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ABSTRACT

SUMMARY: The remarkable temperature sensitivity of the brain is widely recognized and has been studied for its role in the
potentiation of ischemic and other neurologic injuries. Pyrexia frequently complicates large-vessel acute ischemic stroke and devel-
ops commonly in critically ill neurologic patients; the profound sensitivity of the brain even to minor intraischemic temperature
changes, together with the discovery of brain-to-systemic as well as intracerebral temperature gradients, has thus compelled the
exploration of cerebral thermoregulation and uncovered its immutable dependence on cerebral blood flow. A lack of pragmatic
and noninvasive tools for spatially and temporally resolved brain thermometry has historically restricted empiric study of cerebral
temperature homeostasis; however, MR thermometry (MRT) leveraging temperature-sensitive nuclear magnetic resonance phenom-
ena is well-suited to bridging this long-standing gap. This review aims to introduce the reader to the following: 1) fundamental
aspects of cerebral thermoregulation, 2) the physical basis of noninvasive MRT, and 3) the physiologic interdependence of cerebral
temperature, perfusion, metabolism, and viability.

ABBREVIATIONS: BOLD = blood oxygen level–dependent; BTR = brain thermal response; NMR = nuclear magnetic resonance; OEF = oxygen extraction frac-
tion; PRESS = point-resolved spectroscopy; PRF = proton resonance frequency

Cerebral thermoregulation is a critical, but enigmatic aspect of
brain physiology at the intersection of cerebral perfusion

and metabolism. The brain exhibits exquisite sensitivity to
disruptions in temperature homeostasis, with even small eleva-
tions rapidly potentiating ischemic or other neurologic injuries.1-5

Nevertheless, formalized and experimentally tested theories of
cerebral temperature control are lacking, due to the absence of
pragmatic tools to measure spatiotemporally-resolved thermal
gradients under physiologic and pathologic conditions. This
review aims to introduce the reader to fundamental principles of
cerebral temperature (dys)regulation and homeothermy, with
an emphasis on temperature as a potential biomarker of

cerebrovascular disease and the use of noninvasive approaches
to measuring brain temperatures using MR thermometry.

THERMOREGULATION AND TEMPERATURE
HOMEOSTASIS
Body temperature is tightly controlled in humans at approxi-
mately 37°C and regulated through the balance of heat-conserving
and heat-dissipating mechanisms mediated by the hypothalamus.6

Most heat production arises from so-called obligatory thermogen-
esis—that is, the thermal energy of metabolically active organs,
including the brain, with the remainder arising from voluntary
and involuntary muscle activity or acquired passively from ambi-
ent sources.6 While the body efficiently dissipates heat primarily
through radiative as well as conductive, convective, and evapora-
tive mechanisms, cerebral thermoregulation proves more com-
plex. Throughout much of the highly metabolic brain (consuming
20% of the oxygen and 25% of the glucose at only 2%–3% of the
total body weight),7 the temperature exceeds that of the arterial
inflow. While superficial cortical brain regions may dissipate
heat to a greater extent through convention/conduction and
radiation, cerebral temperature homeostasis largely depends on
steady CBF to sustain countercurrent heat exchange mecha-
nisms that prevent cerebral hyperthermia and prove critical to
normal brain physiology.6,8-10 The specific influence of systemic
temperatures on cerebral thermoregulation, however, remains
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poorly understood. Existing studies have produced discrepant
and sometimes contradictory conclusions regarding: 1) the
direction and magnitude of the brain-to-systemic temperature
offset in certain brain regions, 2) the spatial distribution and
magnitude of intracerebral temperature gradients, and 3) the
specific mechanisms by which potentially mild pyrexia potenti-
ates myriad forms of neurologic injury, including ischemia.

The implications of cerebral thermosensitivity, in fact, reach
beyond a manifest susceptibility to injury and may even have
steered the course of human evolution. Specifically, the develop-
ment of efficient mechanisms of heat dissipation are proposed to
have released human ancestors from fundamental thermal con-
straints to brain development and growth. Simply, the energetic
cost and therefore the metabolic output of the large human brain
poses considerable demands on such mechanisms of temperature
control, the development of which facilitated the remarkable
encephalization of early humans.11-13 Thus, by comparison with
other key constraints of human evolution, brain temperature was
emphasized by Baker (1979)13 to be the “single most important
factor limiting the survival of man and other animals.”
Neuroprotective adaptations such as selective brain cooling—the
maintenance of brain temperatures selectively despite rising pe-
ripheral temperatures by rerouting cooler, valveless facial/ocular
and emissary venous supply—were therefore critical for thriving
humans under thermal stress, exercise, and so forth.8,13-15 Such
adaptations are traceable to recognized changes in the human
calvarial fossil record, developing in tandem with epochs of
immense advancement, and may have compensated for the loss
in humans of the rete caroticum (ie, the rete mirabilis) first pro-
posed by Herophilus �2000 years ago and documented later by
Galen in other mammals including dogs, cats, and sheep.14,16-20

