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The basic equations describing the decay of the magnetization vector in the 
transverse plane and its growth along the longitudinal axis, after a pulse, are 
briefly examined for very simple systems that obey the extreme narrowing 
condition, and relax in the absence of radiation damping. It is shown that 
in these cases, the vector does not simply tip backwards with a constant 
magnitude, retracing the path it followed during the pulse. It is 
mathematically proven that if T, is equal to or less than twice TI,  then 
immediately after a pulse, the vector first shrinks and then grows back to 
its initial magnitude while it tips back toward the longitudinal axis, instead 
of simply retracing its path. It is also shown that if T, is greater than this 
threshold value, then at some point during the relaxation, the magnitude of 
the resultant will exceed its starting value, a situation apparently not 
consistent with our present understanding of the laws of physics. 

INTRODUCTION 

It is well known that after a pulse, the excited nuclei relax back to the lower energy level 
to re-establish the Boltzmann distribution. There are many books and articles that describe 
some of the details of this relaxation; some of the classics are by Abragam (I) and by Pople, 
Schneider, and Bernstein (2). However, many of the explanations in elementary textbooks are 
incorrect. 

The discussions in this article will be limited to only those cases in which relaxation can be 
accurately described by the Bloch equations, shown below. For a recent review, see Ref. (3). 
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Hence, the following mathematical treatment is applicable only for systems in which both the 
longitudinal and transverse relaxations can be described by exponentials. For example, one 
reviewer pointed out that for cases that are outside of the fast-motion regime, and in which 
I > 1, each lmll state can have a distinct value of TI and T2.  If the line-shape is not 
Lorentzian, then the decay is non-exponential, and T, may have only an operational definition, 
analogous to the definition of a half-life for a chemical reaction that is not first-order. Similarly, 
longitudinal relaxation is not always governed by a first-order rate law, in which case TI is not 
always well-defined either. We shall also restrict the discussion to systems in which cross- 
polarization, polarization transfer, etc., are either non-existent or negligibly small. That is, we 
will limit our discussions only to systems in which no mechanisms, except simple relaxation, are 
available for increasing the magnitude of a net magnetization vector. A final limitation is that 
radiation damping must be insignificant. This will be mentioned again. However, even with all 
these restrictions imposed, this discussion will be applicable to the vast majority of proton and 
carbon-13 high-resolution samples being run under standard conditions. 

Many elementary textbooks incorrectly describe the relaxation of the net macroscopic 
magnetization vector (M,) in the rotating frame, as a simple tipping back to the z axis, from the 
xy plane. This is depicted in Fig. 1, where M,, is first shown being tipped away from the t axis 
onto the xy plane during the pulse (A), and then simply reversing its path during relaxation (B). 
The right-hand rule ( 4 )  was used for these figures. In Fig. lA,  M ,  is shown tipping toward the 
xy plane while maintaining a constant magnitude. The time elapsed during this period is on the 
order of 10 psec, and is equal to the pulse-width. This time is very short compared to most 
relaxation processes in liquids and gases; hence, the vector is correctly depicted as one that is 
not changing during this time. However, in the typical high-resolution case, the relaxation 
processes that tip the vector back take much longer and are on the order of seconds; hence, the 
vector does not maintain a constant magnitude as shown in Fig. 1B. Instead, it changes its 
length while returning to the z axis. It is my experience that diagrams similar to Fig. 1B appear 
mostly in the early literature on magnetic resonance imaging (MRI). It is important to note 
here that radiation damping results in a tilting of the vector magnitization toward its equilibrium 
position while the length of the vector remains unchanged. That is, Fig. 1B correctly depicts 
relaxation due exclusively to radiation damping. For further details of this process, see page 73 
of Ref. (I). 

Figure 1. (A) Correct representation of a net magnetization vector being tipped during 
a pulse. (B) INCORRJXT representation of a net magnetization vector relaxing in the 
absence of radiation damping. 

