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In this paper an overview of time-domain and frequency-domain quantitation methods is given. Advan-
tages and drawbacks of these two families of quantitation methods are discussed. An overview of prepro-
cessing methods, such as lineshape correction methods or unwanted component removal methods, is
also given. The choice of the quantitation method depends on the data under investigation and the pur-
sued objectives.
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1. Introduction

These last two decades, Magnetic Resonance Spectroscopy
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of the major goals of MRS is to quantify metabolite concentrations.
However, despite tremendous efforts and numerous publications
on the subject, it remains difficult to obtain accurate estimates of
these concentrations, due to, inter alia, field inhomogeneities, rela-
tively low signal-to-noise ratios (SNR), physiologic motion.

The goal of this paper is to give an overview of the existing MRS
quantitation methods. Preprocessing methods, as part of the quan-
titation strategy, are also addressed. This includes macromolecule
and solvent (or water) suppression and lineshape correction. MRS
quantitation methods are usually divided into two principal cate-
gories: methods in the time domain [32,33] and methods in the
frequency domain [34]. In theory, there are no differences between
the two domains [35]. However, we will see that this is not totally
true in practice due to some practical limitations. An introduction
to the common processing methods in in vivo MR spectra is given
in [36]. For sake of space, the scope of the paper is limited to post-
acquisition methods, i.e., methods that are applied after signal
acquisition.

The paper is organized as follows: time-domain and frequency-
domain quantitation techniques are discussed in Sections 2 and 3,
respectively. Section 4 gives an overview of the preprocessing
methods and Section 5 describes the main quantitation features.
A brief conclusion is given in Section 6.
2. Time-domain quantitation methods

Recently, more attention has been paid to time-domain fitting
methods [2,37,38]. Quantitation is carried out in the same domain
as the domain where the signals are measured, giving more flexi-
bility to the model function and allowing specific time-domain
preprocessing.
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Time-domain fitting methods are usually divided into two main
classes: black-box or non-interactive methods (see, e.g.,
[21,39,20,10,15,12]) and methods based on iterative model func-
tion fitting or interactive methods (see, e.g., [2,37,38,31,1]), refer-
ring to the degree of interaction required by the method from
the user.

2.1. Interactive methods

2.1.1. Global or local optimization
The objective of the interactive methods is usually to minimize

the difference between the data and the model function, resulting
in a typical non-linear least squares (NLLS) problem. This problem
can be solved using local or global optimization theory. The main
disadvantage of optimization procedures finding global optima,
such as simulated annealing or genetic algorithms (used in MRS
in [40–42]), is their poor computational efficiency. However, these
methods decrease the risk of converging to a local minimum,
which often occurs when the search space is of high dimension
and when the starting values for the parameters are far from the
global optimum. Most of the quantitation methods in MRS are
based on local optimization techniques (see, e.g., [31,1,2]).

2.1.2. Use of a basis set of metabolite profiles in the model function or
not

Another important feature of the interactive methods is
whether they use a basis set of metabolite profiles or not. VAR-
PRO [31], the local optimization procedure based on Osborne’s
Levenberg–Marquardt algorithm [43], was the first widely used
method for quantifying MRS data. It has been replaced later by
AMARES, which proved to be better than VARPRO in terms of
robustness and flexibility [1]. AMARES allows more prior knowl-
edge and can also fit echo signals. These methods do not use a
metabolite basis set even if the prior knowledge in AMARES
can be derived from phantom data as suggested in [44]. In the
presence of water components, the frequency-selective versions
of VARPRO [45] and AMARES (AMARESW [46]) are preferred
and are expected to give good results for relatively well-sepa-
rated peaks. However, these methods break down if nuisance
peaks (i.e., peaks that are in the same frequency region but are
unwanted) have large amplitudes or are close, in frequency, to
the peaks of interest [21,46]. Although methods such as AMARES
have been applied quite successfully to short-echo time MR
spectra [47], the nuisance peaks and the more intensive user
interaction tend to encourage methods based on the use of
metabolite profiles since more prior knowledge is implicitly in-
cluded in the model, especially information related to experi-
mental conditions of acquisition.

On the other hand, methods such as AQSES [2] or QUEST [37]
make use of a metabolite basis set, which can be built up from
simulated spectra (e.g., via programs based on quantum mechan-
ics such as NMR-SCOPE [25] or GAMMA [9]) or from in vitro
spectra. In [48], a spectral simulation method using GAMMA
for generating a priori information to be used in parametric spec-
tral analysis is described. The use of a metabolite basis set facil-
itates the disentangling of overlapping resonances when the
corresponding metabolite profiles also contain at least one non-
overlapping resonance. Incorporating prior knowledge has been
shown to provide better accuracy [49]. When adding prior
knowledge one should take into account the acquisition specifi-
cations such as the type of external field B0, temperature, echo
time, repetition time, pH, pulse sequence, etc. If the metabolite
profiles are in vitro signals, the protocol used to acquire the
in vitro signals should be similar to the one used to acquire
the in vivo data. The influence of measured and simulated basis
sets on metabolite concentration estimates, using QUEST as
quantitation method, has been studied in [50]. In [38], Elster
et al. proposed a semi-parametric model with an uncertainty
analysis based on a Bayesian framework. They showed that this
analysis yields a more appropriate characterization of the errors
on the parameter estimates than the commonly used Cramér–
Rao error bounds, which tend to overestimate accuracy.

2.1.3. How to choose the lineshape and the number of components in
the model?

Even though individual metabolite signals can theoretically be
represented by one or several complex damped exponentials (i.e.,
Lorentzians), in real-world situations, a perfect homogeneous
magnetic field cannot be obtained throughout the sample. There-
fore, Gaussian and/or Voigt lineshapes are sometimes preferred
when substantial deviations from the ideal Lorentzian lineshape
occur. In [51], the continuous wavelet transform is proposed to
extract iteratively each resonance from the raw signal starting
with the water peak, and is able to accommodate to both the
Lorentzian and the Gaussian models. The model giving the best
fit is selected. The problem with this approach is that if an error
occurs in the first step it will be propagated all along the extract-
ing process. The choice of the lineshape, which also determines
the number of parameters per component in the model is a
non-trivial problem, which is hardly solvable by a simple glance
at the spectra.

