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Quantification of Cerebral Blood Flow, Cerebral Blood
Volume, and Blood–Brain-Barrier Leakage with DCE-MRI

Steven Sourbron,1* Michael Ingrisch,1 Axel Siefert,2 Maximilian Reiser,3 and
Karin Herrmann3

Dynamic susceptibility contrast MRI (DSC-MRI) is the current
standard for the measurement of Cerebral Blood Flow (CBF) and
Cerebral Blood Volume (CBV), but it is not suitable for the meas-
urement of Extraction Flow (EF) and may not allow for absolute
quantification. The objective of this study was to develop and
evaluate a methodology to measure CBF, CBV, and EF from
T1-weighted dynamic contrast-enhanced MRI (DCE-MRI). A two-
compartment modeling approach was developed, which applies
both to tissues with an intact and with a broken Blood-Brain-
Barrier (BBB). The approach was evaluated using measure-
ments in normal grey matter (GM) and white matter (WM) and in
tumors of 15 patients. Accuracy and precision were estimated
with simulations of normal brain tissue. All tumor and normal
tissue curves were accurately fitted by the model. CBF (mL/100
mL/min) was 82±21 in GM and 23±14 in WM, CBV (mL/100 mL)
was 2.6±0.8 in GM and 1.3±0.4 in WM. EF (mL/100 mL/min) was
close to zero in GM (−0.009 ± 0.05) and WM (−0.03 ± 0.08). Sim-
ulations show an overlap between CBF values of WM and GM,
which is eliminated when Contrast-to-Noise (CNR) is improved.
The model provides a consistent description of tracer kinetics in
all brain tissues, and an accurate assessment of perfusion and
permeability in reference tissues. The measurement sequence
requires optimization to improve CNR and the precision in the
perfusion parameters. With this approach, DCE-MRI presents
a promising alternative to DSC-MRI for quantitative bolus-
tracking in the brain. Magn Reson Med 62:205–217, 2009.
© 2009 Wiley-Liss, Inc.
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Dynamic Susceptibility-Contrast MRI (DSC-MRI) is the
method of choice for the measurement of Cerebral Blood
Flow (CBF) and Cerebral Blood Volume (CBV) with MRI
(1). The method has proven highly successful in a variety
of clinical applications (2), but despite a large amount of
methodological research, absolute quantification remains
a challenge (3–7).

A major source of error in DSC-MRI is the difference
between blood and tissue relaxivity, which enters directly
as a scaling error in the values of CBV and CBF, and has
been estimated at a factor three for grey matter (8). Exper-
imental data suggest that it depends on tissue type (9),
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but this was not confirmed by simulation studies (10).
It may also be different when the arterial signal is mea-
sured outside the vessel (2). An additional problem arises
when the blood–brain-barrier (BBB) is broken. Extravasa-
tion of the contrast agent reduces the susceptibility con-
trast and amplifies the T1-effects, which causes a signal
increase that mimicks tracer loss (11). For the measure-
ment of CBF or CBV, T1-interference may be minimized
by data truncation (12) or corrected by modeling (13). It
can be eliminated fully with a dual-echo sequence (14),
but none of these approaches corrects for the loss in sus-
ceptibility contrast. No method has been proposed to min-
imize the error in the measurement of BBB-leakage itself
(15–17).

This raises the question whether Dynamic Contrast-
Enhanced MRI (DCE-MRI), which uses a T1-weighted
sequence to measure the bolus passage, is a more suit-
able approach when absolute quantification is required.
DCE-MRI is the method of choice for the measurement
of permeability (18–20), but CBV and CBF measurement
is problematic because the signal changes induced by the
intravascular component of the tracer are small (21). The
problem originates from a combination of two factors: T1-
relaxivities (22) are an order of magnitude smaller than for
T*

2 (8), and the small blood volumes in brain tissue (23)
do not allow for large tissue concentrations. The small
relaxivity does not impose a constraint on the measure-
ment of permeability, because concentrations are higher if
the tracer distributes over the much larger extravascular
space.

On the other hand, DCE-MRI is not affected by the
quantification issues typical to DSC-MRI: T1-relaxivity of
tissue equals that of arterial blood when the contrast
agent is compartmentalized in the blood, and any possi-
ble T*

2 -interference is effectively negligible with typical
echo times (1–2 msec). Also, a small number of studies
have shown that CBV can be measured with DCE-MRI
in normal brain tissue and infarction (24–26) and may
be more accurate than DSC-MRI (27). The feasibility of
measuring CBF, which requires a higher temporal reso-
lution, has been demonstrated more recently (28,29). In
tumors, where blood volumes are typically higher, CBV
measurement is inherently less problematic (26), has equal
diagnostic quality as DSC-MRI (30), and can be performed
simultaneously with a measurement of permeability
(31–33).

The first step towards a combined measurement of CBF,
CBV, and BBB-leakage is taken in (34). Feasibility was eval-
uated in normal brain tissues and in tumors, but the data
are acquired with a sampling time of 5.25 sec, which may
be insufficient for CBF measurement (35). Also, the method
combines two tracer-kinetic approaches with contradictory
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assumptions (a one-compartment model and a model-free
analysis), prior knowledge is required regarding the intact-
ness of the BBB, and a one-compartment model may not
fit tumor data with large blood volumes. Finally, a model-
free analysis produces severe CBF errors in data with low
SNR (36), though the error may be reduced by introducing
appropriate constraints in the solution (29).

