
IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 3, MARCH 2007 405

A Review of Methods for Correction of Intensity
Inhomogeneity in MRI

Uroš Vovk, Franjo Pernuš, and Boštjan Likar*

Abstract—Medical image acquisition devices provide a vast
amount of anatomical and functional information, which facilitate
and improve diagnosis and patient treatment, especially when
supported by modern quantitative image analysis methods. How-
ever, modality specific image artifacts, such as the phenomena
of intensity inhomogeneity in magnetic resonance images (MRI),
are still prominent and can adversely affect quantitative image
analysis. In this paper, numerous methods that have been devel-
oped to reduce or eliminate intensity inhomogeneities in MRI
are reviewed. First, the methods are classified according to the
inhomogeneity correction strategy. Next, different qualitative
and quantitative evaluation approaches are reviewed. Third, 60
relevant publications are categorized according to several features
and analyzed so as to reveal major trends, popularity, evaluation
strategies and applications. Finally, key evaluation issues and fu-
ture development of the inhomogeneity correction field, supported
by the results of the analysis, are discussed.

Index Terms—Bias field, intensity inhomogeneity, intensity
nonuniformity, magnetic resonance images (MRI), segmentation,
shading.

I. INTRODUCTION

MEDICAL image acquisition devices and protocols that
have tremendously evolved over the last decades provide

a vast amount of data out of which the information essential for
diagnosis, therapy planning and execution, and monitoring the
progress of disease or results of treatment has to be extracted.
Automated extraction of clinically useful information usually
requires a preprocessing step by which various image artifacts,
which may degrade the results of subsequent image analysis
algorithms, are removed. This paper addresses a class of pre-
processing methods that deal with spurious smoothly varying
image intensities, i.e., with the phenomenon that is usually re-
ferred to as intensity inhomogeneity, intensity nonuniformity,
shading or bias field. This adverse phenomenon is apparent in
images obtained by different imaging modalities, such as mi-
croscopy, computer tomography, ultrasound, and above all by
magnetic resonance imaging (MRI). Intensity inhomogeneity in
MRI, which arises from the imperfections of the image acqui-
sition process, manifests itself as a smooth intensity variation
across the image (Fig. 1). Because of this phenomenon, the in-
tensity of the same tissue varies with the location of the tissue
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Fig. 1. Intensity inhomogeneity in MR brain image.

within the image. Although intensity inhomogeneity is usually
hardly noticeable to a human observer, many medical image
analysis methods, such as segmentation and registration, are
highly sensitive to the spurious variations of image intensities.
This is why a number of methods for intensity inhomogeneity
correction of magnetic resonance (MR) images have been pro-
posed in the past.

Early publications on MRI intensity inhomogeneity correc-
tion date back to 1986 [1], [2]. Since then, sources of intensity
inhomogeneity in MRI have been studied extensively [3]–[6]
and can be generally divided into two groups. Sources in the
first group are related to the properties of the MRI device and in-
clude static field inhomogeneity, bandwidth filtering of the data,
eddy currents driven by field gradients, and especially radio fre-
quency (RF) transmission and reception inhomogeneity. These
intensity inhomogeneities can be corrected for by shimming
techniques [4], [7], special imaging sequences and different sets
of coils, or by calibrating the MRI device by a phantom or a
mathematical model [2], [8]–[10]. Sources in the second group
are related to the imaged object itself, i.e., to the shape, position
and orientation of the object inside the magnet, and to the spe-
cific magnetic permeability and dielectric properties of the im-
aged object. These intensity inhomogeneities are far more dif-
ficult to deal with. The impact of the imaged object is rather
small in low magnetic field and more prominent in high mag-
netic field MR scanners. This is due to the linear increase of
frequency needed to stimulate the nuclei under higher magnetic
fields, which enhances the effects of RF standing waves and pen-
etration [4], [11].

Very few reviews of methods for intensity inhomogeneity cor-
rection methods have been published in the past. In [12] and
[13], the performances of four and six methods, respectively,
have been compared, while a recent review of a large number of
methods published until 2002 can be found in [14]. The present
review is primarily focused on intensity inhomogeneity correc-
tion methods that are based on retrospective image analysis and
less on methods dealing with specific hardware/acquisition as-
pects. Our goal was to provide a complete overview of the ex-
isting correction methods and evaluation strategies and to cate-
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gorize and analyze numerous publications so as to assess major
trends, popularity, and applications of intensity inhomogeneity
correction methods.

The rest of the paper is organized as follows. Section II
presents the most common models of intensity inhomogeneity
and noise. In Sections III–V different correction strategies are
presented and classified. Section VI deals with the evaluation
strategies. Results of analysis of 60 papers dealing with in-
homogeneity correction methods are provided in Section VII,
followed by discussion in Section VIII.

II. MODELS OF INTENSITY INHOMOGENEITY

The generally accepted assumption on intensity inhomo-
geneity is that it manifests itself as a smooth spatially varying
function that alters image intensities that otherwise would be
constant for the same tissue type regardless of its position in an
image. In its most simple form, the model assumes that intensity
inhomogeneity is multiplicative or additive, i.e., the intensity
inhomogeneity field multiplies or adds to the image intensities.
Most frequently, the multiplicative model has been used as it is
consistent with the inhomogeneous sensitivity of the reception
coil. For modeling inhomogeneities that are due to induced
currents and nonuniform excitation, the multiplicative model is
less appropriate [15]. In addition to intensity inhomogeneity,
the MR image formation model should incorporate high-fre-
quency noise. This noise is known to have a Rician distribution
[16]. However, as long as the signal-to-noise ratio (SNR) is
not too low, noise can be approximated by a quasi-Gaussian
distribution [17]. This approximation is appropriate for image
areas corresponding to tissues but not for no-signal areas, such
as air.

Different models of MR image formation have been proposed
in the literature, depending on how the inhomogeneity-free
image , intensity inhomogeneity field , and noise

interact. Two sources of noise were described in [16],
[18], and [19], namely the biological noise, which corresponds
to the within tissue inhomogeneity, and a scanner noise that
arises from MR device imperfections. However, usually only
one of these sources is modeled. The most common model of
MR image formation assumes that the noise, approximated by
Gaussian probability distribution, arises from the scanner and
is therefore independent of the intensity inhomogeneity field

[20], [21]. According to this model, the acquired image
is obtained as

(1)

In another model of MR image formation only biological noise
is considered, which is scaled by the intensity inhomogeneity
field so that the SNR is preserved [16], [22]

(2)

The third MR image formation model is based on log-trans-
formed intensities, by which the multiplicative inhomogeneity
field becomes additive [23]–[25]

(3)

In this model, the log-transformed noise is still assumed
to be Gaussian, which is methodologically convenient but in-
consistent with the first model (1) that assumes the noise is
Gaussian in the original nonlogarithmic domain. This incon-
sistency was apparently not considered relevant enough to be
commented by the authors [23]–[25]. However, in most of in-
homogeneity correction methods, the noise is handled by simple
filtering, smooth model fitting, or some form of regularization
and is therefore considered rather irrelevant.

The authors in [26] proposed a method that separated the in-
tensity inhomogeneity correction field into multiplicative and
additive components. The model used in [26] was similar to
the first model (1) but with an extra term modeling the addi-
tive component of the correction field. The additional additive
component was proved useful for microscopic images [27] but
much less for MR images [26].