THE MISCONCEPTION 

Because of the widespread use of illustrations similar to Fig. lB,  many practicing 
spectroscopists have taken this explanation to be literally correct for the general case. Yet, it 
defies their common experiences gained from operating a spectrometer. For example, it is not 
unusual to acquire a carbon-13 FID for 1 to 3 s. For an acquisition time (AQ) of this length, 
many spectroscopists will allow for relaxation by employing a pulse delay (PD) of 5 to 10 s 
between the end of the acquisition time and the beginning of the next pulse. This is especially 
true if a rather large tip angle is used, e.g., 60" to 90: 
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An AQ of 1 to 3 s is generally used because the typical Ti encountered for carbon-13 signals 
is such that almost all (95%) of the signal has disappeared after that time. If AQ is extended 
beyond that period, then only noise will be collected. This means that if Fig. 1B correctly 
depicts the relaxation of M,, then in 1 to 3 s, when the component of M, in the xy plane (M,) 
and the signal have decayed to zero, M, is completely realigned along the t axis. If that is true, 
then why is PD set to 5 to 10 s? What is the relaxation time supposed to accomplish if the 
relaxation is already complete? Why not pulse immediately after the signal disappears? It is 
clear that typical operating techniques and the ideas depicted in Fig. 1B represent a paradox. 

SIMPLE OBSERVATIONS OF RELAXATION 

Scientists first make an observation-then they attempt to explain it. Following this 
procedure, we observe that after a pulse, the signal gradually disappears, i.e., exponentially 
decays. This signal can even be heard if the FID frequency is in the audio range, and if it is 
fed to a loudspeaker instead of to the computer. The sound will be similar to that heard when 
a high-quality crystal wine glass is gently tapped with a dinner fork. Furthermore, we observe 
that if we wait long enough (> 5T,), the entire process can be repeated with exactly the same 
results. 

From the first observation, we conclude that Mxy is exponentially decaying. From the second 
Both observation, we conclude that the component of M, along the z axis (MI) is growing. 

processes are called relaxation, even though one is a decay and the other is a growth. 

From the solutions of the Bloch equations, the magnitudes of Mxy and M, at any time are 
given by Eq. [l] and Eq. [2], where T,* and T, are the time constants for the decay and growth, 
respectively. 

Mxy = M,exp(-f/T,') P I  

M, = M,[1 - exp(-t/T,)] PI 
Plots of the magnitudes of Mq and M, as a function of time after a 90" pulse, are shown in 
Fig. 2, where M, has been set equal to unity. 

1.0 

Magnitude 

Time 

Figure 2. Plots of the magnitudes of the transverse (Mxy) and longitudinal (M,) 
components of a net magnetization vector, as a function of time during relaxation, for the 
case where Ti < TI.  

HOW DOES M, RETURN TO THE Z AXIS? 

This question can best be answered by calculating the vector sum of Mxy and M, as a 
function of time for a simple spin system. For a typical case encountered in carbon-13 NMR 
spectroscopy, where T,' c < T,, the plot is shown in Fig. 3. The resultants were calculated using 
1 and 15 s for T i  and T,, respectively, and for the points in time that would show the resultants 
at 10" increments from the xy plane. Table 1 lists the times used to construct the figure, as well 
as the corresponding magnitudes of the resultants. In the figure, the small straight lines at each 
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10" increment represent a magnitude of 1.0. Note that the tip of the resultant does not truce a 
quarter-circle, which is shown by the dashed line, on its way back to the z axis. Instead, it first 
shrinks from its maximum length, reaches a minimum, and then grows back to its maximum 
length after at least ST,. 
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TABLE 1 
Date Used to Construct Figure 3 

Angle Magnitude Time (s) 

0" 1.000 0.00 
10 " .372 1 .oo 
20 " .261 1.40 
30 " .213 1.69 
40" .188 1.94 
50 " .176 2.18 
60" .174 2.44 
70 " .180 2.79 
80 " .203 3.35 
90 O 1.000 03 

Figure 3. Plot of the resultants of MXy and M, at 
specific points in time for the case when I", = 1 s 
and TI = 15 s. 

Contrary to common belief, the tip of the resultant will not follow the dashed line even if 
T; equals TI! This case is shown in Fig. 4, which was constructed from Table 2. For this case, 
both time constants were set to 1 s. The tip of the vector traces a straight line, not a circle. 
Equation [l]  and Eq. [2] can be used to help explain why it traces a straight line. If T; equals 
TI, and if M, is set to unity, then at any point in time 

M, = 1 - Mxy PI 
y = b + m x  [41 

Equation [4] is the general form for any straight line, where b and m represent t h e y  intercept 
and the slope, respectively. When this equation is compared with Eq. [3], it can be seen that 
the intercept on the z axis should be 1.0, and that the slope should be -1.0. 