Another non-trivial choice is how many components should be
used in the model, i.e., how many Lorentzians (or other lineshapes)
in VARPRO or AMARES or which metabolite profiles in AQSES or
QUEST. Knijn et al. [45] showed that the use of a variable projection
method (used in VARPRO and AQSES and not in AMARES or QUEST)
reduces the sensitivity to the absence of features in the model. A
variable projection method does not encounter numerical prob-
lems either when some amplitudes are nearly zero [2]. It is there-
fore reasonable to prefer methods based on the variable projection
algorithm when there is an uncertainty about the components
present in the signal. Therefore, iterative time-domain quantitation
methods such as AMARES, which are not based on the variable pro-
jection algorithm, are less appropriate for complex signals such as
short-echo time in vivo MRS data. A method like peak picking to
identify starting values for the parameters and the number of
peaks can fail when several peaks are overlapping. In [52], more
flexibility on the metabolite basis set is obtained by dividing each
metabolite signal into groups of magnetically equivalent spins to
form a new basis. This can be useful, for example, when tempera-
ture or pH variations are expected between the in vitro basis set
and the signal undergoing analysis, resulting in different chemical
shifts for the same group of spins. This method is particularly inter-
esting in high resolution MR data such as magic angle spinning
data, where the influence of pH and temperature on the chemical
shifts is higher.

Intuitively, the number of components has an influence on the
efficiency of the method. Some methods are particularly sensitive
in terms of efficiency to the number of components. For example,
in [53–55], the expectation–maximization (EM) algorithm is pro-
posed to be applied to NMR. This algorithm divides the problem
into K independent optimizations, K being the number of compo-
nents in the signal, and allows computations on parallel computers
to reduce its characteristic high computation load. In [56], Bayes-
ian probability theory is used to estimate the exponential parame-
ters of a known model. Probability density estimation requires the
computation of integrals for which no analytical solution exists
and numerical estimation is needed. Due to its intrinsic high com-
putation load, this method is only suitable for simple signals where
only a few exponentials are present. A companion paper [57] ex-
tends [56] for determining the functional form of the model (i.e.,
the number of exponentials).
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2.2. Black-box methods

The black-box methods, either based on the linear prediction
(LP) principle or based on state-space theory like HSVD (both ini-
tially introduced in MRS applications by Barkhuijsen et al.
[39,13]), allow less inclusion of prior knowledge than interactive
methods, being thus less suitable for more complicated signals
such as short-echo time MRS signals. Furthermore, these methods
are limited to Lorentzian spectra. To overcome this limitation, Bel-
kic et al. [58] proposed a method based on the Padé transform and
capable to extract unequivocally the exact number of resonances
directly from the time signal, but presenting the same limitations
in terms of prior knowledge as the SVD-based methods. Indeed,
if a single component identified by the Padé approximant has con-
tributions from more than one biochemical source, there is no
mechanism to separate these contributions. In addition, the Padé
approximant is not able to extract components with amplitudes
at the same level as the noise [59]. To improve the LP and total
least squares (TLS) based methods [14], Zhu et al. [16] proposed
the use of an iterative quadratic maximum likelihood (IQML)
method and proved the superiority of IQML over LP or TLS based
methods in terms of accuracy. One drawback of this method is that,
similarly to LP, it needs to calculate the root of a polynomial which
may generate numerical issues. By representing non-Lorentzian
lineshapes as superpositions of Lorentzian lineshapes, these meth-
ods are not able to provide physical information. These limitations
are inherent to this type of methods, constituting a serious draw-
back, since imposing prior knowledge related to specific physical
parameters may be crucial for obtaining reliable and consistent re-
sults (see, e.g., [60]). Furthermore, these limitations make these
techniques not appropriate for further classification problems
since the extracted features will likely vary from one signal to
another.

Although imposing prior knowledge is limited, some can how-
ever be incorporated into the model [15,61,17,62]. Chen et al.
[15,61] derived an algorithm HTLS-PK able to include prior
knowledge of known signal poles. This method has been outper-
formed by KNOB-TLS, a method proposed in [17], especially in
terms of robustness. KNOB-TLS provides parameter estimates
which are comparable to those obtained with AMARES, and
which could be used as starting values in AMARES as suggested
in [17]. In [21], Romano et al. proposed a frequency-selective
method referred to as MeFreS (Metropolis Frequency-Selective),
based on rank minimization of a Hankel matrix. The minimiza-
tion procedure uses the down-hill simplex method implemented
with simulated annealing. MeFreS does not use any preprocess-
ing steps or filter to suppress nuisance peaks, but the signal
model function is directly fitted. This method is compared to
AMARESW and VARPRO in [21]. Simulations show that MeFreS
is able to correctly identify spectral parameters also in those
cases where AMARESW and VARPRO are expected to fail. The fit-
ting process is also different since MeFreS fits only one spectral
component/peak at a time by first selecting its single frequency,
while AMARESW and VARPRO need to fit all peaks that fall in the
specified frequency range.

Another important limitation of SVD-based methods is their
unsuitability for dealing with data that contains significant sig-
nal intensity from rapidly decaying resonances of macromole-
cules. SVD-based methods require manipulating the original
data such that they follow a Lorentzian model. This is always
inferior to a method that models the data as they were col-
lected. Disentangling the signal of interest from the baseline re-
quires prior knowledge often lacking (or not includable into the
model) when using SVD-based methods. Moreover, these meth-
ods assume a Lorentzian-type model, which might be too lim-
ited for baseline signals, Gaussian lineshapes being often
preferred to model the broad resonance signals from macromol-
ecules (see, e.g., [63]).