In [12] and [15], it was speculated whether a smooth multi-
plicative inhomogeneity correction field and additive noise are
sufficient to accurately model the actual MR acquisition process
and associated artifacts. Due to the susceptibility effects, in-
tensity inhomogeneity might be tissue dependant and specially
accentuated at tissue boundaries. In [28] it was suggested that
for a certain MR sequences, such as inversion-recovery, the
inhomogeneity is tissue dependant. The claim was supported
by the appropriate simplified equation of the measured MR
signal. Besides this theoretical claim, the authors in [29] built
a special physical model and claimed that the multiplicative
inhomogeneity field is not smooth in T1 MR images because
the effects of RF transmission inhomogeneity depend not only
on the location but also on T1 relaxation times of different
tissues. The method proposed in [29] relied on a preacquired
phantom image, flip angle measurement and special references.
The experimental results showed that the proposed MR physics
based mathematical model improved the results of a standard
phantom calibration but, on the other hand, was too sensitive to
input parameters and references. The results in [29] revealed
that physics based modeling of higher magnetic field artifacts
is still rather unreliable. This explains why the majority of
the correction methods are based on simple and more reliable
correction models (1)–(3). However, it should be stressed
out that the most common smooth inhomogeneity correction
models may not always yield satisfying corrections, especially
when the properties of the tissues also vary smoothly across the
anatomy, such as between the genu and splenium of the corpus
callosum, and thereby mimic intensity inhomogeneity. Effi-
cient separation of smooth inhomogeneity fields and smooth
anatomical variations is far from trivial, requiring additional a
priori knowledge on at least either of them, which makes the
retrospective inhomogeneity correction problem less tractable
than is commonly assumed.

III. CLASSIFICATION OF CORRECTION METHODS

Numerous intensity inhomogeneity correction methods have
been proposed in the last two decades. In the following, we
propose a classification scheme, accordingly classify correction
methods, and discuss the advantages and disadvantages of dif-
ferent correction strategies. From the very beginning, two main
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approaches have been applied to minimize the intensity inhomo-
geneity in MR images, namely the prospective and retrospective
approach. The first aims at calibration and improvement of the
image acquisition process, while the latter relies exclusively on
the information of the acquired image and sometimes also on
some a priori knowledge. According to the classification pro-
posed below, we have further classified the prospective methods
into those that are based on phantoms, multicoils, and special
sequences. The retrospective methods are further classified into
filtering, surface fitting, segmentation, and histogram based.

Prospective

Phantom

Multicoil

Special sequences

Retrospective

Filtering

Homomorphic

Homomorphic unsharp masking

Surface fitting

Intensity

Gradient

Segmentation

ML, MAP

Fuzzy c-means

Nonparametric

Histogram

High frequency maximization

Information minimization

Histogram matching

Other

IV. PROSPECTIVE METHODS

Prospective methods treat intensity corruption as a system-
atic error of the MRI acquisition process that can either be min-
imized by acquiring additional images of a uniform phantom, by
acquiring additional images with different coils, or by devising
special imaging sequences.

A. Phantom Based

An estimate of the intensity inhomogeneity field can be ob-
tained by acquiring an image of a uniform phantom with known
physical properties and by scaling and smoothing of the ac-
quired phantom image [3], [8]. Oil or water is usually used for
phantoms and median filtering is applied for image smoothing.
The phantom based approach cannot correct for patient-induced
inhomogeneity, which is a major drawback of this approach. The
remaining intensity inhomogeneity can be as high as 30% [30].

Another limitation of this approach is the temporal and spatial
variation of the coil profile that calls for frequent acquisitions
of the phantom image. To reduce the number of phantom ac-
quisitions, the authors in [10] proposed to carefully record the
orientation and position of the phantom and the coils so as to
be able to geometrically transform the estimated inhomogeneity
field to any acquired image. Attempts have been made to first
mathematically model the inhomogeneity field by polynomials
[31], curves [9] or by integration based on the Biot-Savart law
[2], and then fit the obtained model to the phantom image. A
method that minimizes the dependency of the inhomogeneity
field on the scanner and object has been proposed in [29], de-
riving a mathematical model from the equation for T1 signal
generation and using a phantom image, flip angle mapping, and
reference objects. However, the usefulness of this method is lim-
ited by the specific imaging conditions and sensitivity to input
parameters.

B. Multicoil

Two types of coils, surface and volume, are most frequently
used in MRI. Surface coils usually have good SNR but induce
severe intensity inhomogeneity, while volume coils exhibit
less inhomogeneity but have poor SNR. Methods have been
proposed that require acquisition and combination of surface
and body coil images to obtain an intensity inhomogeneity-free
image with good SNR [32], [33]. The intensity inhomogeneity
field is obtained by dividing the filtered surface coil image
with the body coil image and smoothing the resulting image.
The main disadvantage of these methods is the prolonged
acquisition time. Besides, the inhomogeneity of the body coil
image remains in the corrected surface coil image. To shorten
acquisition times, the authors in [34] used a low resolution
body coil image, which was registered to the full resolution
surface coil image. The final inhomogeneity field was modeled
by a spline surface that had been fitted to a set of inhomo-
geneity field estimates. An energy minimization approach
was proposed in [35], integrating one body coil and multiple
surface coil images into the final image. This method could
also handle multispectral images (T1, T2) if acquired by the
same coils. In general, the usability of the multicoil methods
is limited by prolonged acquisition times, special coil settings,
and incomplete inhomogeneity correction.

C. Special Sequences

This group of techniques is predominantly related to spe-
cific acquisition (hardware) designs and is thus only briefly de-
scribed. For certain pulse sequences, the spatial distribution of
the flip angle can be estimated and used to calculate the inten-
sity inhomogeneity. The mathematical model behind this ap-
proach requires the acquisition of two images, the second one
with doubled nominal flip angle of the first [36]. Other tech-
niques, such as sensitivity encoding by multiple receiver coils,
also reduce the inhomogeneity artifact but they were mainly de-
veloped to speed up the scanning process [37]. In [38], echo
planar imaging (EPI) phased modulation maps were estimated
to remove the inhomogeneity field in the original image. An-
other method, proposed for the inhomogeneity field minimiza-
tion of 4.7T images, modified certain pulses in the modified
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driven equilibrium Fourier transform (MDEFT) imaging [39].
Besides, for MRI contrasts, such as diffusion weighting, magne-
tization transfer ratios, two point quantitative T1, and two point
quantitative T2, in which the final image is a ratio, most of the
multiplicative intensity inhomogeneity is cancelled and the im-
ages are relatively homogeneous. This is because the sensitivity
variation of the receive coil remains unchanged even if the se-
quence parameters are varied.

V. RETROSPECTIVE METHODS

Retrospective methods are relatively general as only a few as-
sumptions about the acquisition process are usually made. These
methods mainly rely on the information of the acquired im-
ages in which useful anatomical information and information
on the intensity inhomogeneity are integrated. A priori knowl-
edge on spatial and/or intensity probability distribution of the
imaged anatomy is used by some methods to facilitate extrac-
tion of information on intensity inhomogeneity. In contrast to
the prospective methods, which can correct only the intensity in-
homogeneity induced by an MR scanner, retrospective methods
can also remove patient dependant inhomogeneity.