The aim of this study was to develop and evaluate a
consistent and robust methodology for the measurement of
CBF, CBV, and BBB-leakage with DCE-MRI. A tracer-kinetic
model is proposed that produces all desired parameters
with a single AIF, is designed to perform robustly in data
with low SNR, and applies both to tissue with an intact
and a broken BBB. The model was used to generalize DCE-
MRI signal theory and incorporate potential differences in
relaxivity between plasma and interstitium. The feasibility
of the approach was evaluated using simulations of nor-
mal white matter (WM) and grey matter (GM) brain tissue,
and data measured at 3T and at high temporal resolution
in WM, GM, and brain tumors of 15 patients.

THEORY

Tracer-Kinetic Modeling of BBB-Leakage

A simple tracer-kinetic model that produces both blood
flow and extraction flow is the two-compartment exchange
model (37,38), illustrated in Fig. 1. It is fully defined by
the four parameters FP (plasma flow), VP (plasma volume),
FE (extraction flow), and VE (volume of the extravascu-
lar, extracellular space or interstitial volume, for short).
Applying conservation of tracer mass to each compartment

FIG. 1. Illustration of the two-compartment exchange model. It con-
sists of a plasma compartment with volume VP (left circle) and an
interstitial compartment with volume VE (right circle). The tracer first
enters the plasma compartment carried by the plasma flow FP. A
fraction of the entering tracer is carried by the extraction flow FE and
enters the interstitial compartment. The tracer eventually leaves the
interstitium through the reverse pathway, carried by a back flow of the
same magnitude FE. The uptake model is a three-parameter simplifi-
cation of the exchange model which is defined by the assumption that
backflow of tracer from the interstitium into the plasma compartment
is negligible.

produces the model equations:

VPC ′
P = −FE(CP − CE) + FP(CP,A − CP) [1]

VEC ′
E = +FE(CP − CE) [2]

Here we defined CP,A, CP, and CE as the concentration in
the arterial plasma, tissue plasma, and interstitium, respec-
tively. Denoting the convolution product of two functions
with the symbol “×” the solutions for CP and CE (37) can be
written as VPCP = FPRP×CP,A and VECE = FPRE×CP,A. The
functions RP and RE are given by the following expressions:

RP(t) = e−tK+ + TBK−E−(e−tK− − e−tK+ ) [3]

RE(t) = (1 − TBK−)E−(e−tK− − e−tK+ ) [4]

The parameters K+, K−, and E− are given by:

K± = 1
2

(
T−1

P + T−1
E ±

√(
T−1

P + T−1
E

)2 − 4T−1
E T−1

B

)
[5]

E− = K+ − T−1
B

K+ − K−
[6]

Here TP and TE are the mean transit times in both compart-
ments, and TB is the mean transit time of an intravascular
tracer:

TP = VP

FE + FP
TE = VE

FE
TB = VP

FP
[7]

The total tissue concentration C = VPCP + VECE takes the
form C = FPR ×CP,A with a biexponential residue function
R = RP + RE:

R(t) = e−tK+ + E−(e−tK− − e−tK+ ) [8]

Fitting the model (Eq. [8]) to the data C(t) and CP,A(t)
produces the four parameters E−, K+, K−, and FP. The
parameters TP, TE, TB can then be calculated using the
inverse of Eqs. [5,6]:

T−1
B = K+ − E−(K+ − K−) [9]

T−1
E = TBK+K− [10]

T−1
P = K+ + K− − T−1

E [11]

Then the parameters VP, VE, and FE can be found from the
inverses of Eq. [7]:

VP = FPTB FE = FP

(
TB

TP
− 1

)
VE = FETE [12]

The exchange model has three different monoexponen-
tial regimes: the no-exchange limit FE → 0, the one-
compartment limit VE → 0, and the fast-exchange limit
or flow-limited regime (FE → ∞). As a result, the model
has three solutions with one redundant parameter when
applied to tissue where the BBB is intact (FE = 0).

The two-compartment uptake model is designed to over-
come this redundancy in the solution. It is a simplification
of the two-compartment exchange model, defined by the
approximation CE(t) << CP(t). Using the approximation
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CE << CP in Eqs. [1,2] we find the following set of model
equations:

VPC ′
P = −FECP + FP(CP,A − CP) [13]

VEC ′
E = +FECP [14]

A model with the same mathematical structure has been
used previously for the evaluation of animal tumor mod-
els (39,40). Solving the equations produces the following
formulae for RP and RE (the equivalent of Eqs. [3,4]):

RP(t) = e−t/TP [15]

RE(t) = E(1 − e−t/TP ) [16]

Here E is the exchange fraction:

E = FE

FE + FP
[17]

The residue function for the two-compartment uptake
model is given by RP + RE:

R(t) = e−t/TP + E(1 − e−t/TP ) [18]

The model is fully defined by the three parameters FP, TP, E ,
and has only one monoexponential limit (E = 0). VP and
FE can be found from:

FE = EFP

1 − E
VP = TPFP

1 − E
[19]

Hence the two-compartment uptake model allows to mea-
sure FP, VP, and FE, but not VE. This distinguishes it from
the more conventional three-parameter two-compartment
model (41), which produces VE, FE, and VP, but not FP.

In the context of this article, the introduction of the
uptake model is mainly motivated by the need to avoid
parameter redundancy for intact brain tissue (see above).
However, it may also be useful in tissue with a broken
BBB when the tracer extravasates very slowly, or when the
acquisition time is so short that CE never reaches high val-
ues. In this case, the duration of the transit through the
interstitium (or the parameter TE) may not be measurable.
Fitting such data with the exchange model might intro-
duce a parameter redundancy with a large variability in
the values.