A more detailed overview of the black-box methods is done in
Section 4 since these methods are nowadays mainly used as sol-
vent suppression methods.
3. Frequency-domain quantitation methods

The frequency domain is naturally suited for frequency-selec-
tive analysis with the advantage of decreasing the number of mod-
el parameters. Visual interpretation of the measured MRS signals
and of the fitting results is best done in the frequency domain.

3.1. Non-iterative methods

3.1.1. Peak integration
The oldest and still widely used quantitation method in the

frequency domain is based on the integration of the area under
the peaks of interest [64]. The advantage is that no assumptions
have to be made concerning the lineshape of the signal. Unfortu-
nately, this method is not able to disentangle overlapping peaks
and therefore to extract information from individual peaks or
metabolite contributions. Residual baseline signals and low SNRs
will also hamper good quantitation. Furthermore, an appropriate
phasing is necessary when dealing with the real part of the fre-
quency-domain MRS signal, which is far from trivial. Peak inte-
gration depends widely on the defined bounds. The tail of the
peaks is also neglected by peak integration and the area under
the peaks will be therefore underestimated (possibly by up to
40% [64]).

3.1.2. SVD-based techniques
The frequency domain allows a straightforward selection of a

frequency interval. SVD-based techniques are based on this obser-
vation and are therefore frequency-selective methods. Only the
points in the frequency region of interested are considered for
quantitation, resulting in faster algorithms. In [8], five methods
are compared: the filter diagonalization method (FDM) [7,65], a
modified version of MODE [22] to be usable in a SELected Fre-
quency band (SELF-MODE), a data filtering and decimation
approach FIDO (FIltering and DOwnsampling)[8], the ARMA-mod-
eling based filtering and decimation technique called SB-
HOYWSVD [29], and the frequency-selective implementation of
ESPRIT [6] (see, e.g., [66]) called SELF-SVD [30]. For moderately
high SNRs, FDM seems to give better estimates than the four other
methods. SELF-MODE and SELF-SVD have a stable parameter accu-
racy with relative root mean squared errors (RRMSEs) lying
between FDM and the two filtering and decimation methods.
SELF-SVD is the fastest method. SB-HOYWSVD has the largest
number of user parameters (i.e., the most interactive method).
Djermoune et al. proposed an adapted version of SB-HOYWSVD
[67], which is intended to reduce the computational burden and
to avoid the choice of the decimation factor (or the width of the
spectral windows) which, in the case of a uniform decomposition,
strongly conditions the estimation results. In [68], FDM has been
shown to outperform LP-ZOOM [20]. The computational speed of
these methods is generally superior to that of the time-domain
SVD-based method HSVD, depending on the size of the frequency
interval of interest, the number of components and the total num-
ber of data samples. As it is possible to decrease the computational
load for time-domain SVD-based methods by using the fast Lanc-
zos algorithm, it is equally possible to use the latter for these fre-
quency-selective methods. The limitations regarding prior
knowledge of time-domain SVD-based methods remain true for
these frequency-domain methods.
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3.2. Iterative methods

In parallel, methods based on model functions have been pro-
posed (see, e.g., [35,69,70,18,71]). Although these methods are
equivalent to time-domain fitting methods from a theoretical point
of view, a simple exact analytical expression of the discrete Fourier
transform (DFT) of the model function is often not available for the
Voigt and/or Gaussian lineshapes, even if numerical approxima-
tions exist [72–74]. For example, in [73,75], approximated Voigt
lineshapes have been proposed, and the spectra were fit with the
Levenberg–Marquardt algorithm. In any case, the model functions
in the frequency domain are, in general, more complicated than in
the time domain and necessitate thereby more computation time.
Marshall et al. [76] show that the choice of the lineshape affects
the metabolite peak areas and suggest the use of Gaussian line-
shapes instead of Lorentzian lineshapes. The frequency-domain
methods which only use the real part of the spectrum in their mod-
el, such as LCModel [18], require a very good phasing to get the
spectrum in its absorption mode.

As for time-domain methods, many frequency-domain methods
solve the NLLS problem by local optimization techniques, in partic-
ular using the Levenberg–Marquardt algorithm (see, e.g., [71,18]).

3.3. Other techniques

A real-time automated way of quantifying metabolites in long-
echo time in vivo NMR spectra using an artificial neural network
(ANN) analysis is presented in [77,78]. The performance of the
ANN was compared with an established lineshape fitting (LF) anal-
ysis [19] using both simulated and experimental spectral data as
inputs. The ANN quantified these spectra with an accuracy similar
to LF analysis but was more easily automated.

Principal component analysis (PCA) has also been proposed as
quantitation method in MRS [79]. PCA has the advantage of being
model independent, making it well suited for the analysis of spec-
tra with complicated or unknown lineshapes. It is not suitable if
several overlapping peaks have to be quantified but might be use-
ful when dealing with isolated peaks. PCA considers an entire data
set at once, improving its precision in the presence of noise over
methods that analyze one spectrum at a time. However, standard
PCA will never give parameter information such as chemical shifts
or linewidth and it will be accurate for low SNR only if the number
of available spectra is large enough. A severe drawback of standard
PCA was that all spectra in the data had to be in phase, which is of-
ten far from being trivial. To circumvent this issue, a modified PCA,
which utilizes complex SVD to analyze spectral data sets with any
amount of variation in spectral phase, has been developed [80].
More recent developments have extended this method to quantify
all peak characteristics, including the linewidths [81]. In [82], a re-
view of NMR spectra quantitation by PCA is given. Stoyanova et al.
[83] proposed a superior method to the one in [81] in terms of sta-
bility, convergence and the range of variations it can determine. In
[84], Ladroue et al. combined PCA and independent component
analysis (ICA) and showed that signals with low occurrence and
low SNR can be identified.

In [3], a quantitation algorithm for in vivo MR spectra based on
the analysis of circles (CFIT) is described. The circular trajectories
resulting from the projection of the peaks onto the complex plane,
are fitted with active circle models. The use of active contour strat-
egies allows incorporation of prior knowledge as constraint energy
terms. The problem of phasing spectra is eliminated, and baseline
artefacts are dealt with using active contours-snakes. A wide range
of prior knowledge, including non-linear constraints, can be incor-
porated in CFIT. Slightly less good relative root mean squares errors
(RRMSEs) have been reported for CFIT compared to AMARES. On
the other hand, CFIT presents a better success rate for resolving
the peaks of interest within specific intervals lying symmetrically
around the true frequencies than AMARES, especially in the pres-
ence of baseline distortions.