A. Filtering Methods

Filtering methods assume that intensity inhomogeneity is a
low-frequency artifact that can be separated from the high-fre-
quency signal of the imaged anatomical structures by low-pass
filtering. However, this assumption is valid only if the imaged
anatomical structures are relatively small and thus contain no
low frequencies that might be mistakenly removed by low-pass
filtering. For most of the anatomical structures imaged by MR
this assumption does not hold, which results in overlap of
anatomy and inhomogeneity frequency spectra. This limits the
feasibility of filtering methods. Besides, high image contrasts
generate filtering artifacts known as edge effects, manifesting
themselves as a distortion of homogeneous tissues near the
edges. The strongest edges that are usually at the object/back-
ground transitions can be removed by either masking out the
background [40], replacing background pixels by average
intensity values [41], [42], or by extrapolating tissue intensities
over the background [1], [3], [43]. Nevertheless, substantial
intensity inhomogeneity usually remains in an image after cor-
rection by these methods [13]. Two main filtering approaches,
homomorphic filtering and homomorphic unsharp masking
(HUM), have been proposed. Morphological filtering [44] and
simple high-pass filtering also belong to this group of methods
but, in contrast to some successful applications to microscopic
images [45], they have not been found useful for MRI.

Homomorphic Filtering: Homomorphic filtering is con-
ducted on log-transformed image intensities. The image
background is usually altered prior to log-transformation by
one of the approaches mentioned above [41]. The input image

is subtracted by its low-pass filtered (LPF) version,
which estimates the inhomogeneity field

(4)

The normalization constant is added to preserve the mean or
maximum intensity of the corrected image, while the corrected

image is finally obtained by exponentiation. The authors in
[46] successfully modified this method to remove intensity in-
homogeneity differences between two longitudinal images, thus
enabling the measurement of cerebral atrophy progression.

Homomorphic Unsharp Masking: HUM was first proposed
by Axel [8] and is probably the simplest and one of the most
commonly used methods for intensity inhomogeneity correc-
tion in MRI. HUM, which is an approximation of classical ho-
momorphic filtering, is very fast and easy to implement. The
inhomogeneity correction field is obtained by low-pass fil-
tering of the input image , divided by the constant to
preserve mean or median intensity. The corrected image
is expressed as a division, which is equivalent to subtraction in
log-domain, of the input image by the inhomogeneity cor-
rection field

(5)

Low-pass filtering can be mean [3], [43], or median based [47],
or implemented by multiplication in Fourier domain [1], [42].
The authors in [40] showed that for the human brain mean fil-
tering produced better results than median filtering.

B. Surface Fitting Methods

These methods fit a parametric surface to a set of image fea-
tures that contain information on intensity inhomogeneity. The
resulting surface, which is usually polynomial or spline based,
represents the multiplicative inhomogeneity field that is used to
correct the input image. According to the image features used
for surface fitting, surface fitting methods are further sorted into
intensity and gradient based methods.

Intensity Based: A parametric surface in the form of thin
plate splines was least squares fitted to intensities of a set of
pixels, which were assumed to belong to the same tissue and
were distributed over the entire image [48]. Manual selection
of pixels corresponding to a dominant tissue and automatic se-
lection, which was based on neural network classification, were
investigated. Although subjective and time-consuming, manual
selection was shown to give better results. In [49], an automated
iterative method was proposed, incorporating segmentation of
homogeneous areas of the major tissue, followed by fitting a
second order polynomial to intensities of the segmented tissue.
A similar approach, using a Gaussian main tissue model, was
applied to estimate the inhomogeneity fields and merge several
surface coil (phased array) images [50]. The major drawback
of these methods is that the inhomogeneity field is estimated
only from intensities of one major tissue and then blindly ex-
trapolated over the whole image. A polynomial surface fitting
method [51] was also proposed in combination with multipass
Gaussian filtering. A combination of B-spline surface fitting and
a histogram based method was proposed in [52].

Gradient Based: The main assumption behind these methods
is that sufficiently large homogeneous areas are evenly dis-
tributed over the entire image so that local gradients of intensity
inhomogeneity can be estimated by local averaging of image
intensity gradients. In [53], a polynomial surface was least
squares fitted to underlying normalized intensities of homo-
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geneous areas. Tissue independent segmentation was used
to obtain the homogeneous areas. Because these were rather
sparsely distributed over the entire volume, not all image
information was used to estimate the inhomogeneity correction
field. By a similar approach, a finite element surface model
was fitted by minimizing the difference between derivatives
of homogeneous areas and the corresponding surface model
[54]. Instead of fitting a surface, some methods obtain the
inhomogeneity field by integrating derivatives estimated inside
homogeneous areas [55]–[57]. Simple polynomial models were
used to extrapolate the gradients outside the homogeneous
areas. The major drawback of these methods is that some
adverse image information may be integrated. These methods
are successful only if homogeneous image areas are large and
distinctive, such as the white matter in brain images.

C. Segmentation Based Methods

Intensity inhomogeneity correction is often a necessary
preprocessing step enabling better image segmentation. On
the other hand, correct segmentation makes intensity inho-
mogeneity correction rather trivial. Intensity inhomogeneity
correction and segmentation can thus be viewed upon as
two intertwined procedures. In segmentation based intensity
inhomogeneity correction methods these two procedures are
merged so that they benefit from each other, simultaneously
yielding better segmentation and inhomogeneity correction.
These intensity inhomogeneity correction methods are further
classified according to the image segmentation method utilized.

ML, MAP Based: The maximum-likelihood (ML) or the
maximum a posteriori probability (MAP) criterion may be
used to estimate the image intensity probability distribution by
parametric models. Finite mixture and more frequently finite
Gaussian mixture models are used and modified to incorpo-
rate intensity inhomogeneity. The models’ parameters can be
estimated by the expectation-maximization (EM) algorithm
[25], [58], iterating between classification and intensity in-
homogeneity correction. An additional class, named “other,”
which had a uniform intensity probability distribution was
introduced in [23] to model the intensities not belonging to any
of the main tissues. Another similar approach uses additional
mixed tissue classes to model the partial volume effect [30],
[59] and background by Rayleigh distribution [60]. Because
the Gaussian model is only an approximation of a single tissue
probability density, several Gaussians can be used per one main
tissue, for example, 3 for white matter and 2 for grey matter
in the brain, and much more for minor, less significant tissues
[22]. A unique approach, first published in [61] and refined later
in [30], upgraded the EM iterative scheme by adding a special
step in which the resulting inhomogeneity field was scaled to
minimize a new criterion, namely, the classification error rate
(CER). In this way, the whole algorithm was primarily guided
by the results that would be produced by a coarse segmentation.
The criterion of minimum image entropy was used in [62]
to estimate the inhomogeneity field, while the classical EM
procedure was implemented to optimize ML in search for
model parameters. To deal with the high number of searched
parameters, e.g. when model parameter estimation or spatial
constraints were added to the classification and inhomogeneity

correction steps, or to speed up the algorithm, optimization
schemes such as generalized EM (GEM) [24], iterative con-
ditional modes (ICM) [59], [63] or expectation conditional
minimization (ECM) [16], [64] have been proposed.

One of the main requirements of the EM based approaches is
the initialization of explicitly modeled classes and spatial distri-
bution of tissues. Initialization can be obtained by manual selec-
tion of representative points for each class [25], which is subjec-
tive and irreproducible. An automatic approach, initially classi-
fying the tissues by intensity thresholding, was proposed in [58]
where a registered set of images was needed to train the classi-
fier. A self-adaptive vector quantization [59] and tree-structure

-means classification [63] were implemented to estimate the
initial class means, standard deviations or brain mask. Other au-
tomatic approaches [22], [24], [60], [65] used a statistical prob-
ability atlas, initially registered to the processed image, to esti-
mate the required parameters.

