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Adiabatic pulses are sometimes considered to be mysterious and exotic entities which are difficult to understand,
complex to generate and impractical to implement. This work is an attempt to bring familiarity and to fulfill the
preliminary needs of anyone interested in learning more about this subject. The response of magnetization to
stimuli produced by adiabatic pulses is analyzed using vector representations in a frequency modulated rotating
frame. The first section deals with basic principles of amplitude and frequency modulated pulses and a vector
representation in a second rotating frame is used to explain how the adiabatic condition can be satisfied. The
subsequent section explains the principles of offset independent adiabaticity. These principles are then used to
design optimal functions for the amplitude, frequency, and magnetic field gradient modulations for adiabatic
inversion pulses. The last section considers some practical aspects for those who want to develop methodologies
involving adiabatic pulses. © 1997 John Wiley & Sons, Ltd.
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INTRODUCTION

When NMR was first performed,1, 2 resonance was achieved
by sweeping the amplitude of the polarizing magnetic field
B0 in the presence of a perpendicular field B1 which
oscillated at a constant radio frequency (RF). This con-
tinuous wave (CW) approach has since been replaced by the
pulsed NMR experiment3 which is performed in a static B0

and uses a pulsed B1 to excite the full band of spectral
frequencies simultaneously. Typically, the carrier frequency
of the pulse remains constant and is applied at the center of
the spectral region of interest. In this review, we examine an
alternative approach in which the carrier frequency varies
with time during the pulse. These frequency-swept pulses,
known as adiabatic pulses, have benefitted from recent
advances which have expanded their capabilities and
popularity in applications ranging from in vivo imaging to
high resolution spectroscopy of isolated molecules. In
analogy to the classical CW experiment, the different
spectral components are rotated in succession during the
adiabatic frequency sweep. When the total sweep time is
short relative to T1 , the transient response of the spin system
can be induced, which allows observation of NMR
phenomena (e.g. FIDs or echoes) related to the pulsed
method. By rapidly sweeping the frequency of the adiabatic
pulses, NMR experiments can be performed in the same
manner as the pulsed experiment (i.e. the length of adiabatic

pulses can be short enough to permit their use in most pulse
sequences). In this manner, the advantages of both classical
CW and pulsed NMR approaches can be exploited.

In a sweep of either B0 (classical experiment) or RF pulse
frequency (adiabatic experiment) from one side of reso-
nance to the other, the net rotation of the magnetization
vector M is highly insensitive to changes in B1 amplitude.
This desirable property has led to the common use of
adiabatic pulses in NMR experiments performed with
surface coils. Although the B1 produced by a surface coil
varies throughout space, the sensitivity gain provided by
such coils is a major advantage for many in vivo NMR
applications. Within the sensitive volume of a typical
surface coil, the amplitude of B1 varies by >10-fold, which
means the flip angle also varies by >10-fold across the
sample when conventional (constant frequency) pulses are
transmitted with this coil. In many experiments, flip angle
errors cause sensitivity losses, quantification errors, and
artifacts (e.g. undesirable coherences). Adiabatic pulses
offer a means to rotate M by a constant flip angle, even
when B1 is extremely inhomogeneous.

Across the spectral bandwidth of interest, spins with
different precession frequencies (isochromats) are sequen-
tially rotated as the frequency sweep vRF(t) approaches the
resonance frequency v0 of each isochromat. With some
types of adiabatic pulse, such as adiabatic full passage
(AFP), the bandwidth DV is dictated solely by the range of
the frequency sweep. For the spins precessing within this
frequency band, the flip angle will be uniform, provided that
the orientation of the effective magnetic field changes
slower than the rotation of M about this effective field. This
requirement, which is known as the adiabatic condition, can
be satisfied by using a sufficiently high B1 amplitude or by
a slow frequency sweep. With the latter method, DV can be
arbitrarily wide, even when using low peak RF power,
provided that the pulse length Tp can be sufficiently long.
The ability to achieve uniform flip angles over broad
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bandwidths with low B1 amplitude is a unique feature of
these adiabatic pulses. With conventional constant-fre-
quency pulses, DV is always inversely proportional to Tp ,
whereas DV and Tp are independent parameters in certain
types of adiabatic pulses. The ability to invert magnetization
uniformly across wide bandwidths with arbitrarily low B1

amplitude has led to a major advance in broadband
decoupling with minimal sample heating in high resolution
NMR applications.4–8 With these broadband pulses, in vivo
NMR can also benefit from reduced peak RF power
requirements and the ability to minimize voxel displace-
ment for different chemical shifts.

For almost two decades, major efforts in NMR research
have focused on the design of complex RF pulses to
compensate for changes in B1 amplitude and/or to increase
bandwidths. A close relative of adiabatic pulses is the
composite pulse, which consists of a train of rectangular
pulses of different phases.9, 10 Although composite pulses
can be derived to compensate for >10-fold variation of B1

(e.g. see procedure in Ref. 10), adiabatic pulses generally
offer the greatest combined immunity to B1 inhomogeneity
and resonance offsets for a given amount of RF power.