Another quantitation method which aims to circumvent the
disadvantages of both time- and frequency-domain fitting has
been proposed in [85], and referred to as time-domain fre-
quency-domain (TDFD) fitting. The model is expressed in the time
domain to keep flexibility for the lineshapes and for possible trun-
cation or other typical time-domain processing. However, the fit-
ting itself occurs in the frequency domain after Fourier
transforming the discrete time-domain signals, which are the mod-
el and the signal under investigation. Due to the additional Fourier
transform needed at each optimization iteration, TDFD fitting is
approximately 20% slower than a pure time domain fitting method
such as VARPRO. This difference is reduced when considering fre-
quency-selective fitting for which time-domain methods require
an additional method while frequency selection is straightforward
in the frequency domain. TDFD fitting also allows non-analytical
lineshapes.
4. Preprocessing techniques

Acquired MRS signals are rarely purely exponentially decaying
due to experimental conditions (shimming imperfections, physio-
logic motion, etc.) and need to be preprocessed to be suitable for
analysis, i.e., such that the modified signals match the model. The
influence of nuisance peaks in NLLS parameter estimation tech-
niques such as VARPRO and AMARES has been studied in [45].

4.1. Correction for lineshape or model imperfections

Lineshape deviations from an exponentially decaying signal due
to residual eddy currents and magnetic field inhomogeneities are
often present in 1H spectroscopic data.

The eddy currents give rise to time-varying phase-shifts in the
acquired data. One of the oldest and still widely used techniques
was proposed by Klose et al. [4], inspired by [86], to correct point-
wise the time-domain signal using, as reference, the water unsup-
pressed signal (no hardware suppression of the water signal). In
[87], wavelets have been used to remove the phase distortion in-
duced by eddy currents.

Other methods aim to correct for arbitrary lineshape imperfec-
tions (i.e., not satisfying a perfect exponentially decaying signal). In
[88], a reference peak is chosen as one of the peaks in the experi-
mental data. The time-domain reference signal is obtained by set-
ting the spectral values outside the reference peak frequency
region to zero and using the Fourier transform. A potential draw-
back is that the reference signal might be equal or close to zero
in certain time points, resulting in spikes in the frequency domain.
Moreover, setting points to zero boils down to multiplying the fre-
quency signal by a rectangular window, generating the well-
known ringing effect in the time domain. An algorithm based on
the same principle as in [88] was proposed in [26]. The idea of this
method, the so-called QUALITY method, is to pointwise divide the
signal under investigation by an estimated lineshape deviation
(from a pure decaying exponential) using either separated data
or an isolated peak in the data to be quantitated. A further devel-
opment for automating this method has been proposed in
[89,90]. The problem of the above methods including QUALITY is
the potential risk of dividing by zero (spike effect described above).
In [27], a method inspired by [26,4], from which it takes its name
QUECC (concatenation of ‘‘QU” for QUALITY and ‘‘ECC” for Klose’s
eddy Current Correction method), is meant to benefit from the
advantages of both methods, QUALITY for a complete correction
of the lineshape such that it matches a decaying exponential and
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ECC for avoiding the spike effect. The signal is separated in two
parts defined by a crossover point in the time domain which de-
pends on the slope and the SNR of points in the time domain ref-
erence data. The first part of the signal is corrected using
QUALITY deconvolution, while the second part is corrected using
ECC. To avoid discontinuity in the signal, an exponential damping
constant is evaluated to equalize the magnitude of the last point
that was QUALITY deconvolved with the magnitude of the first
ECC point.

Instead of deconvolving the experimental signal, the lineshape
can be incorporated into the fit by multiplying the model line-
shapes or the metabolite profiles in the time domain with the ref-
erence lineshape (see, e.g., [85]). In the case where no information
is available for the lineshape, the latter can be incorporated into
the fit as an unknown vector which is convolved with the metab-
olite profiles in the frequency domain (see [18] for more details),
modeled in the time domain (see, e.g., [85]), or estimated from
the convolution of the raw data with a undamped spectrum (i.e.,
a simulated spectrum with zero linewidth) followed by measure-
ment of the full width at half maximum (FWHM) value [71]. In
[91], Maudsley proposed another method which does not require
the use of a reference peak. The method is iterative and based on
an initial estimate of the parameters of the spectral components.

4.2. Water peak removal

Biological or biochemical samples are generally recorded in
aqueous solution. Due to the large proportion of water, the signal
intensity of water is often several orders of magnitude larger than
the signal intensities of the other metabolite components. Sup-
pressing the water signal has been a key issue for designing spec-
trometers, acquisition sequences and post-acquisition methods
(called preprocessing methods in this paper). An overview of these
preprocessing methods for solvent suppression is given in this sec-
tion. This section considers both cases: water-suppressed and
water-unsuppressed signals. Note also that several pulse se-
quences achieve water suppression (see, e.g., [92–94]).

4.2.1. Water-suppressed signals
Using water-suppressed signals for quantitation is still the stan-

dard procedure, although recent publications (see, e.g., [95,96])
have shown that quantitation of water unsuppressed signals could
also be carried out successfully. Most of the water suppression
techniques have been developed based on water-suppressed sig-
nals and have been widely tested. With water-unsuppressed sig-
nals, gradients-induced artifacts, which originate from the
switching of gradient pulses, cannot be totally removed, thereby
reducing the accuracy of the parameter estimates. We can distin-
guish between methods based on the use of a finite impulse re-
sponse filter and those based on a model function.