Because intensity probability models do not exploit the
information about spatial connectedness of neighboring pixels
belonging to the same class, (hidden) Markov random fields
[(H)MRF] were frequently incorporated [59], [63], [64], [66],
[67]. This resulted in improved segmentation, which was less
sensitive to noise and had smoother tissue borders. However, to
avoid over smoothing of tissue borders, spatial connectedness
should not be too strong. The authors in [68] suggested to limit
HMRF smoothing by penalizing only the neighboring intensity
combinations that were implausible due to the specific topology
of the imaged object.

Instead of using image registration only to estimate the ini-
tial model parameters, the authors in [22] proposed an iterative
framework, interleaving segmentation, registration and intensity
inhomogeneity correction to improve tissue segmentation. FGM
(finite Gaussian mixture) was used as a probability model with
intensity inhomogeneity dependant class means. The registra-
tion step in [22] was performed by deforming the tissue proba-
bility maps. The ICM scheme estimated different groups of pa-
rameters, using EM to find the mixture-classification parame-
ters and Levenberg–Marquardt optimization for inhomogeneity
field and registration steps. This algorithm, although rather com-
plex and time-consuming, seems promising due to the integra-
tion of segmentation, registration and intensity inhomogeneity
correction, which had been treated separately in the past.

Fuzzy C-Means: These methods use the standard fuzzy
c-means (FCM) segmentation [69] and modify the objective
function to adapt to intensity inhomogeneity. The main property
of FCM methods is the soft classification model, which assumes
that image voxels belong to more than one class. This is consis-
tent with the partial volume effect observed in MR images and
thus eliminates the explicit modeling of mixed classes, which
is required by the abovementioned FGM models. The authors
in [70] proposed an adaptive fuzzy c-means method, which
multiplies the class centroid values by a function of location,
estimating the intensity inhomogeneity. Spatial regularization
terms, penalizing first and second derivatives of the inhomo-
geneity field, were added to the objective function to preserve
its smoothness. Because the weights of these regularization
terms are difficult to set, they have to be tuned manually. An
automatic procedure based on histogram mode searching was



410 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 26, NO. 3, MARCH 2007

used to set the initial values of class centroids, while the ob-
jective function was minimized by the Jacobi iterative scheme
applied on a multigrid algorithm to speed up the process [70].
The method was later generalized to 3-D multispectral images
and accelerated by the same authors [20]. In [71] and refined
later in [72], spatial information was incorporated by adding a
spatial regularization term that enabled the class membership
of a voxel to be influenced by its neighbors. This approach
proved tolerant to salt and pepper noise, resulting in smoother
segmentation. Again, a regularization parameter had to be
tuned, determining the smoothness of segmentation and, im-
plicitly, also the inhomogeneity field. Another approach was
proposed in [73] where the inhomogeneity field was modeled
by a B-spline surface, while the spatial voxel connectivity
was implemented by a dissimilarity index, which enforced the
connectivity constraint only in the homogeneous areas. In this
way the tissue boundaries were better preserved. Yet another
method that performed local fuzzy c-means classification and
thereby completely avoided the need for modeling the intensity
inhomogeneity function was presented in [74].

Nonparametric: Nonparametric segmentation based inho-
mogeneity correction methods were proposed in [75] and [76],
using nonparametric maxshift or meanshift clustering. The
methods did not require any a priori knowledge on the intensity
probability distribution, e.g., tissue class means and variances,
but blindly classified the voxels according to the main modes
of the feature space that combined voxel intensities and corre-
sponding second derivatives. The latter were incorporated to
exploit the spatial voxel connectivity, i.e., to incorporate spatial
information into classification. Inhomogeneity correction by a
parametric polynomial model is based on iterative minimization
of class square error, i.e., within class scatter, of the intensity
distribution that is due to intensity inhomogeneity.

D. Histogram Based Methods

Histogram based methods operate directly on image intensity
histograms and need little or no initialization and/or a priori
knowledge on the intensity probability distribution of the im-
aged structures. This makes these methods fully automatic and
highly general so that they can usually be applied to various
images with or without pathology. Although a number of seg-
mentation based methods also operate on image intensity his-
tograms, the distinction between the segmentation based and
histogram based methods is that the latter provide no segmen-
tation results.

High-Frequency Maximization: A well-known intensity in-
homogeneity correction method, known as the N3 (nonpara-
metric nonuniformity normalization), was proposed in [15]. The
method is iterative and seeks the smooth multiplicative field
that maximizes the high frequency content of the distribution
of tissue intensity. The method is fully automatic, requires no a
priori knowledge and can be applied to almost any MR image.
Interestingly, no improvements have been suggested for this
highly popular and successful method.

Information Minimization: These methods are based on the
assumption that intensity inhomogeneity corruption introduces

additional information to the inhomogeneity-free image. The re-
moval of intensity inhomogeneity is, therefore, based on con-
strained minimization of image information, which is estimated
by image entropy. Image entropy can be computed from the
original intensity distributions or from the log-transformed dis-
tributions. In the first case, multiplicative correction model has
to be constrained so as to avoid uniform scaling of image inten-
sities (contrast changing), which would otherwise result in com-
pletely uniform image with no anatomical information. On the
other hand, in log-transformed intensity domain, the multiplica-
tive correction model becomes additive and thereby requires
no scaling constraints. However, numerical computation of en-
tropy becomes far more difficult due to the nonlinear log-trans-
formation of image intensities and associated problems with
histogram binning. Nevertheless, the information minimization
methods can be widely applied to different types of MR im-
ages because they use solely the information that is present in
an image, without making assumptions on spatial and intensity
distributions.

An information minimization based intensity inhomogeneity
correction method was first considered in 1995 [77]. Refined
applications on microscopic [27] and MR images [26], [28],
[62], [78] followed in year 2000 and latter. The method in [28]
utilized fast annealing to minimize a three part energy function,
consisting of image entropy, field smoothness constraint and a
mean preserving regularization term. In [26] and [78], image
correction was performed by a linear model consisting of
multiplicative and additive components, which were modeled
by a combination of smoothly varying basis functions that
were constrained to preserve the global intensity statistics.
An interesting attempt to extent the information minimization
method [26] was proposed in [79], optimizing the first-order
conditional entropy. Inter-volume inhomogeneity correction,
removing only the differences between two inhomogeneity
fields to allow intervolume comparisons, was solved by min-
imization of joint volume entropy [80]. In [81], the authors
proposed an iterative correction strategy in which intensity
inhomogeneity correction forces, reducing the global entropy
of the feature space, were estimated for each voxel. Besides
intensities, spatial information in the form of second order
derivatives was incorporated in the feature space. This method
was further extended in [82] with the aim to integrate spatial
and intensity information from multispectral MR images,
i.e., from T1, T2, and proton density (PD) weighted images.
Intensity inhomogeneities of such multispectral images were
removed simultaneously in a four-step iterative procedure.
The advantage of this method was its ability to incorporate
complementary information of the multispectral images and
their derived features for better inhomogeneity correction.