In this review, adiabatic pulses will be analyzed theoreti-
cally and explored with vector diagrams. Our purpose is to
provide an understanding of how magnetization vectors can
be rotated by a constant angle, even when B1 is variable.
Pulses to be described include adiabatic half-passage (AHP)
and full-passage (AFP), both of which are commonly
exploited to generate uniform excitation (90°) and inversion
(180°) in surface coil applications. The discussion will
include a relatively new class of composite adiabatic pulses
(BIR-1 and BIR-4) which can uniformly rotate magnetiza-
tion vectors by any desired angle. Also included is an
extensive discussion on the design of modulation functions
to be used in pulses to allow rotations that are invariant with
frequency offsets. A general goal is to provide an under-
standing of the most common types of adiabatic pulses, with
mention of how these pulses can be advantageous in some
experimental applications.

BASIC PRINCIPLES

Visualizing adiabatic pulses

A classical description of these adiabatic pulses can be
understood by considering the components of the magnetic
fields and M in a reference frame that rotates at the
instantaneous frequency vRF(t ). By convention, this frame
is called the frequency-modulated (FM) frame with axis
labels x9, y9, z9. In the FM frame, the direction of RF field
vector B1(t ) remains fixed during an adiabatic passage.
When the frequency of the pulse deviates from the Larmor
frequency v0 , a magnetic field with amplitude equal to
Dv/g is encountered along the z9-axis, where
Dv=v0 2vRF. Figures 1(a) and 1(b) show examples of
B1(t ) and Dv(t ) modulation functions for adiabatic passages
(AHP and AFP).

In the FM frame (Fig. 2(a)), the effective field Beff(t ) is
the vector sum of the longitudinal field Dv/g and B1(t ). In
an adiabatic passage, vRF is time dependent, and therefore
Beff(t) changes its orientation at the instantaneous angular
velocity, da/dt, where

a(t )=arctanFgB1(t )
Dv(t)G (1)

At the beginning of the pulse, vRF!v0 , and Dv is at its
maximum value (Dvmax ). Initially Dv/g is very large
relative to B1; thus, the initial orientation of Beff is
approximately collinear with z9. As vRF(t ) begins to
increase, Dv(t ) decreases and Beff rotates toward the
transverse plane. When vRF(t )=v0 , Beff equals B1 . At this
point, an AHP (90° excitation) has been completed. To
perform an AFP, the frequency sweep continues past
resonance toward 2Dvmax , leading to a final Beff orientation
along 2z9. During the adiabatic passage, M follows Beff(t ),

Figure 1. Examples of four adiabatic pulses. Adiabatic passages: (a) AHP and (b) AFP; and
B1-insensitive rotations, (c) BIR-1 and (d) BIR-4.
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provided that the adiabatic condition, |gBeff(t )|@ |da/dt|, is
satisfied for all t.

Vector description of adiabatic passage: FM and Beff

frames

The vector analysis in the FM frame is inadequate to explain
why M follows Beff(t) during an adiabatic sweep. For this
purpose, it is necessary to define a second frame of
reference which rotates with Beff(t) called the ‘Beff frame’
with axis labels x0, y0, z0. Figure 2(a) depicts the
relationships beween the FM and Beff frames during an
adiabatic passage. Initially, the two frames are super-
imposable. During the pulse, the Beff frames changes its
orientation relative to the FM frame at the rate da/dt, and
Beff remains collinear with the z0-axis of the Beff frame. By
the end of the pulse, the two frames are related by an angle
which is the net Beff sweep angle (and flip angle). Figure
2(b) shows the relationships between M and the magnetic
field components in the Beff frame. The rotation of the Beff

frame about the y9-axis results in a magnetic field with
instantaneous magnitude (da/dt)/g along the y0-axis. Thus,
in the Beff frame, the resultant magnetic field E(t) is the
vector sum of Beff(t) and g21(da/dt)ŷ0. For simplicity, let
the B1(t) and Dv(t) functions be such that Beff and da/dt are
constants. In this case, M simply precesses about E in the
cone of angle «. As shown in Fig. 2(b), M never strays
beyond an angle 2« of Beff, and therefore, M also remains
within an angle 2« of Beff in the FM frame. When the
adiabatic condition is well satisfied, « is small and
E(t)ÅBeff(t). Furthermore, for components of M that are
initially perpendicular to Beff(0), the angle between Beff(t)
and M remains within 90°±« (i.e. M remains approximately
perpendicular to Beff(t)).

The classical adiabatic passage is insensitive to changes
in the magnitude of B1 only when the net rotation angle is
a multiple of 90°, since the final orientation of Beff is
insensitive to changes in B1 amplitude only when the final
value of |Dv(t) | is zero (e.g. AHP) or is large relative to the
final value of B1(t) (e.g. AFP). In addition, the adiabatic
passages (AHP and AFP) are useful only for rotating a
single component of M from one point to another and
cannot accomplish the ‘plane rotations’ that many experi-
ments require. For example, to generate optimal spin echo

(SE) signal, the refocusng pulse used in a SE pulse sequence
must rotate the components of M in the x9y9-plane about an
axis which is invariant to changes in v0 and B1 amplitude.
Although an AFP pulse can sometimes produce an observ-
able echo, such applications generally yield poor results
since the phase of the resultant magnetization varies as a
function of v0 and B1 amplitude. Alternatively, as described
below, the use of ‘Beff flips’ allows the creation of composite
adiabatic pulses which can accomplish plane rotation.11–17 In
addition, adjustable phase shifts can be introduced in some
of these composite adiabatic pulses to allow the formation
of any desired flip angle, while retaining B1 insensitiv-
ity.14–16, 18 This latter type of pulse is often called a ‘universal
rotator’ since any specified flip angle can be induced for all
components of M lying perpendicular to a constant rotation
axis (i.e. a plane rotation of any desired angle).