4.2.2. FIR filter techniques
In [97] Kuroda et al. used first and second order differentia-

tion to suppress the water peak. In order to improve this filter,
Marion et al. [98] proposed a low pass FIR filter. The drawback
of these filters is that they are linear phase filters which generate
signal distortion due to the fact that the signals are composed of
exponentially damped sinusoids and not pure sinusoids as
shown in [24]. In order to reduce this distortion, Sundin et al.
[24] proposed a maximum-phase FIR filter (MP-FIR). Although,
these distortions are strongly reduced, they cannot be neglected
when the stopband region is large or when the damping factor is
high, as noticed by Poullet et al. [99]. Entire tails of frequency
domain water signals can be removed by this method. A gener-
alization of the method and advices to use it are given in [46].
Wavelets have also been used for water removal (see, e.g.,
[100–103]) and, in [101], the Gabor transform is proposed as a
good alternative to the wavelets. In a review of filtering ap-
proaches to solvent suppression in MRS [102], 5 filtering meth-
ods are compared: a Gabor transform based method [101], the
method of Marion et al. [98], the method of Sodano and Delepi-
erre [104], the Cross method [105], the maximum-phase Finite
Impulse Response (MP-FIR) filter method [24]. MP-FIR filter by
Sundin et al. [24] has been shown to be the most accurate and
efficient technique among them for quantifying long-echo time
MRS spectra. In addition, MP-FIR allows the inclusion of prior
knowledge that may be taken into account during quantitation
(see [102] for more details). MP-FIR has also been successful in
quantifying short-echo time in vivo MRS [2].

In [5], the ER-filter method is proposed. The idea is to select the
frequency region of interest by filtering with a rectangular window
in the frequency domain, and to get back to the time domain,
reducing substantially the number of points in the signal. Although
this technique inherently distorts the signal (ringing effect of the
reduced FID due to rectangular filtering), it can be used when the
wanted spectral region is small compared to the width of the full
spectrum and the number of data points is large [46]. Its use might
also be interesting for speeding up the quantitation process [106].
The estimation results are largely influenced by the choice of the
filter type and filter order, for which only limited guidelines have
been provided.

4.2.3. Based on a model function
Another approach is to model the water signal and subtract it

from the original signal. The water signal is rarely a pure exponen-
tially decaying signal due to field inhomogeneities and/or partial
water suppression and is thereby not easily parameterized. How-
ever, the so-called black-box methods have been successful in
reconstructing the water signal usually modeled as a sum of
Lorentzians. The most common method is HLSVD developed by
Pijnappel et al. [10] which reduces the computational load of the
original HSVD method by computing only part of the SVD by using
the Lanczos algorithm. An improved variant of HSVD is HTLS [14]
which computes the TLS solution instead of the LS solution. In
[107], HTLS is improved to deal with spectra which contain closely
spaced sinusoids. From HLSVD, several variants have been devel-
oped (see, e.g., [11,12]). The main advantage of these methods
compared to linear prediction methods [108] is that polynomial
rooting and root selection are avoided. This is also the case for Ma-
trix Pencil (MP) methods (see, e.g., [109]), since these methods also
find (like state-space methods) the estimates of the signal poles as
eigenvalues of a matrix. In [23], Rao reported no difference be-
tween estimates obtained by MP and state-space methods. The
Cadzow method or minimum variance technique can also be used
to preprocess the data to improve the basic HSVD and HTLS algo-
rithm [110]. In [12], Laudadio et al. compare HLSVD with two other
proposed variants: the method based on the Lanczos algorithm
with Partial ReOrthogonalization (HLSVD-PRO) and the method
based on the Implicitly Restarted Lanczos Algorithm (HLSVD-IRL
[11]). HLSVD-PRO and HLSVD-IRL outperform HLSVD in terms of
computational efficiency and numerical reliability. Moreover,
HLSVD-PRO is faster than HLSVD-IRL [111]. The user has to specify
the model order and the frequency region of the water peak. These
choices may influence the accuracy of the estimated parameters as
shown in [46,112]. A drawback of these methods is their large
computational complexity. Even fast methods such as HLSVD or
HLSVD-PRO are much less efficient than FIR filter based methods
(see, e.g., [46,99]). After subtracting the water signal from the ori-
ginal signal, most of the water tails are removed and the influence
on the peaks of interest is small. However, as shown in [99], this
influence exists and can reduce the quality of the parameter
estimates.
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HSVD and MP-FIR used with AMARES [1] are compared in [46]
(so-called AMARESH and AMARESf for HSVD and MP-FIR, respec-
tively). Combined with AMARES, HSVD is proved to be less accu-
rate and efficient than MP-FIR for long-echo time MR data.
Similar observations have been done in [99] for short-echo time
MR data with HLSVD-PRO and MP-FIR combined with AQSES [2],
where MP-FIR outperformed HLSVD-PRO in terms of accuracy
and efficiency.

In frequency-domain quantitation methods, the residual water
peak tails are often dealt with by considering them as an additional
baseline (e.g., [69,85,113]).

4.2.4. Water-unsuppressed signals
Water-unsuppressed signals have become competitive thanks

to high-resolution analog-to-digital converters (ADCs), which
avoid digitizer overload (due to the high dynamic range, i.e., the
high amplitude of the water compared to the metabolite ampli-
tude) that results in severe digital noise. Dong et al. [95] report
the following disadvantages of water-suppressed signals: (1) sig-
nals with small chemical shift differences to water are also par-
tially suppressed, (2) magnetization transfer effects to
metabolites [114–116] may cause systematic quantitation errors,
and (3) RF pulses used for water suppression increase the total
RF power deposition and may require additional adjustments. Fur-
thermore, water-suppressed signals also present the following
advantages: the water signal can be used as a reference for line-
shape transformation and as an internal reference for absolute
metabolite quantitation, both without additional measurements
[95], but also for phase correction accounting for motion induced
phase fluctuation between individual scans [117]. Note that addi-
tional preprocessing steps may be needed when using water-sup-
pressed signals, for example to avoid nuisance peaks due to
sideband artefacts (see, e.g., [96,95]). Although most of the meth-
ods used for water-suppressed signals should be applicable to
water-unsuppressed signals, one should be careful when using
FIR filtering techniques since these techniques may have limited
performance in terms of attenuation of the water peak. Indeed, a
water peak amplitude of 3 to 5 orders higher than the metabolite
peak amplitudes requires an attenuation of �60 to �100 dB, which
may be difficult to achieve due to the constraints imposed on the
FIR filter (e.g., length of the filter or transition band width). SVD-
based methods or MP method (used in [95]) are not affected by this
problem.