Integration of complimentary information from multispec-
tral images requires that images are well registered, which is
usually the case for multispectral MR images. In general, how-
ever, integration of multispectral images, e.g., computed tomog-
raphy (CT) and MR images, requires multimodal image reg-
istration, which is also often solved efficiently in information
theoretic framework, e.g., by maximizing mutual information.
Therefore, the problem of registration and inhomogeneity cor-
rection, one concerned with transforming an image in spatial
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domain to achieve spatial correspondence and the other con-
cerned with transforming an image in intensity domain to re-
store intensity homogeneity, may both be solved simultaneously
in an information theoretic framework. For example, by trans-
forming a reference image, both in the spatial domain and in
the intensity domain, such that mutual information of the refer-
ence and target images is maximized will bring the two images,
being monomodal or multimodal, in spatial and in intensity cor-
respondence. This suggests that simultaneous information the-
oretic registration and inhomogeneity correction are well worth
further exploration.

Histogram Matching: A histogram matching method pro-
posed in [21] divided the image into small subvolumes in which
intensity inhomogeneity was supposed to be relatively constant.
Local intensity inhomogeneity was estimated by least square fit-
ting of the intensity histogram model to the actual histogram of a
subvolume. The applied histogram model was a finite Gaussian
mixture with seven parameters, initialized from the global his-
togram of the image. No segmentation was required as only
intensity inhomogeneity estimation was needed for each sub-
volume. These local estimates were then tested for outliers and
interpolated by a B-spline surface to produce the final inhomo-
geneity field. Another method [19] found the Legendre poly-
nomial inhomogeneity model by nonlinear optimization based
on a special valley function, which was shaped by the a priori
given mean intensities and standard deviations of the main tissue
classes. As histogram matching methods require several input
parameters and a tissue model, they are far less general as, for
example, the information minimization methods.

E. Other Methods

Three methods that cannot be easily classified into any of the
above categories are briefly described. By the registration based
method proposed in [83], an image undergoing intensity inho-
mogeneity correction was registered to a reference image. Nor-
malized mutual information and a B-spline deformation model
were used to perform multiscale rigid and nonrigid registrations.
The inhomogeneity field was extracted by smoothing and di-
viding the two registered images. The major drawback of this
approach is the requirement for an application-specific refer-
ence image. The second method relies on singularity function
analysis [84]. The main idea behind this method was to correct
an image in such a way that its high frequency spectrum re-
mained unchanged while the intensity inhomogeneity corrupted
low frequency part was removed and later reconstructed by a
model that enforced piecewise intensity constancy in the image
domain. The algorithm works on one dimensional image pro-
files, alternating between columns and rows. The final inho-
mogeneity field is obtained by smoothing the quotient of the
original and the reconstructed image. The method requires no a
priori knowledge or background removal but may be sensitive to
a number of input parameters. The third method [85] combines
a set of techniques for embedding the physics of the imaging
process that generates a class of MR images into segmentation
or registration algorithm, resulting in substantial invariance to
acquisition parameters, as the effect of these parameters on the

contrast properties of various brain structures is explicitly mod-
eled in the segmentation. Besides, the integration of image ac-
quisition with tissue classification allows the derivation of se-
quences that are optimal for segmentation purposes.

VI. EVALUATION STRATEGIES

The aim of evaluation is to experimentally show that a novel
method is feasible for certain applications and that it performs
favorably to other methods under various conditions. To further
substantiate the importance of evaluation let us cite Jain and
Binford [86]: “The importance of theory cannot be overempha-
sized. But at the same time, a discipline without experiment is
not scientific. Without adequate experimental methods, there is
no way to rigorously substantiate new ideas and to evaluate dif-
ferent approaches.”

Many different evaluation approaches have been followed in
the field of intensity inhomogeneity correction. The evaluation
approaches can be classified into two major categories, namely
into qualitative and quantitative evaluations, each of which can
be further subdivided into two and three distinctive categories,
respectively.

Qualitative:

Spatial domain;

Statistical.

Quantitative:

Inhomogeneity field;

Intensity variation;

Segmentation.

Qualitative evaluation is based on subjective visual inspec-
tion of the correction results, while quantitative evaluation re-
lies on certain objective measures that are considered relevant
for a given application. Although quantitative evaluation is con-
sidered more scientific, both qualitative and quantitative evalu-
ations are almost equally important as they provide complimen-
tary information on a method’s performance.

A. Qualitative Evaluation

Qualitative evaluations provide useful information on the
target application, the type and quality of images, the weak-
nesses of the correction method, and the results of individual
steps of the method. For example, it is relatively easy to ob-
serve the severity of the inhomogeneity field in volume slices
or to find any irregularities in the images of the estimated
inhomogeneity field, such as the presence of anatomical struc-
tures. Qualitative evaluation can be carried out either in spatial
domain or by using statistical tools. The former include 1-D
or 2-D (mesh plot) intensity and inhomogeneity field profiles
[54], original and corrected images, their differences, intensity
coded inhomogeneity fields, and intensity coded segmentation
results, which are usually used by segmentation based methods
[63]. Other, less common qualitative evaluations use phase
diagrams [2], manually selected reference points [48], homoge-
neous regions of support [53], volume surface rendering [25],
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probability maps [24], isointensity lines [19] and segmentation
results by tissue delineation [83]. The second class of qualita-
tive evaluation methods relies on the statistics of the original
and corrected images like inhomogeneity field histograms
[15], scatter plots [13], profile of mean slice intensity [84], etc.
Among these, intensity histograms are the most common and
informative.

B. Quantitative Evaluation

Quantitative evaluation is essential for objective comparison
of the results of different correction methods. Three approaches
to quantitative evaluation are commonly used: direct compar-
ison of inhomogeneity fields, estimation of intensity variations
within tissues of interest, and indirect measurement of the ef-
fects of inhomogeneity correction via segmentation.

Inhomogeneity Field Based: By this approach, the extracted
intensity inhomogeneity field is compared to a reference field,
which is either a true inhomogeneity field or its close approxi-
mation. A measure of the quality of inhomogeneity correction
can either be computed by comparing the extracted and refer-
ence inhomogeneity fields or by comparing intensities of the
corrected and reference image. The image background is often
masked out because it contains no information on intensity in-
homogeneity.

The root mean square error (rms) was used in [16] and [40]
to measure the difference between two inhomogeneity fields or
image intensities, denoted by and

(6)

where is a region of interest of size . Two similar mea-
sures, the mean square error (MSE) and the mean square dis-
tance (MSD) were used in [19], [35], and [46]. Because scaling
of the terms affects these measures, the terms have to be
normalized before these measures are calculated [21] and [49].
In this way, only the difference in shape of the inhomogeneity
fields is measured and not their absolute values that contain no
useful information on inhomogeneity correction. The measure
that is inherently insensitive to the absolute values of inhomo-
geneity fields is the correlation coefficient (CC), which has been
used in [13].

The drawback of direct comparison of inhomogeneity fields
is that ideal inhomogeneity-free images or true inhomogeneity
fields have to be known. This limits such evaluation to simu-
lated images unless some approximation of the ground truth in-
homogeneity-free real images is available. The authors in [83],
for example, compared their corrected images to manually cor-
rected images. In all these cases, however, the evaluations are
influenced by the quality of the ground truth.