Relaxation in the Presence of BBB-Leakage

A major problem with DSC-MRI in the presence of leakage
is that the signal changes are not only determined by the
total concentration, but also by the manner in which this
is distributed between intra- and extravascular space (11).
A related problem arises with DCE-MRI when intra- and
extravascular relaxivities are different. In this section, we
evaluate how this affects the measured parameters.

We assume that the water-exchange across the cell walls
is in the fast-exchange limit (42). Then the blood (B) and
the extravascular tissue (T ) are each characterized by a sin-
gle longitudinal relaxation rate: R1,B and R1,T, respectively.
Assuming that the transendothelial water exchange is in
the fast-exchange limit (43), the longitudinal relaxation rate

R1 of the tissue ROI has the following form (we use the
notation VB for the CBV of the ROI):

R1 = VBR1,B + (1 − VB)R1,T [20]

If a significant violation of the fast-exchange assumption
cannot be excluded (43), the signal analysis may need to
be refined and an additional measurement of the water
exchange rate must be made (42). For the purposes of this
study, we follow the conventional approach in DCE-MRI
and assume that the effect is small (29,38).

Assuming that R1,B and R1,T are linearly related to the
concentration in each space, we find:

R1 = VB(R10,B + rBCB) + (1 − VB)(R10,T + rTCT) [21]

The sum VBR10,B+(1−VB)R10,T forms the precontrast relax-
ation rate R10. Also, as the tracer is extracellular, we can set
VBCB = VPCP and (1 − VB)CT = VECE:

R1 = R10 + rBVPCP + rTVECE [22]

We can now insert Eqs. [3,4] or Eqs. [15,16] to relate the
change in tissue relaxation rate �R1 = R1 − R10 to CP,A(t):

�R1 = (rBRP + rTRE) × FPCP,A [23]

Finally, we define �R1,A as the change in relaxation rate
of the arterial blood, and use the notation FB for the CBF
of the ROI. As �R1,A/rB is the concentration in the arterial
blood, and the tracer is extracellular, we have:

FPCP,A = FB
�R1,A

rB
[24]

Inserting Eq. [24] into Eq. [23], we find the general expres-
sion:

�R1 =
(

RP + rT

rB
RE

)
× FB�R1,A [25]

For the uptake model, Eqs. [15,16] show that RP + ρRE has
exactly the same form as Eq. [18], after the substitution
E → ρE . Equivalently, Eqs. [3,4] show that RP + ρRE for
the exchange model has the same form as Eq. [8], with the
substitution E− → E−(ρ):

E−(ρ) = (ρ + (1 − ρ)TBK−)E− [26]

This result shows that the ratio ρ = rT/rB enters as a weight-
ing factor on the extravascular component of the signal.
Unfortunately, ρ is grouped with the other model param-
eters, so it cannot be treated as an independent parameter
and fitted from the data. Hence the model parameters can
only be determined if the value of ρ is known. For the
contrast agent Gd-DTPA, relaxivity differences between
water and plasma are small (22), so that those between
plasma and interstitial fluid may be assumed negligible.
This relaxivity-weighting may, however, be significantly
larger for protein-bound contrast agents such as Gd-BOPTA
or MS-325. For the remainder of this text, we will assume
that ρ = 1, so that RP + ρRE = R (Eqs. [8,18]).
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DCE-MRI Signal and Partial Volume Correction

It remains to provide a relation between the changes �R1 in
relaxation rate (Eq. [25]) and the DCE-MRI signal changes
�S = S−S0. For the purposes of this study, we will assume
that the signal S is proportional to R1, which is a good
approximation for small enough concentrations. Assum-
ing that T*

2 effects of the tracer are negligible at echo times
near 1 msec, the proportionality is constant in time so that
�S/S0 = �R1/R10. This leads to:

�R1 = R10
�S
S0

[27]

As precontrast T1-values are significantly different between
artery and tissue, the values do not cancel out in Eq. [25].
Hence accurate quantification requires a T1-measurement
prior to contrast injection—even in the linear regime.

The quantity �R1,A in Eq. [25] is the change in relaxation
rate in the arterial blood. In theory, it can be determined
from Eq. [27] with a signal measured in the lumen of the
artery, but this is not practically feasible due to the small
size of the arteries in the brain. A corrected expression for
�R1,A can be found by applying the principles leading to
Eq. [21] on a ROI that includes a fraction VA of the arterial
blood, and a fraction 1−VA of vessel wall and surrounding
tissue (T ). As the concentrations in and around a (normal)
vessel wall are smaller than in the lumen (CT << CA), and
VA ≈ 1 for a carefully drawn region, we can assume that
the term (1 − VA)CT is negligible compared with VACA in
Eq. [21]:

�R1 = rBVACA [28]

We now write the concentration CA in the arterial blood as
�R1,A/rB (as in Eq. [24]), and use Eq. [27] to replace �R1:

�R1,A = V−1
A R10

�S
S0

[29]

The arterial blood fraction VA can be measured if a large
draining vein lies in the field of view, so that at least one
voxel can be identified in its lumen. The concentration
CV(t) in the venous blood is a convolution of CA with a
probability distribution H (t) (44). As arterial and venous
blood have the same relaxivity, we can replace this by:

�R1,V = H × �R1,A [30]

As the venous region is partial-volume free, we can use Eq.
[27] with the relaxation rate R10,B of blood to replace �R1,V

by measurable quantities. For �R1,A we insert Eq. [29]. This
leads to:

�SV

S0,V
= PAH × �S

S0
with PA = V−1

A
R10

R10,B
[31]

The parameter PA can be measured by a deconvolution of
the venous relative signal enhancement with that in the
arterial ROI, and integrating the impulse response function.
Using PA in Eq. [29] we find the following expression for
�R1,A:

�R1,A = PAR10,B
�S
S0

[32]

This result shows that the precontrast relaxation rate of
the arterial ROI need not be known. This is fortunate, as

a T1-measurement in a region containing an artery may be
unreliable due to the rapidly flowing blood.