4.3. The effect of errors in the initial FID data points and
macromolecular signals

In MRS, when the initial time points in the FID are incompatible
with the model for the data, this incompatibility is often referred to
as the baseline. The incompatibility arises from two different phe-
nomena: (1) the amplitude of the initial FID data points are dis-
torted due to instrumental imperfections (baseline distortion),
(2) signal amplitude from macromolecules. However, these phe-
nomena arise from totally different sources. The reasons of base-
line distortions are diverse [118]: non-linearity of the filter-phase
response, discrete nature of the Fourier transform, instrumental
instabilities, and other reasons. Macromolecular signals, coming
from the macromolecules present in the tissue under investigation,
are characterized by broad spectral lines (short T2), which often
overlap in the frequency domain with metabolite components.
Their dominant appearance in short-echo time 1H MR spectra of
human brain complicates drastically the quantitation process.

4.3.1. Baseline distortions
As previously mentioned, the hardware/software solutions to

baseline distortions will not be discussed in this paper. With the
use of modern spectrometers with 16-bit analog-to-digital con-
verters, digital signal processing and oversampling techniques
[119], most of the problems related to baseline distortions are
overcome, but post-processing techniques may still be needed to
remove some unwanted broad lines. A classical case is the distor-
tion of the first points in an FID, coming from probe acoustical ring-
ing or, more commonly, filter distortion. This basically introduces a
rolling baseline in the frequency domain (after Fourier transforma-
tion of the time domain signal). Different techniques to obtain a
flat baseline have been proposed in the literature. Popular ap-
proaches include reconstruction of the first points of the FID
[118] and approximation of the baseline in the frequency domain
using linear functions [69] for narrower frequency regions or
sophisticated analytical functions such as Fourier series [120] or
polynomials [121,122] for wider regions. Most recent techniques
are composed of 2 steps, a baseline recognition step in which the
signal-free regions of the spectrum are detected using some
threshold values (see, e.g., [123,124] for more details), and a base-
line modeling step where a smoothing algorithm estimates the
baseline spectrum given the signal-free (or baseline) points.

4.3.2. Macromolecular signals
Macromolecular signals are often considered as nuisance com-

ponents in MRS since they usually overlap with the metabolite
contributions in the frequency domain. However, recent studies
[125–127] show that strong correlation between the macromolec-
ular concentration/composition and the location of the voxel in the
brain have been found. Hoffmann et al. [125] also found significant
correlation with age but not with gender, while no significant cor-
relation with age could be detected by Mader et al. [126] (the cor-
relation with gender was not studied in the latter reference).
Similarly, several conditions such as stroke [128], brain tumors
[63] and multiple sclerosis [129] show an altered macromolecule
profile. Therefore, the macromolecular signal can provide relevant
clinical information. The goal is thus to disentangle the macromol-
ecule contributions from the metabolite signals in order to obtain
accurate parameter estimates from quantitation while keeping
the information provided by the extracted macromolecular signal.

In spite of our better knowledge of the macromolecular signal, it
remains difficult to predict it in in vivo MRS signals, and most of the
classical methods just assume its smoothness in the frequency do-
main. The macromolecular signal can be removed in a preprocess-
ing step (see, e.g., [37,71,130]) or can be modeled in the
quantitation step (see, e.g., [2,38,18]).

4.3.2.1. In the preprocessing step. Different preprocessing ap-
proaches have been developed. The simplest one, based on the fact
that the macromolecular components decay more rapidly than the
metabolites, is to truncate some of the initial points in the time do-
main [131] (also called the ‘Trunc’ method by Ratiney et al. [37]).
This technique presents some drawbacks: the useful information
is partially lost, selecting the number of points to be truncated is
difficult and the spectrum may have an oscillating behavior due
to discontinuities in the time domain after zero filling. More ad-
vanced techniques consist of subtracting a modeled macromolecu-
lar signal in the frequency domain from the original spectrum.
Models may be generated with wavelets [71,132,133,95,75] or
splines [134]. A comparison between wavelets and splines has
been done in [130] but no significant differences have been found.
The macromolecular baseline can also be measured in the time
[135] or the frequency domain [136], then modeled as a sum of
Gaussian peaks [137] or Voigt lines [125], and finally subtracted
from the original signal. Ratiney et al. [37] proposed a three-step
method (called ‘Subtract’) for subtracting the macromolecular
baseline: (1) truncate the initial points and quantitate with QUEST
[28] the metabolites, (2) estimate the baseline from the metabo-



Table 1
Features of some quantitation methods

Methods aProfiles bLineshape cWater dBaseline

HLSVD [10]
VARPRO [31]
AMARES [1,46] X
AQSES [2] X X X
QUEST [28] X X
Elster et al.’s [38] X X
TDFD Fit [85] X X X
CFIT [3] X
LCModel [18] X X X
Young/Soher et al.’s [132,48,71] X X

An ‘X’ indicates that the method auses an in vitro or simulated database of
metabolite profiles, bincorporates an unknown lineshape into the fitting model,
cincorporates water filtering into the fitting process, dmodels the macromolecular
signal and baseline distortions.
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lite-free signal by an SVD-based method or AMARES, and (3) sub-
tract the parameterized baseline from the raw signal. The so-called
time-domain frequency-domain (TDFD) methods follow the same
principle [85,71,138] even if the wavelets or splines are usually
preferred to the SVD-based methods for modeling the baseline.
Other techniques such as SVD-based methods [139] have also been
proposed. Although these methods have been shown to be rather
successful for removing the baseline, they require an additional
step prior to the quantitation, thereby increasing the risk of larger
errors in the amplitude estimates.