From these insights, a coherent picture of the evolving human
brain emerged, linking intelligence, the growing brain, bipedal-
ism, and efficient cerebral heat exchange in a seminal paradigm
known as the radiator hypothesis, which aptly underscores the
importance of steady blood flow at the nexus of temperature ho-
meostasis.11-13,15,16 This point is easily contextualized when con-
sidering the thermogenicity of the metabolically active brain:
Approximately 0.66 J/min/g are produced by the brain, primarily
by the consumption of oxygen through chemical reaction with
glucose which, absent heat dissipation, would produce a rise of
0.16°C/min.18,21,22

The study of cerebral thermoregulation, nevertheless, remains
difficult. Past investigations have consisted mostly of surrogate
measures of brain temperature (eg, tympanic, sublingual, and
etc.) and sporadic human and animal studies using directly
implanted temperature probes. Surrogate measures, however, are
limited by the presence of temporally varying offsets relative to
actual brain temperatures.23-26 Implantable probes are similarly
suboptimal for large-scale experimentation due to their requisite
invasiveness and cost,27-30 which limit their widespread place-
ment throughout the brain and in turn, their suitability for inter-
rogation of spatially distributed temperature gradients.27,29,31,32

Notwithstanding their limitations, a small number of animal
and human studies have confirmed the presence of measurable
spatial temperature gradients that can be altered during brain
injury.2,9,21,29,33-41 A theoretic framework for understanding

temperature homeostasis has also been established through
numeric simulations often based in the seminal bioheat equa-
tions proposed by Pennes (1948),42 and the reader is referred to
excellent resources on the topic.8-10,43-47

CENTRAL FEVER AND CEREBRAL TEMPERATURE
DYSREGULATION DURING HYPOPERFUSION
Systemic and cerebral temperature dysregulation during and fol-
lowing neurovascular ischemia is well-described, yet the mecha-
nisms underpinning this relationship remain unclear.

The sensitivity of neuronal substrate to hyperthermia has
been the focus of multiple human and animal stroke studies, and
identification of this potentially modifiable biomarker has natu-
rally promoted investigation into therapeutic cooling protocols
following different forms of neurologic injury.1,2,4-6,48 Indeed,
therapeutic cooling remains among the most potent neuroprotec-
tants following ischemia and cardiac arrest, dating to landmark
studies of the mid-20th century.49,50 Early canine studies by
Hosler (1953)49 found that at a body temperature of 20°C, no
neurologic injury was observed following resuscitation from 11–
13minutes of cardiac fibrillation. Similarly, Donnelly (1956)51

reported that brain anoxia can be tolerated for only 3 minutes at
physiologic temperatures, but remarkably with full resistance for
9 minutes when cooling to 26.5°C. In part through depression of
metabolic demand—a 2.2-fold reduction in oxygen consumption
for each 10°C decrease in temperature—as well as protection
against immediate and programmed cytotoxicity and vascular
permeability, brisk hypothermia (� 20°–32°C) permits prolonged
circulatory arrest potentially with little neurologic injury.7

Decades of subsequent investigation have highlighted the protec-
tive attributes of corporeal and brain cooling following brain
injury, yet a number of large-scale prospective trials have failed to
capture a population-level benefit from cooling, owing perhaps
to systemic adverse effects or, we posit, the use of non-neurologic
temperature benchmarks. This latter point, we believe, holds tre-
mendous potential promise for noninvasive brain thermometry,
with which the known variability between systemic surrogates
and brain temperatures can be disentangled toward more guided
therapeutic hypothermia protocols.

In contradistinction, hyperthermia proves a strong potentia-
tor of neurologic injury.1,2,5,52 Fever, an adaptation intended to
raise host defenses, has been shown to influence clinical out-
comes negatively following stroke, potentially even when
mild.1,2,4-6,53-59 Fever following neurologic injury is unfortunately
common, even without direct hypothalamic injury.60 While the
mechanisms of central fever following ischemic stroke are incom-
pletely understood, the aforementioned impairment in radiative
heat exchange may act in concert with cytokine-mediated influ-
ences involving the hypothalamus, as well as more regional and
zonal inflammatory trafficking as described by the inflammatory
penumbra paradigm.6,7,41,53,61,62 These inflammatory cascades
may be moderated through hypothermia which, together with
reduced expression of pro-apoptotic genes, may provide a power-
ful potential target for intervention.63-66