MATERIALS AND METHODS

Patients

As the study aims to demonstrate the feasibility of the
methodology, a heterogeneous patient group was analyzed
to achieve a maximal amount of physiological variability.
The study was approved by the institutional review board
and informed consent was obtained from all patients. Fif-
teen patients with primary tumors of the brain (n = 4)
or brain metastases (n = 11) were included in the study.
The primary tumors included meningiomas (n = 3) and
lymphoma (n = 1). The metastases were produced by a
melanoma (n = 2), small-cell bronchial carcinoma (n = 4),
nonsmall-cell lung carcinoma (n = 3), breast carcinoma
(n = 1), colon carcinoma (n = 1). Four patients were not
treated before imaging, the others were treated with radio-
therapy, operation, chemotherapy, or a combination of the
above.

Data Acquisition

All measurements were performed on a 3T scanner (Tim
Trio, Siemens Medical Solutions) with a standard head coil.
DCE-MRI was planned on a precontrast T2-FLAIR and was
followed by a high-resolution T1-weighted sequence.

DCE-MRI was performed with a linearly encoded 2D
spoiled gradient-echo sequence with a nonselective sat-
uration prepulse (Turbo-FLASH). Six axial slices were
measured every 1.34 sec for 7 min with a voxel size of
1.875 × 1.875 × 3.5 mm3. One slice was placed through
the base of the skull to measure the arterial input function
in the internal carotid artery. Sequence parameters were:
128 × 128 matrix, 96 phase encoding steps, field of view
240 × 240 mm2, echo time 1.34 msec, repetition time 223
msec, inversion time 120 msec, flip angle 15◦, bandwidth
735 Hz/pixel, echo spacing 2.6 msec. Parallel imaging was
performed using GRAPPA with acceleration factor 2 and 24
reference lines. The slice gap was adjusted to achieve opti-
mal coverage, depending on the size of the lesion and/or
the presence of multiple lesions.

The DCE-MRI sequence was started 10 sec before injec-
tion of the contrast agent. Two 0.05 mmol/kg doses of Gd-
DTPA (Magnevist, Schering) were injected intravenously at
3 mL/sec, the second 60 sec after the first. Each bolus was
followed by a saline flush of 30 mL injected at the same
rate. The aim of this double injection was to reduce the
peak concentration without sacrificing the benefit of a full
dose. Smaller concentrations are known to minimize errors
caused by signal nonlinearity (45) in the artery and by
limited transendothelial water exchange in the tissue (43).

Precontrast T1 was measured immediately before bolus
injection by repeating the DCE-MRI sequence with 17
different inversion times. The range 70 msec–1 sec was
scanned in steps of 100 msec, the range 1 sec–2 sec in steps
of 250 msec, then three measurements at 2.5 sec, 3 sec and 5
sec. At the smaller inversion times, the number of averages
was increased to reach a minimum scan time of 10 sec. The
total acquisition time for the T1-measurement was 3 min.
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FIG. 2. Illustration of the arterial and venous data, and the method for determining the partial volume correction. The internal carotid arteries
(top left) and the sinus sagittalis (top right) are easily identified on an image of the area under the signal enhancement curve (AUC). Circles
are drawn manually around the vessels, and signals from the pixels with highest AUC within those circles are averaged to obtain arterial and
venous curves (bottom left). Relative signal enhancement is calculated, and the venous outflow curve is deconvolved with the arterial input
function (bottom right). The partial-volume correction factor is determined from the time-integral of the impulse response function.

Postprocessing

All data were transferred in DICOM format and processed
off-line using the software PMI 0.3, written in-house in IDL
6.4 (ITT Visual Information Systems, Boulder, CO).

A map of the baseline signal S0 was calculated as the
mean of the first 15–20 dynamics. The background was seg-
mented out semiautomatically by setting a threshold on the
S0 values, and disregarded in all subsequent calculations.
The area under the signal enhancement curves �S (AUC)
was calculated on the pixel level. A venous voxel was iden-
tified as the pixel in the sinus with the highest AUC. On the
lowest axial slice of the AUC map, two circular ROIs were
drawn manually around the internal carotid arteries (Fig.
2). The six pixels within those circles with maximum AUC
were selected automatically, and their signal-time curves
were averaged to extract the AIF. These steps were repeated
for all data by two independent observers (S.S. and M.I.) to
assess the reproducibility of this approach to AIF selection.

The impulse response function PAH (t) in Eq. [31] was
determined by model-free deconvolution with generalized
cross-validation (46) and integrated to produce the partial-
volume correction factor PA. An R10 map was calculated

by fitting the saturation-recovery data with variable delay
times to a monoexponential. The change in tissue relax-
ation rate �R1 was calculated for every voxel with Eq. [27].
R10,B was taken from the R10-value in the venous voxel and
�R1,A was calculated with Eq. [32].