Intensity Variation Based: The results of inhomogeneity cor-
rection can be quantitatively assessed by estimating the mean
and/or variance of intensities of a tissue of interest before and
after correction. Assuming that the spatial intensity distribution
of a tissue of interest is piecewise constant, its variance or stan-
dard deviation should be reduced if intensity inhomogeneity is
removed. The mean intensity of a tissue, on the other hand,

can be used to estimate global intensity scaling due to inhomo-
geneity correction or to measure the change in contrast between
two tissues of interest. Means and/or variances can be used sep-
arately [41], [57] or combined into more informative measures,
like coefficient of variation (CV) and coefficient of joint varia-
tion (CJV).

Coefficient of variation is defined as a quotient between stan-
dard deviation and mean value of selected tissue class ( )

(7)

CV is invariant to multiplicative uniform intensity transforma-
tion (intensity scaling or contrast), which an intensity inhomo-
geneity correction method could introduce. The quality of in-
homogeneity correction has been quantitatively assessed by the
change/reduction of the CV of a tissue of interest in [10], [15],
[23] and [24]. A drawback of CV is its sensitivity to uniform
additive intensity transformation (brightness), which changes
the mean but not the variance of a tissue. Another drawback of
CV is that it is computed for a single tissue class, which makes
the assessment of the overall inhomogeneity correction difficult
when CV improves for one tissue class but not for others. Yet
another drawback of CV is that it does not provide any infor-
mation on the overlap between intensity distributions of distinct
tissue classes. For example, a correction method may transform
a given image in such a way that the CV of two tissues is re-
duced, while the overlap between the intensity distributions of
the two tissues is increased.

Because of the abovementioned drawbacks of the CV, the co-
efficient of joint variation, which estimates the overlap between
two tissue classes ( and ), was introduced in [26]. CJV,
which is defined as

(8)

is invariant to the uniform linear, i.e., multiplicative and addi-
tive, intensity transformation. The CJV, which approximates the
classification error, was applied in [26], [30], [79], [81], [82],
and [84]. Because CJV and CV can be used to compare different
methods even if full gold standard segmentations are not avail-
able, they have been applied to a large number of real images in
which only small subsets of tissue regions had been identified
[15], [26]. However, CV and CJV do not provide information on
the amount of inhomogeneity remaining after correction unless
ideal inhomogeneity-free images are available.

Segmentation Based: By this approach, inhomogeneity cor-
rection is evaluated via segmentation results. Several measures
derived from the true positive/negative and false positive/neg-
ative segmentations have been proposed. The misclassification
ratio (MCR), a ratio between the number of misclassified versus
all image voxels, has been used in [20], [25], [62], [66], and [73].
The MCR is calculated for all image voxels of interest, while the
Jaccard similarity and the Dice coefficient estimate the segmen-
tation of voxels of one segmented tissue. The Jaccard similarity,
used in [21] and [68], is defined as the ratio between intersec-
tion and union of two sets and , representing the obtained
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and gold standard segmentations, respectively

(9)

The authors in [22], [41], and [73] used the Dice coefficient,
which is a special case of the index, defined as

(10)

In comparison to the Dice coefficient, the Jaccard similarity
is more sensitive when sets are more similar. Other similar
measures that have been used in the past include the accurate
segmentation ratio (ASR) [4], segmentation accuracy (SA)
[72], false positive (FPF) and false negative fraction (FNF)
[59], false positives and true negatives [21], and measurement
of the change of tumor volume [12]. All these segmentation
based measures provide quantitative information on segmenta-
tion accuracy, assuming that gold standard segmentations are
available, which is a highly demanding requirement, especially
for real images. Besides, the quality of inhomogeneity cor-
rection itself is relatively obscured and, therefore, difficult to
assess, both within and especially between different studies.

VII. ANALYSIS OF PUBLICATIONS

In the previous sections, we have addressed the classification
of inhomogeneity correction methods and evaluation strategies.
In this section, the methods are analyzed according to several
features, like the methodological aspect, validation approach
and application. The analysis provides an additional and a more
general insight into the field of intensity inhomogeneity correc-
tion, yet, it is important to note that the most popular approaches
may not necessary be the best ones.

A. Selected Publications

The following analyses was performed on a database of 60 se-
lected publications, 48 journal, and 12 conference papers pub-
lished between 1986 and 2005, dealing fully of partially with
intensity inhomogeneity correction. The criterion for the inclu-
sion of a publication in the database was that at least some re-
sults on inhomogeneity correction were provided. Conference
publications were only included when no corresponding journal
publication was available.

Fig. 2 shows the number of publications per year from 1986
to 2005. The field of intensity inhomogeneity correction became
more active after 1996 and is active ever since. Altogether, the
publications appeared in 23 different journals and conferences.
Fig. 3 illustrates the journals and conferences where the publi-
cations most frequently appeared.

B. Methodology

Some interesting methodological aspects of the published
inhomogeneity correction methods, namely correction strategy,
optimization, modeling, additional processing and a priori
knowledge, are analyzed in this subsection.

Fig. 2. Publications per year.

Fig. 3. Journals and conferences most frequently publishing intensity inhomo-
geneity correction methods.

Fig. 4. The most popular correction strategies.

Correction Strategies: As described in Section III, the
methods can be classified into several categories according to
the basic correction strategy. The strategies that were most fre-
quently followed over the past 20 years are illustrated in Fig. 4.
Much more papers reporting on retrospective than prospective
inhomogeneity correction methods have been published. The
retrospective methods are further classified into segmentation
based methods, surface fitting, histogram based methods and
filtering methods. The segmentation based methods prevailed,
which is probably due to the fact that segmentation is one of the
most important procedures that heavily depends on the quality
of images.

Fig. 5 gives the number of publications of the five most pop-
ular correction strategies per five-year periods. The prospective
methods dominated in years 1986–1995. The more computa-
tionally demanding segmentation and histogram based methods
dominate in the last decade, which is probably due to sufficient
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Fig. 5. The most popular correction strategies per three-year periods.

computer hardware capabilities and the increased importance of
quantitative MR image analysis.

Estimation and Modeling: In intensity inhomogeneity cor-
rection, the inhomogeneity model is defined either by direct
estimation or by optimizing the model’s parameters. The op-
timization based estimation appeared to be slightly more pop-
ular, as it was used in 60% of the published methods, typically
incorporating the EM estimation scheme, coordinate descent,
Powel’s optimization, simulated annealing, or some other gen-
erally applicable optimization scheme. A more simple direct es-
timation of intensity inhomogeneity by which inhomogeneity is
extracted in a single step by filtering, fitting, or by interpolation,
was slightly less popular and usually incorporated into phantom
based, filtering and surface fitting methods.

The basic assumption about the inhomogeneity field that all
methods share is smoothness. Different parametric or nonpara-
metric models were used to assure smoothness. Nonparametric
models smooth the inhomogeneity field estimates either by ex-
tensive filtering or by using spatial regularization terms in the
optimized objective function. The regularization terms usually
penalize first-order or second-order derivatives of the inhomo-
geneity field. The parametric models, on the other hand, explic-
itly model the intensity inhomogeneity and thereby its smooth-
ness, for example by a selection of basis functions, which were
frequently polynomial terms. Some parametric bias models also
use spatial regularization. The statistics of the most commonly
used models is given in Fig. 6. Nonparametric models domi-
nated in the past. The most common parametric models were
polynomials of order 2 to 5 [24], [31], including the Lagrange
polynomials [19]. Spline based models [28] and more specifi-
cally B-splines [15], [21] were also relatively popular, while ex-
ponential [9], thin-plate splines (TPS) [48], and trigonometric
basis functions [22], [80] were seldom used.