Adiabatic plane rotation pulses: BIR-1 and BIR-4

Universal rotations can be accomplished with the class of
composite adiabatic pulses known as B1-insensitive rotation
(BIR). BIR pulses (Figs 1(c) and 1(d)) can uniformly rotate
all components of magnetization lying in a plane perpendi-
cular to the rotation axis which remains constant despite
changes in B1 amplitude. The first generation plane rotation
pulse known as BIR-1 has the disadvantage of producing
nonuniform response for Larmor frequencies v0 not equal to
the central frequency vc in the sweep range of vRF(t).
However, a composite adiabatic pulse known as BIR-4,14, 15

which consists of double BIR-1, provides a constant
rotation axis for moderate resonance offsets
(|V |= |v0 2vc |>0). Although BIR-1 does not possess this
latter advantage, this pulse is simpler than BIR-4. Thus, we
begin with a vector description of BIR-1.

The motions of Beff and M during a 90° BIR-1 of length
Tp are shown in Figs 3(a–d). The initial phase of B1 is
arbitrarily chosen to coincide with x9. At the beginning of
BIR-1, vRF is applied on resonance (Dv(0)=0), Thus,
unlike the classical passage described in the previous
section, initially Beff lies in the transverse plane and is
perpendicular to M (i.e. a(0)=90°). A vector analysis
similar to that performed in the previous section can be used
to prove that the angle between Beff and M will remain
between 90°2« and 90°+« during the pulse. To simplify

Figure 2. Vector diagrams showing the effective field and its components in two rotating
frames of reference. (a) Relationship between the FM frame, x9, y9, z9 (thin axes) and the Beff

frame, x0, y0, z0 (thick axes). (b) Magnetic field components and evolution of the
magnetization vector (M) in the Beff frame.
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the problem, here we assume that the adiabatic condition is
well satisfied (|gBeff(t) |@ | (da/dt) |), so that « can be set to
zero. During the first half of BIR-1, Beff sweeps from x9 to
z9, while M rotates about Beff (Fig. 3(a) and (b)). At t=Tp /2,
the orientation of M can be obtained from the solution of the
Bloch equation,

dM
dt

=[M3gBeff]=FM3
dc

dtG (2)

where dc/dt is the rate of change of M around Beff since the

Figure 3. (a)–(d) Evolution of Beff and M in the FM frame during a 90° BIR-1 (and the
first half of a 180° BIR-4). Thick, curved arrows represent precession of M around Beff.
The evolution of Beff is implied by the thin, curved arrows and the orientation of the Beff

frame at each time point (t=0, Tp /2 and Tp) is indicated by the double primed axes in
parentheses. Beff evolves towards z9 (a), while M remains perpendicular to it and
disperses due to B1 inhomogeneity (b). At t=Tp /2, Beff is instantaneously inverted and
the transverse component of Beff (i.e., B1) is phase shifted by 270° (c). During the second
half of BIR-1, Beff evolves towards 2y9 and drives M back to its initial coherence, which
now takes place along 2x9 of the FM frame (d). This represents the final state
produced by a 90° BIR-1 and the halfway condition for a 180° BIR-4.

Figure 3. (e)–(h) Second half of a 180° BIR-4. Beff continues to evolve from the previous
state (d) towards z9 (e). The process of dispersion (f) and coherence recovery (g)
repeats with the second Beff flip accompanied by a 2270° phase shift. The final state (h)
is achieved with Beff along its initial orientation, but with M inverted in the FM frame.
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equation has the form of the angular momentum precession
equation.19 Provided that the adiabatic condition was
satisfied throughout the first segment of the pulse, M is in
the x9y9 plane at t=Tp /2 and the accumulated rotation angle
(c) about Beff at this time is simply:

c(Tp /2)=2gETp/2

0

Beff(t)dt (3)

At t=Tp /2, an instantaneous Beff flip is created by jumping
the frequency from Dvmax to 2Dvmax (see BIR-1 in Fig. 1).
To produce the desired flip angle u, the phase of B1 is
simultaneously shifted by Df=180°+u. In the present
example (90° BIR-1), Dv=270°. During the second half of
the pulse (Figs 3(c) and 3(d)), Beff sweeps from 2z9 to 2y9,
while M rotates in the opposite sense about x0, so that the
net c rotation for the pulse is zero. Thus, the central Beff flip
together with the subsequent time reversal of the modula-
tion functions, compensate (refocus) the c rotations which
took place during the first and second halves of the pulse
(i.e. ctot =0). This phenomenon is equivalent to a rotary
echo20 in the Beff frame. The Df phase shift determines the
flip angle and the final orientation of the Beff frame relative
to the FM frame. After this 90° BIR-1, the Beff frame is
related to the FM frame by a 290° rotation about y9 and a
290° rotation about x9. In the FM frame, the net rotation of
M is equivalent to a 90° rotation about x9, followed by a 90°
rotation (phase shift) about z9. It is also possible to show
that BIR-1 can induce any flip angle by setting
Df=180°+u, in which case the net rotation of M is
equivalent to a u rotation about x9, followed by a phase shift
of u. Although Fig. 3 shows only the motions for a
magnetization vector initially oriented along z9, the plane
rotation properties of the pulse can be revealed by
performing similar vector analyses using other initial
orientations of M.