Radiologic progression of ischemia due to hyperthermia
remains comparatively less explored. We previously reported on
the tendency for greater consumption of penumbral (ie, at risk)
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tissues in fully reperfused patients with acute ischemic stroke
when fevers exceeded 37.5°C in the early stroke aftermath. While
infarction expansion following reperfusion comprises an array of
reported causes, identification of a potentially modifiable and
readily attainable biomarker may significantly influence imaging
and clinical outcomes.53,67

Larger studies, including a series of 4295 patients, have firmly
established the detrimental effects of fever as producing longer
intensive care unit and hospital stays, higher mortality, and over-
all worse outcomes, even when controlling for disease severity,
complications, and age.68 We propose that the frequency with
which pyrexia occurs in neurologically injured patients—up to
47% of neurologic patients in intensive care units (increasing to
93% after 2 weeks69)—itself motivates investigation into the use
of noninvasive, direct brain thermography in diagnosis, prognos-
tication, and perhaps treatment selection or response to therapy.

MR THERMOMETRY
Principles and Techniques
2D MRI thermometry dates to initial experimentation by Parker
et al,70 who studied the temperature sensitivity of proton longitu-
dinal relaxation (T1) times in human blood specimens, decades
after the far earlier discovery of temperature-sensitive nuclear
magnetic resonance (NMR) phenomena in the mid-20th cen-
tury. While a strong linear relationship and sensitivity of �2°C
was reported from a 5-minute scan, the speed and accuracy of
T1 thermometry have limited its application in neuroscience.
Subsequently, other temperature-sensitive MRI contrast mecha-
nisms were explored, including transverse relaxation time (T2),
equilibrium magnetization/susceptibility, spin density, micro-
scopic diffusion, and the proton resonance frequency (PRF), the
latter now most commonly used, particularly for thermal abla-
tive procedures (eg, laser interstitial thermal therapy, high-inten-
sity focused ultrasound, and radiofrequency ablation).71 While
each approach may offer relative, application-specific advan-
tages, PRF thermometry, which exploits either of 2 attributes of
the proton resonance frequency, is the most accurate, versatile,
and widely used technique and will be the subject of the remain-
der of this review.72 Specifically, this review will emphasize clini-
cally pragmatic approaches allowing the sufficient spatial,
temporal, and temperature resolution to probe dynamic thermal
gradients in the healthy brain and during cerebrovascular
impairment. Emerging strategies, including potentially promis-
ing and accurate temperature-sensitive contrast agents, remain
unfit for translational human or clinical imaging and are beyond
the intended scope of this review; however, the interested reader
is referred to thorough topical reviews on the subject.73-75

PRF Thermometry
PRF thermometry stems from the temperature dependence of
the water proton chemical shift. Due to the shielding effects of
their surrounding electron currents, the magnetic field experi-
enced by hydrogen protons varies slightly relative to that of the
externally applied field (B0). The effect manifests in a tempera-
ture-dependent chemical shift (s) as follows:

1) v Tð Þ ¼ g � ½1� s Tð Þ� � Blocal;

where vðTÞ represents the angular frequency of proton preces-
sion; g ; the gyromagnetic ratio (�42 MHz/T for the hydrogen
nucleus); and s Tð Þ; the temperature-dependent chemical shift
modulated by the electron-shielding effect on the local magnetic
field (BlocalÞ, itself a function of both the externally applied ðB0Þ
field and spatially varying magnetic susceptibility. The shielding
effect of the water proton is influenced heavily by the strength of
hydrogen bonds, which is a function of temperature. Hydrogen
bonds are formed between the hydrogen of 1 water molecule and
the electronegative oxygen atom of another water molecule
(Fig 1A). Hydrogen bonds among water molecules, therefore,
reduce the opposing electron currents about the bound hydrogen
proton, exposing the proton to less attenuated Blocal fields,
thereby inducing higher precessional frequencies. (Fig 1B). At
higher temperatures, however, the hydrogen bonds between
water molecules become less stable and/or disrupted, resulting in
greater electronic shielding and therefore reduced magnetic flux
density and a lower frequency of precession of the hydrogen pro-
ton. It has been shown in multiple studies, including our own,
that the water proton chemical shift s(T) is largely a linear func-
tion of temperature T, (Fig 1C):

2) s Tð Þ � s0 þ b � T � 37ð Þ;

where S0 denotes the chemical shift at 37°C and b denotes
change in chemical shift per unit increase in temperature. b has
been measured to be between �0.009 and �0.011 ppm per
degree Celsius,29,72,76,77 dating to its initial description in NMR
by Hindman (1966).77