The data �R1 and �R1,A were fitted pixel-by-pixel to the
uptake model (Eqs. [18,25]), producing maps of FB, TP, and
E . To calculate the extraction flow FE from Eqs. [19], the
plasma flow FP was calculated as (1 − Hct)FB with a fixed
hematocrit value of Hct = 0.45. A ROI covering the lesion
was drawn manually on the FE map and superposed on
the FB map to exclude areas of necrosis and larger blood
vessels. Contralateral to the lesion, a circular white matter
(WM) and grey matter (GM) ROI were defined on the map
of the baseline signal S0, superposed on the FB map and
shifted if necessary to exclude larger blood vessels.

The analysis was then repeated on the ROI level. The
tumor ROI data were fitted both with the uptake model and
with the exchange model (Eq. [8]), and the Akaike Informa-
tion Criterion was used to select which of both models was
most appropriate for the ROI data (47). Model selection was
verified by visual inspection of the goodness-of-fit of both
models. Model fitting was performed using MPFIT (48),
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FIG. 3. An example of the results for the T1-measurement. On the left, a T1 map showing a large tumor on the right-hand side of the brain.
On the right, data (squares) and model-fits (full line) for four reference regions: white matter, grey matter, a voxel inside the sinus sagitalis,
and the region used to measure the arterial input function. The fitted T1 value is displayed in the image.

with defaults for the number of iterations and convergence
threshold, without constraints or limits on the parameters,
and with analytical formulae for the partial derivatives.
The initial values were fixed to FP = 120 mL/100 mL/min,
FE = 12 mL/100 mL/min, VP = 10 mL/100 mL, and VE =
20 mL/100 mL.

Simulations

A simulated single-bolus AIF was generated by fitting a
sum of gamma-variate functions and a mono-exponentially
decaying recirculation to a typical measured AIF. A copy of
this single-bolus AIF was shifted over 60 sec and added to
the first to create a double-bolus AIF. Grey matter and white
matter tissue curves were generated by convolving the AIF
with a monoexponential impulse response function. CBF
and CBV values for both tissue types were chosen to the
mean values measured in the patient population (GM-WM:
CBF 82–23 mL/100 mL/min, CBV 2.6–1.3 mL/100 mL, EF
0–0 mL/100 mL/min). All data were generated at a temporal
resolution of 0.01 sec.

To simulate measurement, the data were first sampled
at intervals of TR = 1.34 sec for a total acquisition time
of 7 min (as in the measured data). Sampling was started
at a time point t0, which was determined by generating a
random number uniformly distributed between t = 0 and
t = TR. To get a realistic estimate of the noise level, the fit to
the uptake model in a typical GM and WM ROI curve was
subtracted from the data to generate an approximate noise
set. The Contrast-to-Noise Ratio (CNR), defined as the ratio
of the maximum concentration to the standard deviation of
the noise, was measured, producing a value of CNR = 4.1
for WM and CNR = 6.1 for GM. Normally distributed noise
with the corresponding standard deviation was generated

and added to the data. The CNR in the AIF was estimated
from a dataset and fixed to 130 for all simulations.

The simulated data were then fitted to the uptake model
to produce an estimate of CBF, CBV, and FE for typical GM
and WM. The steps of simulated measurement and data fit-
ting were repeated 105 times and a histogram was plotted of
all parameters. Mean, standard deviation, and the main per-
centiles were determined as well. To investigate the effect
of variable sampling times and of variable noise levels, the
simulations were repeated for variable TR between 0.2 sec
and 10 sec, and for variable CNR between 1 and 20.

RESULTS

Measurements

All measurements were performed without complications.
In two patients no white matter or grey matter regions were
defined, because the lesion and the slices were located in
the cerebellum. Interobserver agreement in AIF selection
was perfect: in each patient, both observers selected the
same six arterial pixels.

Figure 2 illustrates the method of AIF selection and
partial-volume correction in a typical case. The internal
carotid arteries (top left) and the sinus sagittalis (top right)
were always clearly identifiable on the AUC image. The
impulse response function (bottom right) typically showed
a single narrow peak, followed by a transient signal that
fluctuates around zero. The partial volume correction fac-
tor PA (Eq. [31]) covered a wide range from 0.40 to 1.0 with
mean 0.69 (SD 0.20).

Figure 3 shows a typical result of the T1-measurement
on pixel and on ROI level. The images are smooth with-
out outliers in the brain tissue, and white and grey matter
regions are well differentiated. All data are well described
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FIG. 4. An image of CBF (top), CBV (middle), and EF (bottom) calcu-
lated by fitting the pixel data to the two-compartment uptake model,
with T1 and partial-volume correction. The CBF map is median-
filtered with a 3 × 3 window to remove salt-and-pepper noise. Data
are shown for a patient with a metastasis of a nonsmall-cell lung car-
cinoma, after whole brain radiotherapy (18 Gy). A small lesion with
a ruptured blood–brain-barrier is clearly identifiable on the EF-map
(arrow). The lesion has an increased CBV, but a relatively low CBF
in the white matter range.

by a monoexponential model, with the exception of those
measured in the arterial ROI. Blood T1-values are close to
literature values (49), and ranged from 1,789 msec to 2,535
msec with mean 2,070 msec (SD 196). White matter T1

ranged from 884 msec to 1,067 msec with mean 957 msec
(SD 68). Grey matter T1 ranged from 1,080 msec to 1,850

msec with mean 1,414 msec (SD 241). Tumor T1 ranged
from 1,020 msec to 2,882 msec with mean 1,733 msec (SD
411).