In the presence of a resonance offset V
(=v0 2vRF(0)≠0), the performance of BIR21 degrades for
two reasons. First, a rotary echo in the Beff frame may not be
achieved, since ctot depends on B1(t) and v0 according to:

ctot =2ETp/2

0

Ï(v1(t))
2 +(v0 2vRF(t))

2 dt

+ETp

Tp/2

Ï(v1(t))
2 +(v0 2vRF(t))

2 dt (4)

where v1(t)=gB1(t). When V≠0, the first and second
integrals in eq. (4) are unequal, and therefore, the net
rotation of M about Beff is no longer zero. As described
further below, this first problem is eliminated with BIR-4,
which is essentially double BIR-1. Secondly, in the presence
of a resonance offset, the initial orientation of Beff is no
longer perpendicular to z9, but is given by the angle:

a(0)=arctanF v1(0)

(v0 2vRF(0))G (5)

As |v0 2vRF(0) | increases, Beff(0) acquires an increasing
longitudinal component in the FM frame, and as a result, an
increasing component of the initial longitudinal magnetiza-
tion is spin locked to Beff. In BIR-4, the component of M
that becomes spin-locked to Beff is returned to z9 by the end
of the pulse, since the initial (t=0) and final (t=Tp)
orientations of Beff are the same. As a consequence, the

desired flip angle is not acheived for an increasing fraction
of M as frequency offset increases. Like conventional
pulses, the only way to alleviate this problem is to increase
B1 amplitude.

The complete sequence of diagrams in Fig. 3 depicts the
vector motions of BIR-4. BIR-4 is a composite adiabatic
pulse consisting of four segments and two Beff flips, creating
a double rotary echo in the Beff frame. The third segment
begins (Fig. 3(e)) where BIR-1 ends (Fig. 3(d)). BIR-4 uses
two phase shifts (Df1 and Df2) to produce a flip angle
equal to u, where

Df1 =180°+
u

2
(6)

Df2 =2180°+
u

2
(7)

With BIR-4, the u rotation always takes place about an axis
which coincides with the initial direction of B1 (x9 in the
present example). Furthermore, ctot is always zero following
BIR-4, since c1 =2c3 and 2c2 =c4 (subscripts denote the
c values accumulated in each of the four segments of BIR-
4). Of course, satisfactory performance requires that the
modulation functions fulfill the adiabatic condition and that
v0 is contained in the frequency sweep vRF(t).

Some applications: adiabatic solvent suppression and
spectral editing

One of the unique features of BIR-4 (and BIR-1 on
resonance) is the fact that the rotation angle is determined
simply in the Df phase shifts. These phase shifts can be
achieved not only by shifting B1 phase, but also by allowing
the magnetization vectors to precess in the transverse plane
during finite delays inserted in the pulse at the points where
Df1 and Df2 normally occur. In the absence of RF
irradiation, evolution during each of these delays takes
place according to the rotating-frame Hamiltonian describ-
ing the spin system. The net transformation achieved by
BIR-4 with one or more delays then depends on the
combined effects of the Df shifts of B1 and the spin
evolution that occurred during the delay(s). This general
principle forms the basis for a whole series of methods that
discriminate based on the spin evolution during the delay(s).
These include solvent-suppressive adiabatic pulses,21–24

adiabatic spectral editing based on spin–spin coupling
(BISEP),25, 26 adiabatic multiple quantum coherence filter-
ing,26, 27 and adiabatic polarization transfer.26, 28–30 These
pulses and pulse sequences accomplish their tasks while
providing a high degree of compensation for B1 inhomoge-
neity and are, therefore, particularly advantageous for in
vivo surface coil studies.

MODULATION FUNCTIONS

The recent popularity of adiabatic pulses in MRI and
spectroscopy is a predominant factor leading to the rapid
progress in the development of these types of pulses. As an
example, an analytical solution of the Bloch equations
written in the Ricatti form yielded an amplitude and
frequency modulated pulse known as the hyperbolic secant
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pulse31, 32 (hereafter called HS pulse), which now enjoys
wide popularity in high resolution and in vivo NMR. The
HS pulse is an adiabatic full passage composed of a
hyperbolic secant function for amplitude modulation and a
hyperbolic tangent function for frequency modulation. An
extraordinary property of the HS pulse is its insensitivity to
variations of B1 intensity approaching several orders of
magnitude. The desirable plateau of the inversion profile
and the sharpness of its transition zones were thought to be
unique and curious features of these particular modulation
functions. The flat response of the inversion profile was the
first known manifestation of offset independent adiabaticity
(OIA), although the reason for this was not well understood
until recently. In this section we present the theoretical basis
for the generation of any pulse shape which can exhibit
offset independent adiabaticity, even when the resonance
offset is time dependent. A similar development restricted to
constant resonance offsets can be found in Refs 33, 34.