While most MR thermometry applications have sought to
measure relative temperature changes (eg, during and following
thermal ablation), they are poorly suited for the study of base-
line temperatures and pathophysiologic temperature gradients
between brain regions, comparisons between subjects, or longi-
tudinal study, together motivating the development of quanti-
tative techniques approximating absolute temperatures. As
apparent from Equation 1, an accurate measure of the chemical
shift difference would require precise measurement of Blocal

down to 0.01 ppm. To resolve this issue, a stable (ie, non-tem-
perature-dependent) reference frequency is necessary to nor-
malize the water frequency, thereby allowing nearly absolute
thermometry based on the temperature-dependent chemical
shift difference between the 2 (or sometimes more) metabolites.
Such self-referenced thermometry has been the subject of con-
siderable study using the chemical shift difference between the
temperature-sensitive water resonance and a non-temperature-
sensitive reference metabolite, such as the methyl resonance of
neuronal NAA at �1.98 ppm.

By comparison, when the primary interest is simply the
collection of relative changes in temperature across time, for
example during ablative procedures, explicit measurement of ei-
ther water or reference metabolite frequency is unnecessary, and
a baseline water resonance phase can instead be measured
before treatment begins. Thereafter, a relative temperature
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change can be estimated following ablation using an additional
phase estimation, and the phase shift can be used to estimate a
relative temperature change on the basis of the aforementioned
temperature-dependent frequency changes. In this case, the
phase evolution arising from the PRF change relates to the rela-
tive temperature change as follows:

3) Dw t ¼ �2p � Dv t � TE

¼ �2p � v T1ð Þ � v T0ð Þ� �� TE

¼ 2p � g � b w � Blocal � TE� DT;

where b w reflects the thermal chemical shift coefficient of
water. Importantly, however, non-temperature-dependent changes
in phase, including, for instance, those due to magnetic field drifts
across time resulting from gradient heating or subject motion can
engender errors in the imputed temperature change. In either
case, phase imaging can be used only to estimate relative tem-
perature changes across time, though with comparatively
higher spatial and temporal resolution than most quantitative
thermometry techniques.71 In principle, any sequence that is
sensitive to PRF can be used to measure the phase change
across time, and the most common approach is through phase
imaging from a gradient-echo sequence, according to the equa-
tion Dw t ¼ �2p � Dv t � TE, where Dw t represents the phase
change across time, and TE, the echo time. More recently, “ref-
erence-less” phase thermometry methods have been proposed,
which assume temperature changes occurring only in a local
region and essentially using the phase from the neighboring
regions as an in-line reference, though their robustness and ac-
curacy as alternatives to truly self-referenced techniques have
not been conclusively demonstrated.78

As introduced above, using the chemical shift difference as
measured from proton spectroscopy, absolute thermometry can
be approached through the additional, simultaneous measure-
ment of the PRF of another proton chemical group lacking in
temperature-dependent hydrogen bonds. Provided that intra-
voxel susceptibility effects are small as shown by De Poorter,85

the use of a reference frequency devoid of temperature-depend-
ent chemical shifts is thus performed as follows:

4) Dv ¼ Dvw � Dv r

¼ �g � s0;w � s0;r þ b w � b rð Þ � T � 37ð Þ� �
;

where, in contrast to Equation 3, Dv denotes the difference in
angular frequency between the water proton and the reference
compound, such as NAA, choline, or other candidate hydrogen
metabolites; s0;w and s0;r denote chemical shifts of water and the
reference compound, respectively, at 37°C; and b wand b r repre-
sent thermal chemical shift coefficients for water and the refer-
ence compound, respectively.79 NAA, the dominant nonwater
metabolite in the conventional brain PRF spectrum, has proved
generally well-suited due to its uniformly high concentration and
extremely small temperature dependency (,0.0007 ppm/°C)
related to the absence of hydrogen bonds. Accordingly, MR spec-
troscopy can be used to measure the PRF difference between
water and reference compounds simultaneously, facilitating

FIG 1. A, Schematic representation of the temperature-dependency
of the water proton resonance frequency chemical shift. A water
hydrogen bonding scenario for water molecules in two milieu of
differing temperatures is depicted. Increasing temperatures drive
the water hydrogen bonding equilibrium towards greater free water
proportions through disruption of hydrogen bonds. Electronic cur-
rents (“e-”) about the hydrogen proton shield it from the main mag-
netic flux, but will vary in strength between strongly (left) and
weakly (right) bound water pools. The greater shielding of free
water hydrogens (right) yields lower precessional frequencies, gov-
erned by the gyromagnetic ratio of hydrogen, �42MHz/T. B, Within
the hydrogen PRF spectrum, higher temperatures translate the
water resonance upfield (i.e. towards lower chemical shifts), reduc-
ing the chemical shift difference between water and a non-temper-
ature dependent reference such as the methyl resonance of NAA,
producing a linear correlation coefficient (C) of ��0.01 ppm/C. As
shown, the relationship between hydrogen bonding equilibrium,
PRF, and temperature remains linear across even supraphysiologic
temperature ranges as demonstrated in an aqueous cytosolic phan-
tom during real time fiberoptic temperature monitoring. Adapted
from Dehkharghani et al.76
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quantitative temperatures at single time points or longitudinally,
either between or among individual subjects and across experi-
mental conditions.29,41,59,76,80