Figure 4 shows a typical result of a pixel-by-pixel anal-
ysis. Images of CBV and FE are smooth with very few
outliers, but a median filter must be applied on the CBF
map to remove salt-and-pepper noise. Nevertheless, the
resolution is sufficient to identify even small lesions. In
general, lesions are most easily identified on the FE maps
and correspond in shape and location to those seen on
the postcontrast T1-map (not shown). Larger lesions often
appear more heterogeneous on the maps of the blood flow
or volume (see also Fig. 5). CBF and CBV values on the
pixel level are in the appropriate range in normal tissue
types and show good grey-to-white matter contrast.

Figure 5 shows a typical result of the ROI analysis for
lesions (middle column) and normal tissue (right column).
The tumor curves typically show a vascular peak with a
steep signal increase, followed by a slower increase cor-
responding to the uptake phase, and by a washout phase
with a negative slope. The bolus peak is visually clearly
distinguishable in both WM and GM ROIs. The uptake
model provided a good fit to the data in normal brain
ROIs. It provided a close approximation to the tumor
data, but a mismatch resembling oversmoothing was typi-
cally observed during the vascular peak of the bolus. The
mismatch between model fit and data was reduced when
the exchange model was applied, so that an additional
parameter VE was measurable. In one tumor ROI, a periven-
tricular cerebral lymphoma, a wash-out was not observable
and the exchange model did not visibly improve the fit
to the data. The Akaike Information Criterion selected the
uptake model as the best model in this case.

Figure 6 provides an overview of the three indepen-
dent model parameters that were determined in all ROIs.
CBF and CBV of all normal tissue regions were weakly
positively correlated (pearson correlation coefficient 0.54).
Table 1 shows the mean values and standard deviations of
all parameters measured on ROI level.

Simulations

Figure 7 shows the histogram of the fitted parameter values
for both tissue types. Open symbols display results for TR
and CNR as in the patient data (CNR 4.1 for WM and 6.1
for GM). Closed symbols present results for an optimized
sequence where CNR is increased by a factor 5. Note that, at
the noise level of the measured data (open symbols) there
is a strong overlap in WM and GM values of CBF and MTT,
but not for CBV. With a fivefold increase in CNR, a complete
separation between both tissue types can be achieved for
all parameters.

Figure 8 illustrates the effect of variations in CNR and
TR. The example depicts changes in CBF for GM. The WM
results are similar. Note that changes in CNR and TR have
very little effect on the accuracy of the results, but a reduc-
tion in CNR or temporal resolution severely reduces the
precision of the measurement. The plots also illustrate that
the precision is more effectively improved by increasing
CNR than by a further reduction in TR. Quantitatively, a
fivefold increase in CNR (see also Fig. 7) reduces the stan-
dard deviation in GM CBF from 21 to 3.9 mL/100 mL/min,
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FIG. 5. An illustration of the results for one patient. The left column shows the blood flow and extraction flow maps. The plots in the middle
column show the �R1 curves (thin grey line) and model fits (thick black line) for two regions: one in a lesion with high blood flow (lesion 1, top)
and one with low blood flow (lesion 2, bottom). The positions of the lesions are indicated on the maps. The plots show best fits to the uptake
model (thick black line) and to the exchange model (thin black line). Values displayed in the plot are produced by the exchange model. The
plots in the right column are the results for the WM (top) and GM (bottom) tissue ROIs, fitted to the uptake model.

but a fivefold reduction in TR reduces the same standard
deviation only to 8.5 mL/100 mL/min. Similar observations
were made for the other parameters and for the WM data.

DISCUSSION

Tracer Kinetic Modeling

The uptake model provided a good fit to all data measured
in normal brain tissue, which indicates that the well-
mixedness of the vascular compartment is an appropriate
assumption for DCE-MRI in the brain. A mismatch between
the data and the fit to the uptake model was observed
in most tumors. This is consistent with the assump-
tion defining the model: when the measurement time
increases, interstitial concentrations reach higher values,
and the model becomes invalid. The mismatch is removed
when the assumption is dropped and the more general
exchange model is fitted (Fig. 5, middle). This indicates that
the more fundamental assumptions underlying the model,
the inclusion of no more than two compartments and the
well-mixedness of a compartment, are sufficient for the
modeling of DCE-MRI in the brain.

Hence the two-compartment model provides an alter-
native to a model-free deconvolution approach (29). Con-
ceptually, the advantage of modeling is that it character-
izes perfusion and permeability separately. This provides
improved tissue characterization when the BBB is rup-
tured and the interpretation of the parameters does not

require prior knowledge regarding the state of the BBB. The
modeling approach may also have a numerical advantage,
because it constrains the number of degrees of freedom in
the solution. Unconstrained model-free deconvolution is
known to suffer from from low accuracy when the noise
level is high (36). In (29) constraints are imposed by a
polynomial representation of the residue function, which
may be expected to improve accuracy and/or precision. The
two-compartment model reduces the degrees of freedom in
the solution to an absolute minimum (n = 4). Further simu-
lation studies may allow to evaluate whether this provides
additional numerical stability.