Many different functions have been proposed to drive the
frequency (Dv(t)) and amplitude (v1(t)) modulations of
adiabatic pulses.6, 15, 16, 19, 31, 32, 35–54 Many of these modulation
functions were derived from theoretical analyses consider-
ing only the isochromat at the center of the excitation band
(V=0); consequently, the efficiency of these pulses gen-
erally degrades as the resonance offset increases except
when using the HS pulse.

Modulation functions optimized for specified ranges of
B1 amplitude and/or resonance offset have been derived
from considerations of the criterion for adiabaticity.55 An
analytical method, known as NOM,40, 41 requires a numerical
integration which yields the optimal time dependence of the
driving functions for Dv(t) and v1(t). Here we use a similar
approach to broaden the bandwidth of AFP pulses while
minimizing RF power.

Offset-independent adiabaticity (OIA)

For the sake of clarity, we first consider offsets, V, produced
for example by a constant gradient or chemical shift. Our
approach keeps the average RF power constant over the
desired bandwidth, DV. This condition is essential to
perform rotations uniformly over a large DV using either
amplitude modulation at a constant pulse frequency or
combined amplitude and frequency modulation. Amplitude-
modulated (AM) pulses (e.g. sinc pulses) operate by
distributing equal amounts of power for every frequency in
the bandwidth at the same time. In the method used here, the
energy is distributed uniformly over the bandwidth, but
sequentially in time.38 This requirement can be fulfilled by
adiabatic pulses defined by an AM function:

v1(t)=[v0 2vRF(t)ẑ9=gB0
1F1(t)x̂ (8)

and a frequency-modulated (FM) function;

Dv(t)=[V2AF2(t)]ẑ9 (9)

=[v0 2vRF(t)]ẑ'

where B0
1 and A are the B1(t) and frequency sweep

amplitudes, respectively, and g is the gyromagnetic ratio in
Hz/Gauss. Equations (8) and (9) describe the components
of the effective field experienced by an isochromat with
Larmor frequency vo, in a frame rotating around B0ẑ with
instantaneous frequency vRF(t) (i.e. the FM frame). As in
Ref. 40, we use these equations to express the adiabatic
condition as a ratio K, which here is a function of V and t.

For the time interval equal to the pulse duration Tp and for
the offset interval |V |<A,

K(V, t)=U gBV
eff(t)
·a U=

A2

gB0
1

[(gB0
1F1(t)/A)2 +[F2(t)2V/A]2]3/2

| (F2(t)2V/A)
·
F1(t)2F1(t)

·
F2(t) |

@1 (10)

where BV
eff(t) is the effective field as seen by an isochromat

at offset frequency V and ·a is the rate of change of the
BV

eff(t) orientation expressed in hertz. Our requirement is that
the condition stated for K(V, t) (eq. (10)) must be equally
satisfied for all values of V inside the specified bandwidth.
In other words, K is defined to be constant in V. It follows
that K(V, t) can be calculated for all specific times t=tV

when the isochromat at V is on resonance,

F2(tV)=V/A (11)

giving;

K(tV)=
(gB0

1F1(tV))2

A
·
F2(tV)

@1 (12)

Hence, the identity;

K(tV)A
·
F2(tV)=(gB0

1F1(tV))2 (13)

specifies the relationship between the two driving functions
F1(t) and F2(t). It states that, for all isochromats with
|V |<A, v1(tV)2 must be much larger than the rate of change
of the frequency sweep D·v(tV) by the same factor K(tV).

To illustrate the basis of OIA, Fig. 4 shows the field
components at three different times during an AFP pulse for
the case where V≠0. Far from resonance (Figs 4(a) and
4(c)) the dominant contribution to Beff is given by
g21Dv(t)=g21[V2AF2(t)]ẑ9. When resonance is achieved
at tV (Fig. 4(b)), the effective field is solely determined by
its transverse component, B1(tV); therefore, tV is the most
critical time in regards to the adiabatic condition. Consider-
ing that tV is a function V, eq. (13) must be used to calculate
modulation functions which yield a constant K(tV) for all
isochromats, since it represents the on-resonance adiabatic
factor for each one of them. Any pair of modulation
functions that satisfy eq. (13) will achieve uniform adiaba-
ticity as AF2(t) sweeps through consecutive values of V.

Table 1 lists examples of OIA inversion pulses that
conform to eq. (13). To compare the performance of the
different OIA pulses, some useful parameters were defined.
B0

1 (99%) is the minimum B0
1 needed to perform 99% inversion

at V=0. Brms
1 is the root mean square (rms) value of B1(t).