MR Thermometry in Stroke and Cerebrovascular Disease
Acute Ischemic Stroke. Noninvasive cerebral MRT has been
explored in small-but-growing numbers of human and animal
studies, aiming to capture empirically the link between brain tem-
perature and hemodynamic compromise. While such mechanis-
tic insights are valuable motivations for noninvasive MRT, the
development of biomarkers of tissue viability and outcome argu-
ably remain the most compelling long-term objective of ther-
mometry in this setting.

Corbett et al29 first described the use of single-voxel proton
MR spectroscopy for in vivo brain thermometry in a piglet model
of ischemic stroke using a 4.7T NMR spectroscopy system. Using
water-NAA chemical shift thermometry, their in vivo experi-
ments recapitulated the linearly changing water-NAA chemical
shift difference coefficient of approximately 0.01 ppm/°C across
both physiologic and ischemic conditions (slope, 1.00 6 0.03,
r2 = 0.96), importantly, with little impact by either pH or protein
concentration in physiologically relevant ranges. The authors fur-
thermore reported that even with falling NAA concentrations in
ischemic and infarcted tissues, sufficient concentrations remained
to allow peak assignment of the NAA resonance. The potential
for alternative candidate reference frequencies such as choline or
trimethylamines was, nevertheless, tested and confirmed by the
authors in subsequent studies, further supporting the feasibility
of in vivo brain thermometry in scenarios of falling or undetect-
able NAA.31,32 Of particular interest, the authors reproduced
centripetal temperature gradients as measured from directly
implanted thermocouples at varying depths, on order of 1°C
temperature drop from a 1-cm depth to the brain surface.

Later work by Corbett et al31 in healthy human adults again
used individual, single-voxel point-resolved spectroscopy spectra
(PRESS). By interrogating temperatures in both superficial and
deep brain loci, the authors demonstrated, for the first time, that
centripetal temperature gradients within the brain itself are ame-
nable to noninvasive detection under clinically practicable condi-
tions. The preceding, however, left the need for noninvasive,
real-time detection of fully spatially-resolved temperature
gradients unmet, motivating the expansion of existing single-
voxel spectroscopy techniques to multivoxel thermographs in
2D or 3D. Such multivoxel MR spectroscopic imaging or
chemical shift imaging is not, however, without inherent chal-
lenges.72,81,82 While Ishihara et al83 had reported on the pre-
liminary development of relative cerebral thermal maps using
phase-contrast thermography, the dependence of phase-based
PRF thermometry on baseline phase mapping (see above) and
its potential vulnerability to poorly compensated effects, such
as from susceptibility changes, limited its applicability for the
reasons detailed above.72,81,84,85 Successful extension of single-
voxel spectroscopy to MR spectroscopic imaging–based ther-
mometry was, thereafter, reported by Kuroda et al81,84 in in
vitro and in vivo animal studies, though long acquisition times
and analytic errors related to chemical shift misregistration
and data corruption by lipid contamination are well-recognized

challenges to experimentation and clinical use. Acceleration,
such as with echo-planar spectroscopic imaging, and more
robust signal localization, such as with adiabatic imaging tech-
niques, have been reported with success by multiple investiga-
tors, including in our group, with the common goal of robust
in vivo thermography (Fig 2).41,59,84,86

In vivo multivoxel thermography in human subjects was
reported initially by Karaszewski et al39 among a cohort of adult
patients with ischemic stroke. The authors attempted to opera-
tionalize thermography profiles relative to infarcted and at-risk
tissues as defined by diffusion-weighted imaging, reporting gen-
erally greater temperatures in possibly abnormal tissues (ie,
regions along the immediate periphery of the pathologic DWI
lesion). Notwithstanding significant study limitations, including
the heterogeneous duration from stroke onset, the absence of per-
fusion-to-diffusion penumbral estimation, and variable treatment
effects, the authors observed that the greatest heating may occur
in viably hypoperfused, metabolically active tissues. In contradis-
tinction, somewhat lower temperatures were observed within
the more definitively devitalized tissues in the infarction core, in
line with past experiments documenting the potential for tem-
perature reduction within the infarcted core of rat brains early
after stroke induction using direct thermometry.3