The two-compartment model also provides an alterna-
tive to the combination of two approaches for measuring
perfusion and permeability: a deconvolution analysis with
a measured AIF and a one-compartment model with a stan-
dardized AIF (34). Apart from possible inconsistencies due
to the use of different AIFs, a potential problem is that
both models contain conflicting assumptions. The one-
compartment model assumes that the vascular space is neg-
ligible, whereas the deconvolution analysis assumes that
it dominates. Also, the one-compartment model requires
prior knowledge regarding the state of the tissue, because
the interpretation of the parameters is different when the
BBB is intact. Finally, as demonstrated by the data shown
in this study, the vascular space in many tumors provides a
significant contribution to the signal changes, in which case
a one-compartment model does not accurately fit the data.
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FIG. 6. A plot of both vascular parameters blood flow FB and blood
volume VB (top) and of both flow parameters FB and the extraction
flow FE (bottom) for all regions of interest. Symbol shapes refer to
tissue type: lesions (diamond), grey matter (square), white matter
(circle). One lesion with a high blood flow (141 mL/100 mL/min) is not
plotted for reasons of clarity.

Accuracy and Precision

Typical GM CBF values measured by PET in normal vol-
unteers (50) are lower than the mean values in this study
(Table 1), but higher values have been reported as well
(51). Our CBV values are in the range 2–5% determined
ex-vivo in brain tissue (23), but most PET values report
slightly higher values (50). Apart from uncertainties in the
PET values, such discrepancies may also be due to the
fact that the data in this study are not measured in a nor-
mal population. On the other hand, within the context of
this feasibility study it cannot be excluded that systematic
errors are present in the data. Nevertheless, the observation
that all values in GM and WM are in the right order of mag-
nitude shows that the methodology is sufficiently accurate
to motivate further experimental studies.

Standard deviations of CBF are larger than other results
found in the literature (29), and an overlap between white
and grey matter CBF values was observed (Fig. 6). The same
effects were observed in the simulations (Table 1, Fig. 7),
which indicates that a large part of the variability in CBF is
due to the noise in the data. Precision in CBF is improved
significantly at higher CNR (Fig. 8) and separation between
WM and GM is complete at noise levels closer to those
in (29) (Fig. 7). This indicates that a higher CNR is required
for applications that aim to quantify more subtle variations
in tissue CBF.

Simulations show that CBV is a more precise parame-
ter than CBF (Table 1), and that WM and GM are well
separated on the basis of their CBV values (Fig. 7). Stan-
dard deviations in measured CBV are, however, larger than
in simulations (Table 1), and the separation between WM
and GM is less clear-cut than expected on the basis of the
simulations (Fig. 6). This indicates that the observed vari-
ability in CBV reflects the heterogeneity of the population.
As tumors exert pressure on the brain, and most patients in
the study are undergoing some form of treatment, GM and
WM tissue perfusion is likely to be more heterogeneous
than that in a normal population.

The measured mean and standard deviations in the FE

values of intact brain tissue are very close to the expected
value of zero (Table 1), which indicates that the perme-
ability measurements are accurate and precise. The simula-
tions also show that FE is a very precise parameter, despite
the low CNR in the data. A possible explanation is that
FE is estimated from the “tail” of the concentration-time
curves, where concentrations change slowly, and which

Table 1
Mean Value and Standard Deviation of All Parameters Measured on ROI Basis: The Blood Flow FB, the Blood Volume VB, the Mean Transit
Time of the Plasma Compartment TP, the Extraction Flow FE, the Interstitial Volume VE, and the Interstitial Mean Transit Time TE

Grey matter White matter

Mean (std dev) Lesion Simulations Measurements Simulations Measurements

FB (mL/100 mL/min) 42 (40) 88 (28) 82 (21) 24 (7.9) 23 (14)
VB (mL/100 mL) 8.9 (11) 2.6 (0.1) 2.6 (0.8) 1.3 (0.07) 1.3 (0.4)
TP (sec) 12 (12) 1.9 (0.5) 2.1 (1.1) 3.5 (1.0) 4.4 (2.2)
FE (mL/100 mL/min) 2.3 (2.2) −0.0007 (0.01) −0.009 (0.05) −0.0003 (0.01) −0.03 (0.08)
VE (mL/100 mL) 8.2 (4.3) N/A N/A N/A N/A
TE (sec) 297 (196) N/A N/A N/A N/A

Measured values are given for the lesions, for white matter and for grey matter. Simulated values for grey and white matter are given for
comparison. The parameters VE and TE are produced by the exchange model which was only meaningful for the lesions.
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FIG. 7. Plots of the simulated histograms for CBF (top left), CBV (top right), EF (bottom left), and MTT (bottom right). The open symbols
plots display the histograms for GM (�) and WM (�) for CNR and TR equal to those measured in the patient data. The corresponding closed
symbols (�, �) give the histograms for an optimized sequence which leads to a fivefold increase in CNR.

are covered by a large amount of data points. Interestingly,
the average FE-values are slightly negative. The deviation
from zero is an order of magnitude higher than the mean
values in the simulations, and may therefore be attributed
to a systematic effect. A possible explanation is a residual
T*

2 -effect, despite the small echo times.
Extraction flow values in the tumor data cover a large

range (Fig. 6), but the range of interstitial volumes (Table
1) agrees very well with estimates for typical tissue types
(4–12%) (23). For the vascular parameters, one may expect
that a measurement in tumors is at least as robust as in nor-
mal tissue: due to the higher blood volumes (Table 1), peak
enhancement in the first pass is significantly higher than in
normal tissue. On the other hand, not all lesions of interest
are highly perfused. In particular, the characterization of

pure radiation effects requires high accuracy in the lower
CBF- and CBV ranges (Fig. 6, top).