4.3.2.2. In the quantitation step. On the other hand, the baseline can
be modeled in the quantitation step. In parametric models, the pro-
files of the baseline components, obtained from measurements
[126,63,140–144] or from theoretical considerations [145], are
added to the database of metabolites. The authors of these papers
conclude that including the baseline components in the basis set of
metabolite profiles provides more accurate results. The baseline
can be measured using specific sequences based on T1 relaxation
such as the inversion-recovery [136,146] or the saturation-recov-
ery sequences [125]. Baseline removal can also be based on T2

relaxation by increasing the echo time [147]. However, the
in vivo determination of the exact relaxation times for both macro-
molecules and metabolites is complicated and time consuming.
Furthermore, neither metabolites nor macromolecules necessarily
present a narrow distribution of relation times. Williamson et al.
used the Padé Transform to separate the baseline from the metab-
olite signals [59].

In semi-parametric models, the baseline signal is supposed to
be smoother than the spectral components of interest. Different
functions have been used to approximate the baseline: linear com-
bination of splines (see, e.g., LCModel [18] or AQSES [2]), linear
combination of reproducing kernels associated with a reproducing
kernel Hilbert space (see, e.g., [38]). Incorporating the baseline into
the fit via non-parametric modeling allows a one-step procedure
which reduces the risk of accumulated error.
5. Discussion

A beginner in the field of MRS quantitation who needs to choose
an appropriate quantitation method may face a big challenge. The
choice is often made based on the availability (free or commercial,
accessible via internet or not) of the method and its user-friendli-
ness. In this paper and, in particular, in this section, we enlighten
the general features of quantitation methods to help the reader
to choose an appropriate method for his/her data. A better quanti-
tation often results from better prior knowledge, and quantitation
methods should be chosen in order to include as much prior
knowledge as possible in the model. However, one should remem-
ber that incorporating prior knowledge is only beneficial when it is
sufficiently close to the reality. There are indeed two reasons for
ending up in an unwanted local minimum when using local opti-
mization algorithms: bad initial estimates of the parameters, and
wrongly implemented prior knowledge. Here is a list of key points
for choosing a quantitation method. The features of the main quan-
titation methods are reported in Table 1, each column correspond-
ing to one of the following features:

(i) Using an in vitro or simulated database of metabolite profiles
A first step is to identify the data to be analyzed, their com-
plexity (i.e., high number of peaks? overlapping peaks?). As a
rule of thumb, spectra with a large number of overlapping
peaks are more easily modeled by a linear combination of
metabolite profiles rather than a linear combination of
Lorentzian, Gaussian or Voigt components. On the other
hand, signals with a low number of resonances are easily
handled by methods like AMARES or VARPRO. AMARES
should be preferred to VARPRO particularly when con-
straints on the linear parameters (metabolite amplitudes,
phases) have to be imposed. For example, complex signals
such as short-echo time MRS data will be quantified by
AQSES, LCModel, QUEST, TDFDFit or Elster’s while VARPRO
or AMARES should be applied to long-echo time MRS data.
When there is no prior knowledge, or at least, no reliable
prior knowledge is available, non-parametric approaches
[148] such as HLSVD can be used to quantify MRS data.

(ii) Incorporating an unknown lineshape into the fitting model
Taking the lineshape into account is necessary in MRS quan-
titation. Marshall et al. gives a simple example in [76] where
modeling a Gaussian peak with a Lorentzian peak results in a
26% error. This error decreases for 2 overlapping peaks with
a minimum of 17% for a distance between the peaks of about
twice their FWHM. Peaks or apparent signals in the fitting
residuals are usually an indication of an inappropriate
model. In general, the best way to correct for non-exponen-
tial decay is to use a reference signal (such as the water-
unsuppressed signal) which has undergone the same distor-
tions (see, e.g., [27,26,4]). Instead of deconvolving the origi-
nal signal, one should, if possible, add the distortions to the
profiles of the metabolite database to avoid any division by
zero (see Section 4.1). If no reference signal is available,
one can still include the lineshape estimation into the fitting
process (see, e.g., [18,85]).

(iii) Incorporating water filtering into the fitting process
Frequency-domain methods usually consider the water tails
overlapping with the metabolites of interest as part of the
baseline and do not consider water filtering. On the contrary,
time-domain methods need to remove the water compo-
nents. As shown in [99], including water filtering inside
the optimization process may improve the parameter esti-
mates. When dealing with unsuppressed water signals, it is
preferable to use SVD-based methods instead of FIR filtering
techniques to avoid problems due to a too weak attenuation
of the water signal (see Section 4.2.4).

(iv) Modeling the macromolecular signal and baseline distortions
The macromolecular signal should be included in the model
(i.e., used in the quantitation step, see Section 4.3.2) when
macromolecular contributions are present in the signals,
either as a smooth function (see, e.g., [38,2,18]) or as addi-
tional ‘‘metabolite” profiles in the database. The latter is
often preferred in recent publications (see, e.g.,
[126,63,140,141]). This can be explained by the fact that
adding macromolecular profiles adds more prior knowledge
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than the assumption of smoothness of the macromolecular
signal. Disentangling the baseline from the rest of the signals
before the quantitation process increases the risk of errors
since any error due to disentangling will affect the parame-
ter estimates and be superimposed to the fitting errors. The
methods with an ‘X’ in the last column of Table 1 assume the
smoothness of the baseline without distinguishing between
baseline distortions and macromolecular signal. Moreover,
frequency-domain methods such as LCModel [18] considers
the tails of the water resonance as part of the baseline
distortions.

