
The force before penetration increases (positive forces in Newton).

Once first penetration is achieved, less force is needed before penetrating
deeper with higher forces. The relaxing phase occurs after the tack is
completely anchored in the tissue. Tensile forces are much lower than
penetrating forces

Table 1 Results of the pull-out
tests using human sclera as the
test tissue

Pull-out test in N* Model 1 Model 2 Model 3 Model 6 Model H

Mean (n = 15) 0.541 0.711 1.00 0.604 0.363

Standard deviation 0.299 0.506 0.381 0.417 0.147

Minimum 0.142 0.07 0.332 0.132 0.174

Maximum 1.012 1.906 1.745 1.363 0.566

Median 0.518 0.607 0.964 0.649 0.337

No. of excluded measurements 1 1 1 4 2

For tack Model 4 and Model 5, no measurements were possible due to penetration failure
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our experiment show that a certain degree of sharp edges or a
sharp peak seemed to be necessary to penetrate human scleral
tissue.

On the material side, the tack’s peak seems to be the most
important factor in terms of the forces that interact with the
tissue. Once placed, the fixation should be as durable as pos-
sible, and it should also be resistant to partially increasing
forces, as seen in proliferative vitreoretinopathy or scar forma-
tions. Therefore, the maximal pull-out force needed to remove
the tack from the tissue is the relevant experimental parameter.

A tack with sharp edges might be an alternative to the
original Heimann tack with a single sharp peak. The standard
Heimann tack (Model H) has sharp edges, similar to a jagged
arrowhead. Model 3 has sharp edges and 90° notches. Its
statistically significant difference (p < 0.0001) becomes obvi-
ous in the pull-out test: The retention forces were found to be
more than twice as large in Model 3 than inModel H (original
Heimann tack).

Furthermore, the tack material should be changed for use
within an in vivo setting. For our test purposes, we worked
with tacks made of surgical steel. To reduce potential risks
(e.g. warming during MRI examinations), the material should
be switched to titanium or plastic. In the latter case, the small
peaks and notches must be produced with sufficient stability.

Clinical tests with titanium tacks, similar to Model 3, in
human eyes, seem to be justified. Against the background of
missing studies comparing retinal tacks with conventional vit-
rectomy or scleral buckling, a clinical examination focused on
these areas would be of interest.

Photographs of penetrated scleral tissue obtained using
electron microscopy might help to evaluate if the tacks are
cutting the tissue or just displacing it. This would correspond

to the potentially evoked trauma in subjects’ retina, choroid
and sclera tissues.

Study limitations

This study had some limitations. The tests were not blinded,
and they were performed in ex vivo sclera samples. We, there-
fore, cannot foresee the long-term effects or the transferability
of our results to a clinical situation. Another weakness is that
we were unable to compare the tissue changes after removing
a standard Heimann retinal tack and a Model 3 to evaluate the
resulting tissue damage.

Conclusions

Using our described experimental set-up, we showed that dif-
ferent tack designs resulted in changes in the penetration and
holding forces within human sclera tissue. A new design
(Model 3) led to retention forces that were more than twice
as effective as that of the original Heimann tack (Model H).
Our tests encourage future clinical use of a newly designed
titanium retinal tack model in human eyes with the possibility
of increased holding forces that could lead to less spontaneous
disentanglement, as observed by ourselves or as reported in
published work (e.g. by Lewis [16] or Mansour [17]).
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