Protocol Optimization

Pixel-by-pixel analysis with the uptake model was feasi-
ble, but isolated pixels in which the algorithm converged
to unphysiological values could be identified on the CBF
map and needed to be removed by a median filter (Fig. 4).
This observation is in apparent contradiction with previous
studies showing accurate and precise CBF quantification
on the pixel level (28,29). A comparison of the sequence
parameters, however, reveals that the voxel size used in
this study (12.3 mm3) is significantly smaller compared
with those in previous studies (62 mm3 at 3T (29) and 211
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FIG. 8. Plots of the measured CBF values for GM at different values of CNR (left) and TR (right). The open symbols (�) correspond to the
median values, error bars are plotted from the 5th to the 95th percentile. The single filled symbol (�) corresponds to the CNR (6.1) and TR
(1.34 sec) of the measured data.

mm3 at 1.5T (28)). Moreover, these studies have chosen to
sacrifice coverage (29) and/or temporal resolution (28) for
a smaller bandwidth. Many DSC-MRI studies also use a
significantly higher voxel size, e.g., 30.3 mm3 (7) or 70.3
mm3 (13), though others use a voxel volume near to the
one in this study (17.5 mm3 in (6)). Hence the CNR can be
increased significantly by increasing the voxel volume to
more typical values. Figure 7 shows that this has a very
strong effect on the precision of the results and creates a
clear-cut separation between WM and GM CBF.

The choice of the temporal resolution is generally con-
sidered to be a major issue for bolus-tracking MRI. Little
theoretical or experimental evidence is available concern-
ing the optimal choice for TR, but it is usually recom-
mended that TR is not larger than 1.5 sec in the brain (35).
Such recommendations are based on the intuition that TR
must be smaller than the MTT of the tissue, so that the
residue function is appropriately sampled. On the other
hand, other authors have reported accurate CBF values for
TR significantly larger than typical MTT values (34,52).
The simulation results in Figure 8 provide some insight
into these issues. The figure shows, first, that an increase
in TR does not affect the accuracy of the solution, but only
reduces the precision. Second, the precision is obviously
improved at smaller TR, but there is no clear change in
behavior near the MTT of the tissue. This implies that
MTT does not impose a fundamental constraint, but that TR
should be minimized as far as possible. In reality, however,
a reduction in TR is accompanied by a reduction in CNR, so
that an optimal trade-off between both measures should be
sought. Future studies for particular imaging sequences are
necessary to identify an optimum, but these results indicate
that it may be advantageous to sacrifice temporal resolution
for an improvement in CNR.

A major limitation of the current measurement protocol
is the limited coverage. A six-slice acquisition does not
cover the whole brain, which imposes limitations for the

evaluation of multiple lesions (e.g., metastases, multiple
sclerosis lesions), or of more diffuse pathologies such as
ischemia. More slices can be acquired if the matrix size or
the temporal resolution are reduced, but a coverage of 20
slices as typically used in DSC-MRI is not feasible within
the current sequence. An alternative approach to improve
the coverage is the use of a 3D sequence (52). Experience
in other organs demonstrates that with this approach a
volume of 20 slices can be acquired at a high temporal res-
olution (53). An additional advantage of the 3D approach
is that a non-selective preparation pulse may not be neces-
sary to minimize inflow effects (52). As the magnetization
then is not destroyed before signal acquisition, this implies
a significant improvement in CNR.

An important consideration for quantitative DCE-MRI
in the brain is the choice of contrast agent dose. A high
dose maximizes signal enhancement in the tissue, but may
cause overestimation in CBF by signal saturation or non-
linearity in the artery (45), and underestimation due to
transendothelial water exchange effects (43). The use of
a prebolus eliminates arterial signal saturation (54), but
not the effect of water exchange. For these reasons we pro-
posed an alternative approach in the form of a double bolus
injection. This reduces both sources of error by a reduc-
tion in peak concentration, without sacrificing the benefit
of a full dose. The double bolus may also be helpful in
detecting/correcting nonlinearity effects. Figure 2 shows
no obvious signs of nonlinearity, but in other data sets
the height of both peaks was nearly equal. This indicates
that nonlinearity remains an issue, and the method might
benefit from a more refined signal model.

CONCLUSION

The two-compartment uptake model presents a consis-
tent and robust tracer-kinetic approach that applies both
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to tissues with an intact as with a ruptured BBB. It pro-
vides a good fit to DCE-MRI data in intact brain tissue and
accurate values for CBF, CBV, and BBB-leakage. A mis-
match between data and model fit was observed in most
tumors, which was removed by using the exchange model,
producing an additional measurement of the interstitial
volume. The precision in CBF was low with the current
protocol, and a single-voxel analysis was not sufficiently
robust at the high spatial resolution used in this study.
Simulations suggest that the problem can be solved by
sequence optimization and/or increasing the voxel size to
more conventional values. After these improvements, DCE-
MRI may allow for an accurate and precise characterization
of perfusion and permeability in normal brain tissue and
in brain lesions. As AIF selection is straightforward, and
BBB-leakage effects are negligible or can easily be corrected
for, DCE-MRI offers a suitable alternative to DSC-MRI for
absolute quantification of bolus-tracking MRI in the brain.
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