5.1. Other important considerations

5.1.1. Time- or frequency-domain method?
Time- and frequency-domain methods are theoretically similar

in performance even if the time-domain methods allow more flex-
ibility in terms of model lineshapes. Only a few took the risk of
comparing time- and frequency-domain methods and no strong
conclusions could be drawn. In [149], 4 methods have been com-
pared on in vivo 31P MR data of tumors: VARPRO and HLSVD as
time-domain quantitation methods, and peak integration and
Lorentzian fitting as frequency-domain quantitation methods.
The results suggest that VARPRO is the method of choice for quan-
titative analysis of tumor 31P MR spectra, giving the most reliable
results at low SNR. Kanowski et al. [47], for instance, reported com-
parable results for AMARES and LCModel. It is also important to no-
tice that the fast Fourier transform (FFT) is suboptimal if (1) the
noise is not Gaussian, (2) the sampling time is not constant (differ-
ent time steps), (3) samples are missing. In these cases, it might be
preferable to avoid the FFT and to do the analysis in the measure-
ment or time domain.

5.1.2. Lorentzian, Gaussian or Voigt model?
The choice of the model is a non-trivial question. One should

first correct for lineshape imperfections as mentioned above. These
corrections may not be sufficient to obtain pure Lorentzian signals
and other lineshape models such as Gaussian or Voigt may be pref-
erable. It is often complicated to judge whether the peaks in the
signal are Lorentzian, Gaussian or Voigt. However, one can test dif-
ferent lineshape models and choose the one which gives the best
residuals (small residuals with no peak or signal in it) and the best
success rate in the sense of Gabr et al. [3] (see Section 3.3). As Mar-
shall et al. showed numerically [76], choosing a wrong model is
less important when modeling two Gaussians than one unique
Gaussian. This is explained by the fact that the large Lorentzian
tails compensate the natural overestimation of the amplitudes
when modeling Gaussians by Lorentzians. One can also intuitively
imagine that adding noise (smaller SNR) or baseline distortions
will also reduce the effect of a wrong model (which does not mean
that the error will be smaller). However, it would be very challeng-
ing to fix a threshold value for the SNR at which we can consider
the choice of the lineshape as important since this value depends
on the signal under investigation (number/shape of peaks, artefacts
in the signal, macromolecular signal, etc.).

5.1.3. Is my method robust?
Most of the quantitation methods claim to be robust, but are

not necessarily robust against the same type of disturbances
(noise, baseline, water peak, etc.). Moreover, they usually base
their conclusions on simulated spectra that do not reflect all the
artefacts or distortions present in a measured signal. In order to
analyze the robustness of a method on in vivo signals, Gabr et al.
[3] proposed to study the success rate (or failure rate) to resolve
the peaks of interest within specific intervals lying symmetrically
around the true frequencies. They show that CFIT is less sensitive
than AMARES to baseline distortions. When considering only
non-failure cases, AMARES presents lower RRMSE than CFIT. That
is why it is important to identify the components in the signal,
known and unknown: the rolling baseline is visible and is not part
of the metabolite signal, therefore it should be removed before
using AMARES. Gabr et al. confirm that much better success rates
are obtained when using AMARES after filtering the rolling base-
line. High failure rates may be an indication of a wrong model, or
remaining artefacts (in this case the rolling baseline) that should
be removed prior to quantitation. Signals with non-Gaussian noise
can also lead to non-optimal parameter estimation. Indeed, the
least squares problem yields the smallest estimation errors when
the distribution is Gaussian and is suboptimal otherwise. MR scan-
ner noise is supposed to be Gaussian, but perturbations or devia-
tions from Gaussian distribution may occur due, for example, to
body motion [150]. These perturbations may be considered as
acquisition artefacts which are beyond the scope of the paper. In
[150], Slotboom et al. proposed a method to detect and discard sig-
nals with non-Gaussian noise.

5.1.4. Variable projection or not in the optimization algorithm?
When no prior knowledge about the linear parameters (ampli-

tudes, phases) of the model is available, an optimization method
using variable projection (like in [2,31]) is preferable because all
linear parameters are projected out thereby reducing the number
of parameters to be optimized by one half or more. If equal phases
are assumed, variable projection can still be used in a modified
form [151]. In other cases, a more general optimization algorithm
(like the non-linear least squares method NL2SOL as used in
AMARES [1]), which optimizes all parameters (linear and non-lin-
ear) is recommended.

5.1.5. Weighting and normalization
If one wants to give more importance to particular frequency

regions, a weighting matrix can be used in the minimization func-
tion, which multiplies the vector of squared errors (see, e.g., Eq.
(11) in [85]). The largest weights are assigned to the frequency
points of interest.

One may also want to give the same importance or the same
weight to all the peaks. In that case the least squared error can
be normalized in order to balance the peak contributions with re-
spect to this error (see, e.g., Eq. (12) in [85]). This might however be
dangerous since quantitation methods like LCModel or TDFD Fit
tend to overestimate the amplitude of low concentration metabo-
lites [152].
6. Future improvements and conclusion

Improving quantitation means increasing prior knowledge.
Hardware improvements can also contribute to better prior knowl-
edge. Here are some hints for possible improvements:

– One of the main weaknesses of the quantitation methods
is their way of dealing with the baseline. Only little prior
knowledge regarding the baseline is currently used in the
model, resulting in a poor separation between the base-
line and the metabolites of interest. Furthermore, macro-
molecular components have to be clearly distinguished
from baseline distortions since the former may provide
useful information for pathology diagnosis (see Section
4.3.2).

– Spatial information in MRSI data is also not sufficiently
exploited. Quantitation is often done on individual voxels
without taking into consideration the surrounding voxels.
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– Finally, quantitation methods have to be continuously
refined due to new hardware and new acquisition schemes.
For example, quantitation of brain HRMAS signals using
QUEST has been recently proposed [153].

In spite of numerous publications on the topic, quantitation of
MRS data remains an important issue. No satisfactory systematic
study of the accuracy of the methods has been performed. One of
the obstacles is the lack of gold standard simulated signals which
would mimic real-world signals and permit fair comparisons be-
tween the methods. In this paper, advantages and drawbacks of
the different methods have been depicted and it appears clearly
that none of the methods outperforms the others in all cases.
However, the choice of the quantitation method should result
from the objectives that the analyst pursues (e.g., which data
he/she wants to analyze, etc.) and tips are given in that respect
(see Section 5).
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