Additional Processing and A Priori Knowledge: Many
inhomogeneity correction methods require some additional
preprocessing and/or postprocessing steps to either initialize
the correction or to subsequently improve the results. The
methods that usually do not include these additional steps are
phantom based prospective methods [2], [29], surface fitting
methods [48], [54] and to a lesser extent segmentation based
methods [62]. Fig. 7 illustrates the most frequently used pre-
and postprocessing steps. Background removal, usually exe-
cuted by simple intensity thresholding, was the most common
preprocessing step, closely followed by brain stripping, needed

Fig. 6. The most popular inhomogeneity field models.

Fig. 7. Most frequent preprocessing and postprocessing steps.

to remove all voxels not predicted by the FGM model. Regis-
tration to an atlas, required to initialize the probability density
or spatial tissue distributions, was also a common step. Initial
segmentation was sometimes used for the same purpose in
[19], [59]. Postprocessing steps like intensity normalization
[58], noise filtering [25], inhomogeneity field correction [35],
high-intensity removal [43], nonmodeled tissue removal, and
partial volume [19] removal were applied to enhance the final
results. The authors in [87] studied the interaction between
noise reduction and intensity inhomogeneity correction. They
concluded that noise should be suppressed after intensity inho-
mogeneity correction and that noise filtering could benefit from
the information on the inhomogeneity field.

Fig. 8 shows, that in many publications, reporting mainly
on histogram based, surface fitting and filtering methods, no a
priori knowledge was used to facilitate or improve the results.
A priori knowledge that was most frequently included was the
number of classes and corresponding means and standard devi-
ations, usually required by segmentation based methods. A rich
source of information is the atlas in the form of spatial prob-
ability maps or image intensities, to which the image that is
to be corrected is registered. However, registration, which is a
problem by itself, may introduce errors. Other a priori knowl-
edge, like manual selection of reference points needed for sur-
face fitting or preregistration, was seldom used [48], [58].

C. Validation

In this section, we analyze the publications with respect to the
validation approaches presented in Section VI. Qualitative eval-
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Fig. 8. Commonly used a priori knowledge.

Fig. 9. The most common qualitative evaluation approaches.

uations are studied first, followed by the most common quantita-
tive metrics, comparative evaluation, and finally the evaluation
datasets.

Qualitative Evaluation: Fig. 9 gives the most frequent ap-
plied qualitative evaluation methodologies. In the majority of
papers, correction results were illustrated by at least one figure,
showing the original and corrected image side by side. Extracted
inhomogeneity field, intensity coded segmentation results, and
histograms of intensities or inhomogeneity fields demonstrated
the correction results in about 50% of the papers. Although in-
tensity or inhomogeneity field profiles are simple and illustra-
tive, they have been used in only one third of publications, while
scatter plots and volume rendering appeared even more rarely.

Quantitative Evaluation: The pie chart in Fig. 10 illustrates
the proportions of the three quantitative evaluation approaches,
i.e., inhomogeneity field, intensity variation and indirect seg-
mentation based. Only in 22% of publications quantitative eval-
uations was performed on the inhomogeneity fields, most likely
because the ground true field was not available. The segmen-
tation based approach, evaluating the segmentation results pro-
duced by intensity inhomogeneity correction and segmentation,
was more frequently (37%) used. The most frequent approach
was the intensity variation based evaluation (41%). This was
most likely due to its simplicity, requiring neither ground truth
inhomogeneity fields nor full gold standard segmentations.

Fig. 10. The proportions of quantitative evaluation approaches.

Fig. 11. The most common quantitative metrics.

In Fig. 11, the quantitative metrics are sorted according to the
number of publications they appeared in. The most frequent seg-
mentation based measures, such as MCR, ASR, SA, and FPF,
are summed up in the top column. The CV, which is an inten-
sity variation based measure, was the second most frequently
used, followed by the inhomogeneity field based measures (rms,
MSE, and MSD). The latter measures require ground truth inho-
mogeneity data that limited evaluation to simulated images. The
same holds for the correlation coefficient. The CJV is ranked
quite high, considering that it was proposed lately in 2001.

Comparative Evaluation: Calculating a well defined quan-
titative evaluation metrics on a publicly available ground truth
image dataset enables objective comparative evaluation of var-
ious methods. However, a correct and optimal implementation
of others methods is not straightforward and may require in-
teraction with different authors, even if the code is publicly
available. Moreover, since the results of comparative evalua-
tions may be highly data dependent, it is important that papers
about new methods all use the same standard datasets and eval-
uation metrics.

Fig. 12 shows the inhomogeneity correction methods that
were most frequently used for comparative evaluations. The
nonparametric nonuniformity normalization (N3) method [15]
has obviously become the standard method against which
other methods are compared. The fuzzy segmentation method
(FCM) and its adaptive version (AFCM) [20] were also often
used for comparative evaluations. HUM [40], [47] was usually
compared to variations of this method. Adaptive segmentation
(AFGM-EM) [25], Adaptive Markov random field segmenta-
tion (AMRF) [88] and statistical parametric mapping based
methods (SPM99) [89] have each been comparatively evaluated
only twice. Most methods, 17 in total, have been comparatively
evaluated only once and are thus not shown in Fig. 12.
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Fig. 12. Most frequently used methods for comparative evaluations.

Fig. 13. The number of methods used for comparative evaluations.

Fig. 13 illustrates the number of methods that were compared
in the analyzed publications. Surprisingly, in 35 out of 60 pub-
lications no comparative evaluations were reported. Studies in-
cluding comparisons of three or more methods were very rare.
The papers before 1994 contained no comparisons, while nowa-
days in more than two-thirds of publications the novel method
is compared to at least one other method.

Evaluation Image Datasets: The reliability of quantitative
evaluation depends on the quality of the gold standard. Sim-
ulated images seem attractive in this respect but usually real
images, better representing anatomical and image quality vari-
ations, are needed to objectively estimate the quality and fea-
sibility of the inhomogeneity correction methods. The form of
the gold standard depends on the evaluation metrics. In inho-
mogeneity field based evaluations, gold standard inhomogeneity
fields are usually obtained by fitting inhomogeneity fields to in-
tensities at reference points manually selected within the same
tissue. Intensity variation based evaluations require either par-
tial image segmentation, i.e., extractions of small subregions of
pure tissue regions, or complete segmentation. The latter is also
required for segmentation based evaluations. Because complete
segmentation is far more demanding then partial, it is obtained
either manually or semiautomatically. The analysis of publica-
tions revealed that the number of manually labeled real images
was small from the beginning and is lately even decreasing, in-
dicating that quantitative evaluations are nowadays mostly con-
ducted on simulated and much less on manually labeled real
images.

Other important aspects of evaluation, directly related to the
evaluation reliability, are the size of image datasets and type of
images. Three types of images have been typically used: syn-
thetic, containing abstract objects such as checkerboards, sim-

Fig. 14. Median and minimal number of all images used for evaluations.

ulated (e.g., the BrainWeb simulator [90]), and real (e.g., in-
ternet brain segmentation repository ). Fig. 14 shows that in
general the median number of images used for evaluation in-
creases. However, the minimal number of images in some pub-
lications still remains surprisingly low.