The last column lists the quality factor Q=DV90%/gBrms
1 ,

where DV90% is the effective bandwidth for >90% inversion
of Mz (i.e. Mz /M0 <20.8). All parameters were calculated
using A=25 kHz and Tp =2 ms. As expected from eq. (13),
all pulses listed in Table 1 require approximately the same
Brms

1 . Pulses with the flattest AM functions perform rotations
with the lowest B0

1 (99%) since the RF energy is distributed
more evenly in time. The ideal AM shapes approach that of
the chirp pulse, but with smooth transitions to zero at the
extremities. Similar shapes are predicted when optimizing
bandwidth by NOM procedures1 and by stretching known
adiabatic pulses.49 To approach this condition, we developed
a class of flattened HS pulses with driving functions34 based
on a nonlinear argument, h(t)=btn (t=2t/Tp 21, for t in the
range [0, Tp]). With these new pulses, called HSn pulses, the
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smoothness of the transition at the extremities of the AM
function can easily be tuned by adjusting the parameter n.

Although the pulses in Table 1 were designed for
broadband applications (e.g. 13C decoupling), both DV and
B0

1 (99%) scale inversely with Tp. For example, when using the
Gaussian OIA pulse with Tp =10 ms, approximately the
same performance can be achieved for DV=10 kHz using
gB0

1 (99%) =1.2 kHz. Figure 5 shows this Gaussian OIA pulse,
along with a simulation of its inversion profile produced
with the latter parameters.

Gradient-modulated offset-independent adiabaticity
(GOIA)

Here we continue the analysis considering the case of a
time-dependent resonance offset resulting from a modulated
magnetic field such as that produced by a gradient. For this
case, the instantaneous frequency offset V(t) of a given
isochromat at position x is now defined as:

V(t)=gxGF3(t) (14)

Figure 4. Effective field components in the FM frame at three different times during an
AFP pulse for the case in which V=v0 2vc>0. (a) and (c) Far from resonance, the dominant
contribution to Beff is given by g21Dv(t)=g21[V2AF2(t)]. (b) When resonance is achieved at
tV, [V/g]ẑ9 and [AF2(tV)/g]ẑ9 cancel each other; thus, the effective field is solely determined
by its transverse component, B1(tV). The adiabatic condition at this time (|gB1(tV) |@ |da/
dt |) limits the ability to invert the isochromat V.

Table 1. Modulation functions and performance comparisona of OIA inversion pulses
gB0

1 (99%) gBrms
1

Pulseb F1(t) F2(t) (kHz) (kHz) Q

Lorentz
1

1+bt2

t

1+bt2
+

1

Ïb
tan21(Ïbt) 11.49 3.25 15.08

HS sech(bt)
tanh(bt)

tanh(b)
7.56 3.28 14.81

Gaussc exp S2
b2t2

2 D erf(bt)

erf(b)
6.13 3.29 14.67

Hanning
1+cos(pt)

2
t+

4

3p
sin(pt) F1+

1

4
cos(pt)G 5.51 3.32 14.50

HSnc (n=8) sech(btn) E sech2(btn) dt 3.71 3.25 14.49

Sin40d (n=40) 12U sinnSpt

2 D U t2E sinnSpt

2 DS1+cos2Spt

2 DD dt 3.61 3.29 14.20

Chirp C (constant) t 3.38 3.38 11.24

a All performance factors (B0
1 (99%), B

rms
1 and Q) were determined from simulations using Tp=2 ms

and A=25 kHz (DV=50 kHz).
b The parameter b was chosen to set the minimum value of F1(t) equal to 0.01.
c These FM driving functions must be obtained by numerical integration of F1(t)2, t=2t/Tp 21,
|t |<1 for 0< t<Tp.
d The second term of the FM function is more significant for lower n values and can be obtained
in closed form, although the numerical integration of F1(t)2 is simpler to perform.
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where G is the amplitude of the gradient and the driving
function F3(t), like the other modulation functions, is
normalized to 1. The time dependent gradient affects the
response of the magnetization in two different ways. Both
the Larmor frequency at a given position x and the spectral
width of a slab of magnetization with thickness dx become
functions of time. To account for this new variability, the
concept of frequency sweep as used in the previous section
must now be redefined. The effective range of the frequency
sweep over dx and the respective sweep rate are based on
the longitudinal (ẑ9) component of the effective field written
as

Dv(t)=[V(t)2AF2(t)]ẑ9=[gxGF3(t)2AF2(t)]ẑ9 (15)

Previous attempts to enhance pulse performance using
modulated gradients have been relatively successful, par-
tially due to the robustness of adiabatic pulses. For example,
Conolly et al.45 developed a time distortion method similar
to the one proposed by Baum et al.,32 which in some cases
can preserve the trajectory of Beff(t). More recently, Ordidge
et al.52 devised a similar approach with FOCI pulses, where
the Beff(t) trajectory was preserved by multiplying both its
longitudinal and transverse components by the same
weighting function W(t). Both of these methods allow the
generation of slice selective AFP pulses that require less RF
power than the parent pulses for a specified bandwidth.
However, these previous approaches were concerned with
the trajectory of Beff(t) for the isochromat at V=0, not its
power distribution among distinct isochromats contained in
the requested bandwidth. Consider, for example, an experi-
ment where a FOCI pulse is applied with different values of
B0

1. As B0
1 increases, the borders of the magnetization profile

become inverted sooner than the central region, which is a
clear indication that the final result can be achieved with
less RF energy. This phenomenon occurs because the FOCI
amplitude modulation function is inadequate for the rate of
sweep determined by its frequency and gradient modulation
functions. In the analysis that follows we provide an
analytical means to relate these functions based on the
concept of offset independent adiabaticity.