Subsequent work by the authors reproduced the findings that
the greatest brain temperatures are found in the infarction mar-
gins and, importantly, identified unanticipated nonuniformities
in temperatures elsewhere throughout the brain; specifically, tem-
peratures in the brain hemisphere contralateral to the stroke were
also found to be significantly higher in subjects who were imaged
at later times. While such studies are small, observational, and
far from conclusive, it can be posited that the convolved effects
of perfusion (reduced, absent, or restored following ischemia),
metabolic heat production (aerobic and anaerobic), systemic
temperatures (physiologic or pyrexic), and variable inflamma-
tory mechanisms (the inflammatory penumbra; mitochondrial
uncoupling protein-2) in aggregate determine the temperature
profile of infarcted, viably ischemic, and normal/compensated
oligemic tissues. These studies confirm the presence of measur-
able temperature perturbations in ischemic tissues and motivate
the further development of operational paradigms of tempera-
ture disturbance in stroke.

The preceding human studies of thermometry were inherently
limited by the inability to control for the timing of thermometry
relative to stroke onset or to track changes longitudinally with
sufficient temporal resolution to formalize temperature changes
following stroke. Furthermore, the opportunity for local cali-
bration of chemical shift thermometry under clinical scanning
conditions has generally been lacking. While several small ani-
mal stroke-induction studies attempted to address the former,
the generalization of rodent and lower mammal studies to
human physiology poses widely cited challenges and may
impede translatability in mechanistic and pharmacologic stud-
ies.87 This issue has motivated further study across stroke neu-
roscience in gyrencephalic nonhuman primates to facilitate
translation.

Our group has undertaken serial studies of noninvasive
thermometry in the phylogenetically similar rhesus macaque,
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specifically in efforts to bridge this gap.41,76 Using robust adia-
batic multivoxel chemical shift imaging strategies (sLASER,
Siemens Healthineers, Erlangen, Germany) with greater perform-
ance against chemical shift misregistration, together with higher
order magnetic field shimming, we recently reported on dynamic
brain temperature changes following highly-controlled endovas-
cular stroke induction in NHP.41 This experimental design per-
mits repeated production of thermographs under physiologic and
postischemic conditions without the confounding effects of sur-
gery and ambient heat loss, the constraints of focally implanted
temperature probes, or the limitations of unknown disease onset.
The preoperative calibration of water-NAA chemical shift ther-
mometry under essentially identical imaging conditions using
clinical 3T scanning conditions also facilitates future translation.
While the potentially nontrivial effect of anesthesia induction on
cerebral blood flow, metabolism, and temperature regulation can-
not be overlooked in such models, dynamic imaging immediately

following anesthesia induction in control and ischemic experi-
mental sessions fortuitously produces an additional form of phys-
iologic contrast during which temperatures can be measured and
compared between conditions.

Across all subjects in our protocol, we observed gradually
increasing brain and systemic temperatures, importantly, with
steady divergence in brain-to-systemic temperature gradients
occurring as the cerebral hyperthermia steadily outpaced even
the worsening systemic pyrexia (Fig 3). This dynamic and
unpredictable offset stresses the importance of direct brain
thermometry in the monitoring of brain injury, owing to the
inaccuracies of systemic temperature surrogates in this setting.
Furthermore, significant differences in the temperature evolu-
tion across time were observed among tissues, independent of
worsening systemic hyperthermia, further suggesting the poten-
tial for mixed mechanisms of temperature change throughout
the brain.

FIG 2. Phantom (A) and human in vivo PRF thermometry in a healthy volunteer (B) using the water-NAA chemical shift, demonstrating the
impact of adiabatic (semiLASER) versus conventional volume localization (PRESS) and improvements in the shimming conditions using 3D gradi-
ent-echo (greSHIM). Spatially uniform phantom temperatures are noted in A with improvements in SNR, fitted line widths, and test-retest
repeatability (not shown) by comparison with conventional point-resolved spectroscopy using sLASER at 3T. Greater test-retest stability
obtained 30minutes apart and the presence of physiologically meaningful temperature gradients are demonstrated to greater advantage in the
lower row of B when using sLASER for spatial localization together with greSHIM. Adapted from Dehkharghani et al.,86,88 with permission from
the International Society of Magnetic Resonance in Medicine.
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Chronic Cerebrovascular Ischemia. Hemodynamic and thermo-
regulatory theory predict a strong dependency of brain tempera-
ture on blood flow, which has largely been confirmed during
experimentation in low-flow states such as ischemic stroke as
described above. The theoretic, converse cooling effects of hemo-
dynamic augmentation are, however, more difficult to test experi-
mentally. A brief review of the dynamic autoregulatory process
underlying hemodynamic failure is worthwhile at this stage. The
response of the cerebrovascular system to falling perfusion pres-
sures was expounded in initial work by Powers and further by
Derdeyn et al.89,90 using 15O-PET.89-93 A sequential, quasi-step-
wise response to incremental hemodynamic failure is commonly
encountered, culminating in the up-regulation of the oxygen
extraction fraction (OEF) from the heme moiety of hemoglo-
bin to sustain the cerebral metabolic rate of oxygen when fall-
ing perfusion pressures outstrip the cerebrovascular reserve.
This tenuous state of so-called misery perfusion would, on the
basis of cerebral thermoregulatory theory, seem conducive
to heating. Specifically, one would anticipate that viable