The steep rise of the median number of images used for eval-
uations in the last decade is related to the development of the
BrainWeb simulator [90]. Considering all the publications after
1997, 41% of the simulated images came from this simulator.
In the last decade, the median number of real images remains
constantly around four. Surprisingly, there are still publications
not demonstrating the performance of novel inhomogeneity cor-
rection methods on real images. Although the number of papers
with five or more real images used for evaluation is constantly
increasing, the proportion of such papers does still not exceed
10% of the published papers.

D. Applications

All the 60 analyzed publications are summarized in Table I,
listed in the order of publication year and categorized ac-
cording to the inhomogeneity correction method, magnetic
field strength, type and number of images used for evaluation,
and imaged anatomical structures. Methods that are, to the best
of our knowledge, available on the internet are marked by
and corresponding internet addresses are given at the bottom of
Table I.

Table I reveals that most of the published inhomogeneity
correction methods were applied on T1 brain images acquired
by 1.5T scanners. Applications on images of other anatomical
structures, sequences and scanners were very seldom, which
indicates that there is still much room for further development
of inhomogeneity correction methods.

Numerous applications and evaluations of methods on MR
images of human brain reflect the fact that the majority of
quantitative image analysis research in the last two decades has
been concentrated on the brain. As a result, many published
methods are highly brain specific and cannot be applied to other
anatomical structures without major modifications. Table I
shows that 21 out of 22 segmentation based methods were
applied exclusively to brain images. Therefore, the application
of the most advanced segmentation based methods, especially
those utilizing special a priori knowledge, to images of other

1http://www.cma.mgh.harvard.edu/ibsr/
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TABLE I
SUMMARY OF THE ANALYZED PUBLICATIONS

anatomical structures and also to brain images with pathology
may not be straightforward.

The applicability of a certain inhomogeneity correction
method depends also on the number of different MR image
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sequences that can be corrected without special modifications.
Table I illustrates that most of the methods were tested on T1
and much less on T2 and PD weighted images. Only 17 out
of 60 papers reported the results on T1, T2, and PD weighted
images. Another important application issue is the strength of
the magnetic field, which determines the magnitude and shape
of intensity inhomogeneity. Table I shows that the great ma-
jority of images were acquired by 1.5T scanners. Applications
of correction methods to images acquired by modern high
magnetic field scanners of 3T and more, typically exhibiting
more dynamic inhomogeneities, are still very few.

VIII. DISCUSSION

An overview of methods for intensity inhomogeneity correc-
tion in MRI has been presented. Intense research in the field, re-
flected in the number of publications, started after 1996, when
inhomogeneity correction methods were first combined with
segmentation [25]. Some promising and fundamentally new ap-
proaches, such as high-frequency maximization [15], and infor-
mation minimization [26], [77], appeared a few years latter. In
the last two years, two promising approaches have been pro-
posed. The first is based on merging inhomogeneity correction,
segmentation and nonrigid registration [22], while the second is
based on reconstructing the image from high-frequency spectra
by singularity function analysis [84]. Recently, considerable ef-
fort has been put into automating the methods and minimizing
the number of parameters that have to be tuned manually, thus
making the methods less user-dependant, more practical, objec-
tive, and potentially applicable to various images. Because cer-
tain parameters will always have to be set empirically, parameter
perturbations have been studied in the past [15], [20], [53], [59],
[60], [83], however, many more systematical studies on this sub-
ject will have to be conducted in the future.

The analysis of numerous publications revealed that the ma-
jority of evaluations was conducted on human brain images. The
choice of MRI brain images was most probably driven by the
clinical interest, excellent image quality, lack of motion, image
and ground truth availability, and by challenging image analysis
problems and applications related to the brain. When intensity
inhomogeneity correction methods had been applied to images
of other structures than the brain they were usually only qualita-
tively evaluated. The main reason for less intensively using im-
ages of other anatomical structures is the lack of gold standard
in the form of manually labeled tissues, selected regions of in-
terest or inhomogeneity fields fitted to manually selected refer-
ence points [83]. The accuracy of a manually defined gold stan-
dard is generally problematic because a large number of voxels
has to be manually labeled in 3-D. One practical solution to this
problem is to first perform some supervised segmentation by
a simple segmentation method [28], followed by manual cor-
rection of segmentation errors [12], [49]. Another solution is
to manually segment or label only small regions or volumes of
pure tissue [15], [26], [57]. That manual labeling had been prob-
lematic was acknowledged in [25], where the authors asked five
human experts to segment brain tissues. However, interexpert
variability was usually smaller than the accuracy of the auto-
matic method [60], [63].

While the quality of real image gold standards remains
questionable, image simulators, such as the BrainWeb [91],
offer highly accurate reference data but inherently lack natural
anatomical variability and image acquisition artifacts that are
usually encountered in real images. The results of the methods
published in the last few years indicate that simulated images
can be almost perfectly corrected so that improvements in the
performance of a novel method can only be revealed when
tested on real images. The authors in [83] declined to use
simulated data because these did not simulate tissue substruc-
tures and phenomena that were typical to the aging human
brain. Therefore, better simulators that would model additional
anatomical phenomena and image artifacts, especially the ones
that are encountered in high magnetic field devices of 3T and
more, are needed. There were already some efforts in this
direction [6], [92].

The main goal of comparative quantitative evaluation of dif-
ferent methods is to objectively demonstrate the performances
of existing and novel methods. However, the essential prerequi-
sites for comparative evaluations are publicly available ground
truth data, objective evaluation metrics, credible implementa-
tions of the methods and corresponding parameter selection,
each of which is a challenging problem per se. A lack of publicly
available ground truth data can be attributed to three reasons,
namely to legal issues, to the high amount of required resources
to obtain such data and to the lack of will to share the data, which
is too often (un)justified by the first two reasons. The availability
of evaluation metrics seems to be a rather well solved problem,
although there is still much room for improvements, especially
for highly task-specific purposes. Finally, obtaining credible im-
plementations of the methods and corresponding parameter se-
lection is highly problematic, requiring a lot of interaction with
the authors, even when the code is publicly available. A list
of some publicly available inhomogeneity correction methods
can be found at the bottom of Table I. Some problems asso-
ciated with code implementation can be avoided by assessing
the original implementation via internet. An example of this ap-
proach is the implementation of the information minimization
method [26]. However, the most feasible solutions to the prob-
lems associated with comparative evaluations is either to con-
duct a joint evaluation by several authors of inhomogeneity cor-
rection methods as in [13], or to construct and maintain a blind
evaluation site on the internet, which strongly calls for imple-
mentation.

Besides evaluation issues, possible future challenges of in-
tensity inhomogeneity correction lie in the correction of high
magnetic field MR images that exhibit severe intensity inhomo-
geneity [93]–[95], in multispectral intensity inhomogeneity cor-
rection, and in applications to MR images of other anatomical
structures than the human brain.

IX. CONCLUSION

Methods for intensity inhomogeneity correction in MR
images have been reviewed. The methods and validation
approaches were classified according to various features.
Additional insight into the field of intensity inhomogeneity

2http://lit.fe.uni-lj.si/shading
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correction was provided by a detailed analysis of numerous
publications that appeared in the last two decades. A number of
important issues have been emphasized, indicating that inten-
sity inhomogeneity correction is still not a completely solved
problem. Because of this and also because of the evolving MRI
technology and associated applications, the problem of inten-
sity inhomogeneity correction will certainly continue to receive
a lot of scientific attention in the future. Besides, validation
issues should receive much more attention than in the past.
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