The adiabatic condition K(V, t) is now defined as:

K(V, t)=U gBV
eff(t)
·a U=

A2

gB0
1

[(gB0
1F1(t)/A)2 +[F2(t)2gF3(t)]

2]3/2

| (F2(t)2gF3(t))
·
F1(t)2F1(t)[

·
F2(t)2g

·
F3(t)] |

@1 (16)

where g=gxG/A. Once again we analyze the adiabatic
condition (eq. (16)) at its most critical time, when the
effective field is crossing the transverse plane (x9y9). For all
specific times t= tV when the isochromat at V(tV) is on
resonance, eq. [16] simplifies and K(V, t) can be calculated
from:

K(tV)=
(gB0

1F1(tV))2

A[
·
F2(tV)2g

·
F3(tV)]

@1 (17)

The coordinate along the gradient direction is given by:

x(tV)=
AF2(tV)

gGF3(tV)
(18)

To achieve an effective sweep over spatially dispersed
isochromats, eq. (18) demands that F3(t) is not proportional
to F2(t). The theoretical development for the case in which
these functions are proportional to each other, as in
GMAX43, 56 and BISS-8,16 will be addressed in forthcoming
work.

Upon substituting g and x(tV) into Eq. (17), the new
identity is

K(tV)AF ·
F2(tV)2

F2(tV)
·
F3(tV)

F3(tV) G=(gB0
1F1(tV))2 (19)

The easiest way to generate OIA modulation functions from
eq. (19) is to calculate F1(t) given F2(t) and F3(t). This direct
approach, however, is not satisfactory since the resultant
shape of B1(t) can have undesirable properties, such as high

Figure 5. (a) AM and (b) FM functions of the Gaussian OIA pulse with Tp=10 ms and
A=5 kHz, and (c) its inversion profile obtained from the numerical solution of the Bloch
equations.
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peak power. Figure 6 shows the AM function of a pulse
obtained using this OIA approach based on the F2(t) and
F3(t) functions of FOCI. The new pulse requires less area
under the B1(t) function, and thus lower RF energy, than the
original FOCI pulse, while the inversion profile remains
almost unchanged. However, its AM shape is still far from
the desirable plateau needed to reduce RF peak power.

Alternatively, a reverse GOIA approach supplies F1(t)
and F3(t), and F2(t) is obtained by solving the differential
equation given by eq. (19) with initial condition F2(Tp /2)
=0. An important point to be noticed here is that the shape
of the solution is no longer independent of the magnitude of
K, as it was in the previous section. Now K must be adjusted
in order to allow the frequency sweep given by F2(t) to fall
in the interval [2A, A].

To demonstrate the efficiency of the latter method, we
start with the AM driving function (F1(t)) of an HS4 pulse.
This choice is based on the ability of HSn pulses (for n>2)
to perform inversions with significantly reduced peak
power.34 Additionally, with n=4 the AM shape of the pulse
resembles that of a FOCI pulse (C-shaped52) of the same
duration [see Fig, 7(a)]. For the time dependent gradient of
GOIA, a function based on an HS2 AM shape,

F3(t)=1.020.9 sech FbS2t
Tp

21D2G (20)

was chosen because of its smoothness and continuity of its
derivatives. Other functions could be used, provided that
higher gradient intensity is maintained at the times when the
pulse is building the borders of the inversion profile and that
lower gradient intensity occurs during the central region of
the pulse, as shown in Fig. 7(c). Of course, experimental
requirements and hardware limitations (e.g. gradient slew
rate) may restrict the choices for the F3(t) function. With the
present choice of F1(t) and F3(t) functions, eq. (19) was used
to calculate the driving function for the frequency modula-
tion (F2(t)) shown in Fig. 7(b). By comparing B1(t) functions
[Fig. 7(a)], it can be seen that the GOIA pulse uses
considerably less peak power (approximately half) to
perform essentially with the same transformation as a FOCI

pulse with the same duration and bandwidth. As can be seen
from Fig. 7(c), the GOIA pulse also reduces demands on
gradient slew rate. To allow a performance comparison
between GOIA and FOCI pulses, Figs 7(d) and 7(e) show
plots of the power spectral density (PSD) and inversion
profile (Mz /M0) for a GOIA pulse based on HS4 and a FOCI
pulse of the same duration. Table 2 compares the B1

intensity (B0
1 (99%)) and peak and average power required by

these pulses. For reference, these performance parameters
are normalized to those of a square pulse of the same
duration although its spectral composition is obviously
different.

The ability of the pulses to distribute RF energy
uniformly over the requested range of isochromats is
apparent from Fig. 8 which shows Mz /M0 profiles as a
function of V and v1 intensity. As the v1 amplitude
increases, the FOCI pulse inverts the isochromats at the
borders earlier than the central portion of the profile [Fig.
8(a)]. With the GOIA pulse, a relatively uniform response is
obtained for all v1 amplitudes [Fig. 8(b)].