(ie, with continued but potentially
reduced metabolic activity) tissue beds
downstream from chronic steno-
occlusive lesions could exhibit a par-
ticular propensity for heating through
the combination of increased ther-
mogenic oxygen cleavage and re-
duced perfusion.

Cerebral oximetry and the identifi-
cation of misery perfusion by MR
imaging remain elusive aims and areas
of active study by many groups in-
cluding our own.94-98 The unambigu-
ous demonstration of misery perfu-
sion proves challenging without direct
MR oximetry, which remains difficult
under clinically pragmatic condi-
tions.99,100 The characterization of cer-
ebral temperatures could, however,
reflect a measurable epiphenomenon
of the hemodynamic and metabolic
derangements inherent to misery per-
fusion. In a study of contemporane-
ous 15O-PET and single-voxel point-
resolved spectroscopy by Ishigaki
et al,101 local temperatures and the
OEF were estimated in the deep white
matter of healthy subjects and pa-
tients with unilateral, anterior circu-
lation steno-occlusive disease. As
expected, uniformly normal distribu-
tions of OEF were measured in
healthy subjects, while elevations of
OEF in the diseased territories of
patients with steno-occlusive disease
were observed as compensations for
reduced blood flow. The authors
also confirmed the hypothesized inter-

actions between interhemispheric temperature offset and OEF.
While the findings are compelling as potential evidence for brain
temperatures as an imaging biomarker in chronic ischemia, the
comprehensive characterization of tissue thermal signatures in
hemodynamic failure would require acquisition of thermographs
to assess the spatiotemporal relationship between perfusion and
temperature.

To this end, we recently reported on cerebral multivoxel
thermography in patients with chronic, unilateral anterior cir-
culation steno-occlusive disease, leveraging the hemodynamic
contrast of acetazolamide augmentation.80 We hypothesized the
presence of a detectable modulation of cerebral temperatures by
cerebrovascular augmentation, which we have coined the “brain
thermal response” (BTR, Fig 4), which we compared with both
CBF (using multidelay arterial spin-labeling) and blood oxygen
level–dependent (BOLD) augmentation. In accordance with
aforementioned observations by Ishigaki et al,101 while highly
significant interactions were observed between augmentation
and temperature, the relationship appears to be unsurprisingly

FIG 3. Dynamic MR thermometry following superselective right MCA endovascular stroke induc-
tion in an adult rhesus macaque using a low-profile suture embolus. DWI (A) obtained at approxi-
mately 7 hours following complete occlusion and contemporaneous 2D axial sLASER chemical
shift thermography (see MR Thermometry in Stroke and Cerebrovascular Disease: Acute
Ischemic Stroke) following automated and manual shimming (B) demonstrate extensive right-
hemispheric ischemic injury and generalized cerebral hyperthermia, respectively. Through the
course of the experiment, temperatures in both hemispheres were noted to rise, importantly
with a differing temporal course and, in both cases, outpacing the influences of the steadily
increasing systemic pyrexia (C), measured continuously from an indwelling rectal probe and
aggregated over all subjects. The correlation between both normalized infarction size (C) and
time from infarction relative to cerebral temperatures was similarly observed across all experi-
mental NHP strokes, and aggregated results are depicted. Adapted from Dehkharghani et al.41
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complex and nonlinear. In particular, BOLD augmentation
reflects a convolved effect of flow and volume and also, crit-
ically, of blood oxygenation/oxygen extraction. This latter effect,
which may be variably up-regulated at baseline, depending on
the metabolic need and also on vasoreactivity and disease

chronicity, is difficult to measure
directly. However, in concert, these
variables likely determine the direc-
tion of the baseline arterial blood-
to-brain temperature offset and,
therefore, the magnitude and direc-
tion of the BTR. While further
investigation into the diagnostic and
prognostic merits of BTR are under-
way, we anticipate that the overarch-
ing mechanisms are governed by
already well-recognized principles of
cerebral hemodynamic control and
thermoregulation and reflect a tend-
ency for tissue heating arising from
impaired perfusion and up-regulated
OEF.80,101