Practical aspects on the use of adiabatic pulses

The previous sections represent an attempt to explain the
response of a spin system to adiabatic pulses and to propose
methods to generate their modulation functions. Here we
consider some practical aspects regarding experimentations
of adiabatic pulses.

d When properly designed, adiabatic pulses do not neces-
sarily deliver more RF power than conventional pulses.
The common misconception that adiabatic pulses require
high RF power may arise in part from the fact that certain
adiabatic pulses allow much wider bandwidths than
conventional pulses of the same duration. With OIA
inversion pulses, the amount of power delivered per unit
spectral width (or power spectral density, PSD) needs to
be no greater than that required by conventional pulses in
order to perform the same transformation on the spin
system.34 Since the energy of OIA pulses is distributed
incrementally in time, the peak power can be even lower
than that required by conventional pulses. Hence, these

Figure 6. Amplitude modulation functions for FOCI (C-shaped) and a
GOIA pulse. The solid line represents the AM function generated
according to the direct GOIA method, starting with the FM and gradient
modulation functions of the FOCI pulse. The inversion profile produced by
this GOIA pulse is comparable to that of the original FOCI pulse using
approximately the same B1 amplitude, but the GOIA pulse clearly delivers
less RF energy.
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adiabatic pulses can be used generously in experiments
formerly designed to accomplish the same tasks with
conventional pulses provided that care is taken to avoid
wastefully exceeding the threshold B1 intensity needed to
accomplish the desired transformation.

d The ability to modulate the pulse frequency is not a
feature of some NMR spectrometers. Most often, adia-
batic pulses are implemented with phase instead of
frequency modulation since digital phase shifters with
high resolution (<1°) are commonly available. The phase
modulation template (F(t)) to be accessed by the
spectrometer can be obtained from the integral of the
frequency modulation function (FM(t)). The relationship
between phase and frequency functions come from the
oscillatory part of the complex pulse P(t) written as:

P(t)=AM(t) .eiF(t) (21)

where,

F(t)=2pEFM(t) dt (22)

and AM(t) is the amplitude modulation function.
d The frequency modulation amplitude A (see eq. (9))

determines the minimum sampling rate to obtain the
pulse in digitized form. To demonstrate this fact, we
introduce the unitless factor R=2ATp, which specifies the
ratio between the total adiabatic pulse bandwidth
(DV=2A) in hertz and the bandwidth of a conventional
pulse of same duration (roughly given by 1/Tp). To avoid
aliasing when defining the digital version of the pulse, the
Nyquist theorem must be satisfied, and here it takes the
form of the inequality:

Df=
1
dt

>2A (23)

where dt=Tp /N is the duration of the sampling interval
(dwell time), for which all modulation functions are
piecewise constant, and N is the number of time samples.
Therefore, Df is the maximum overall bandwidth of the
digitized pulse, and it follows from eq. (23) that:

N>2ATp(=R) (24)

Figure 7. Modulation functions for GOIA and FOCI (C-shaped) pulses and their perform-
ance profiles. The GOIA driving functions, F1(t) for v1(t) (a) and F3(t) for gradient modulation
(c) were supplied to calculate F2(t) for the frequency modulation (b). From the AM function
(a) and the simulated inversion profile (e), it can be seen that the GOIA pulse (solid line)
uses considerably less peak power (approximately 50%) to perform essentially the same
transformation as a FOCI pulse (dashed line) with same duration and bandwidth. To allow
a comparison, plots of PSD (d) and inversion profile (e) are shown.

Table 2. Modulation functions and performance comparison of GOIA and FOCI inversion pulsesa

gB0
1 (99%) Average power Peak power

Pulse F1(t) F2(t) F3(t) (kHz) (au) (au)

GOIA (HS4) sech(bt4)
dF2

dt
2

F2

F3

dF3

dt
=

F2
1

K
1.0–0.9 sech(bt2) 0.7 0.30 0.49

I Itc
(t) cosh(bt)+

I Itc
(t) cosh(btc)

FOCIb sech(bt) ·F3(t) tanh(bt) 1.0 0.56 1.0

Square C (Constant) — — 1.0 1.0 1.0

a Defined with Tp=6 ms (t=2t/Tp 21, |t |<1 for 0< t<Tp) and A=10 kHz (DV=20 kHz).
b F3(t) is based on the Heaviside function, H(t), and one of the roots (tc) of the equation sech(bt)=0.1
and is given by Ptc

(t)=H(t+tc)2H(t2tc) and qtc
(t)=12Ptc

(t).
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must be satisfied. In other words, the number of digitized
pulse samples must be at least equal to the numerical
value of R. This requirement also applies to more
complex adiabatic pulses such as BIR-1 and BIR-4.

CONCLUDING REMARKS

In this review, adiabatic pulses were analyzed using a
classical description suitable for isolated spins. For more
complex spin interactions such as scalar or dipolar coupling,
it will be necessary to invoke quantum mechanics formal-
ism to obtain accurate descriptions of the effects of

adiabatic pulses on the spin systems.57, 58 Likewise, our
optimizations of modulation functions were guided by the
adiabatic condition, but other approaches, such as recursive
expansion10, 15 and computer optimizations,59 may yield
further improvements. Finally, for the sake of brevity, it was
not possible to consider all the many different types of
adiabatic pulses that have been reported and their potential
uses. Instead, we chose to focus on general principles and to
limit our discussion to some of the more common pulses in
use today.
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