An interesting potential implica-
tion of such thermal disturbance in
cerebrovascular disease was described
recently by Murakami et al,103 who
explored the potential for preopera-
tive hyperthermia as a predictor of
post-carotid endarterectomy hyper-
perfusion syndrome. A strong and
highly significant correlation was
observed between baseline tempera-
ture elevation and potentially danger-
ous post-carotid endarterectomy
blood flow augmentation (r= 0.763,
P, .001). Similarly, our experience

with the BTR demonstrated a significant negative relationship
between baseline temperatures and cerebrovascular reserve
capacity, in line with past reports of impaired cerebrovascular
reserve capacity as a strong predictor of hyperperfusion
syndrome.104

FIG 4. Cerebrovascular reserve (CVR) percentage augmentation maps calculated with BOLD and arterial spin-labeling (ASL), as well as a BTR map
overlaid on a T1-weighted anatomic image. Images are all from the same subject (a 32-year-old woman with unilateral left MCA stenosis and
multiple TIAs). The white grid overlay represents the MR thermometry VOI derived from multivoxel spectroscopy analysis using the water-NAA
chemical shift difference. Images are displayed in the radiologic convention. Impaired cerebrovascular reserve in the left hemisphere is present
in both BOLD and ASL, with a greater severity of impairment in arterial spin-labeling, likely related to tag decay and residual delay sensitivity de-
spite the use of 10 separate, in-line postlabel delays of varying duration. The BTR map demonstrates an asymmetric thermal response, with less
brain cooling following vasodilatory stimulus in the diseased left hemisphere, indicated by reduced (ie, less negative) BTR values and correspond-
ing primarily to the areas of greatest impairment in the anterior and posterior MCA borderzone territories. Maximal (most negative) BTRs are
noted in the regions spatially concordant with the greatest hemodynamic augmentation (blue regions) in the right parietal lobe. Adapted from
Fleischer et al.80

FIG 5. Real-time temperature mapping using phase-based PRF thermometry during stereotactic
laser amygdalohippocampectomy for mesial temporal lobe epilepsy. Multiplanar spoiled gradient
T1-weighted images obtained with intravenous gadolinium (A and B) demonstrate a stereotacti-
cally introduced, right-posterior-approach ablative probe, terminating within the right hippocam-
pal formation. A parametric thermal map with inset scale and a temperature-time course graph
(C and D, respectively) demonstrate that the estimated, relative temperature change from base-
line following ablation exceeded 30°C. Contrast-enhanced T2-FLAIR axial image (E) through the
treatment bed confirms the final zone of ablative injury.
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MR Thermometry in Thermal Therapy. MR thermometry has
found broad applications in the real-time monitoring of thermal
therapies, and despite obvious differences from the preceding sec-
tions, for completeness, we introduce the reader to this emergent
application of cerebral thermometry.

The coagulative response of thermally injured tissue is a func-
tion of both maximal temperature and the duration over which it
is sustained beyond the ablative threshold. In such applications,
MRT can be used to ensure that temperatures in target regions
are sustained at prespecified levels to achieve coagulation and
fatal thermal dose. In combination with sophisticated dose and
thermal models, the use of real-time monitoring affords greater
safety in such procedures by ensuring that ablative doses not
exceed cavitation thresholds and by confirming that temperatures
in vulnerable and eloquent nearby regions remain below injuri-
ous ranges (Fig 5). The scale of temperature change in these
applications is on the order of tens of degrees Celsius and, hence,
much larger than that described either in basal cerebral tempera-
ture gradients or occurring in the pathophysiologic states dis-
cussed elsewhere in this review. During thermal therapy, the
baseline cerebral temperature gradient can therefore be neglected
and the temperatures assumed to be spatially homogeneous and
equal to the systemic temperature. By freeing the methodology
from the demands for absolute, baseline temperature estimation,
many alternative approaches to thermometry can be used in such
applications beyond those discussed for the study of cerebral
thermoregulation described herein.71

CONCLUSIONS
This review introduces the reader to fundamental aspects of cere-
bral and systemic thermoregulation, emphasizing the importance
of tight cerebral thermoregulation in homeotherms and specifi-
cally the vulnerability of the ischemic neurovascular unit to the
effects of hyperthermia. Temperature represents a powerful bio-
marker of brain function and a potentially valuable target for
interrogation through noninvasive means as permitted by emerg-
ing cerebral MR thermometry techniques. We believe that cere-
bral temperatures are, therefore, well-suited for diagnostic and
prognostic purposes and mechanistic study and hope to see them
find their way deeper into the scientific agenda of the neuroimag-
ing community.
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