I - A  
/ 

/ 

TABLE 2 
Data Used to Construct Figure 4 

Angle Magnitude Time (s) 

0" 
10" 
20 " 
30 " 
40" 
50 " 
60 " 
70" 
80" 
90 O 

1.000 
-864 
.780 
.732 
.710 
.710 
.732 
.780 
363 

1.000 

0.000 
.162 
.310 
.456 
.609 
.785 

1.01 
1.32 
1.90 
03 

Figure 4. Plot of the resultants of Mxy and M, at 
specific points in time for the case when T, = 1 s 
and TI = 1 s. 
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CAN T, BE LONGER THAN TI? 

In my experience, most spectroscopists believe that T, can be equal to, or less that TI, but 
cannot be greater. This belief is probably the result of the widespread acceptance of the 
statement, "T, can be equal to, or less than Tl because all processes that lead to  a Tl relaxation 
also lead to a T2 relaxation." Further, it has been shown that when the antisymmetric component 
of the shielding tensor is zero by symmetry, T2 is not greater than the maximum of 0.857 TI. 
For leading references to this ratio, see Ref. (5). 

It is worth mentioning here that two reviewers commented that an error frequently appears 
in the literature, even though this misconception is not the central theme of this article. The 
error stems from confusing "relaxation rate," which is l/Tl or l/T2, with the "time constant" for 
the relaxation, T, or T,, respectively. Using this inverted definition, it would appear that it is 
relatively easy for "T2)I to be greater (not longer) than "TI". 

Figure 5 and Table 3 represent the case when T, = 1 s, and TI = 0.5 s, i.e., when T2 is twice 
as long as T,. In this case, the assumption was made that the applied field, B,, is perfectly 
homogeneous, i.e., that T,' is infinitely long, making T,' equal to T,, as shown in Eq. [5].  Here, 
the overall rate (l/T;) of decay in the transverse plane is equal to the natural rate (l/T2) plus 
the rate (l/T;) due to the inhomogeneity of the B, field. The symbols T,', T,, and T,' are the 
time constants for the respective decays. The assumption made here prevents the magnetization 
vector from artificially decaying faster because of the inhomogeneous applied field. 

TABLE 3 
Data Used to Construct Figure 5 

Angle Magnitude Time (s) 

0" 1.000 0.000 
10" .929 .088 
20" .888 .181 
30" .869 2.85 
40" 368 .408 
50 O .884 .565 
60" .914 .783 
70 " .952 1.12 
80 " .986 1.77 
90" 1.000 a, 

Figure 5. Plot of the resultants of MXy and M, at 
specific points in time for the case when T, = 1 s 
and TI = 0.5 s. 

Even for this case, the resultant still shrinks immediately after the 90" pulse, reaches a 
minimum, and then grows back to its maximum value. However, note that the magnitude of the 
resultant does not exceed 1.0 at any time. According to this treatment, T, can be twice as long 
as Tl. Similar tables and plots show that if T2 > 2T,, then at some time the magnitude does 
exceed 1.0. Figure 6 and Table 4 show a case when T2 is three times as long as T,. Here, the 
magnitude of the resultant exceeds 1.0, and this is clearly a situation that seems to contradict our 
present understanding of the laws of physics, although claims to the contrary have been reported 
by Skinner (6, 7). But at or below the threshold T, = 2Tl, the mathematical treatment presented 
above will allow for T, to be greater than TI. This is only one example of the beauty of 
mathematical representations for physical phenomena; it can often tell a scientist what to seek, 
even if a physical picture cannot. 
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In fact, Frank A. L. Anet and coworkers (5 )  have clearly demonstrated experimentally that 
T2 can be longer than Tl. Their relaxation data for the olefinic carbons of tetrachlorocyclo- 
propene in toluene-d, at -89" C, show that the TJT,  ratio is 1.16! A more detailed description 
of this experiment, as well as a very comprehensive paper on the T2/T ,  ratio, will be presented 
by Frank A. L. Anet and Daniel J. O'Leary, in a forthcoming issue of this journal. 

TABLE 4 
Data Used to Construct Figure 6 

Angle Magnitude Time (s) 

0" 1 .ooo 0.000 
10 .956 ,060 
20 O .936 .129 
30 O .936 .210 
40 O .952 .316 
50 O .980 .463 
60 O 1.01 .686 
70 1.02 1.05 
80 O 1.01 1.74 
90 O 1 .ooo a3 

Figure 6. Plot of the resultants of Mxy and M, at 
specific points in time for the case when T, = 1 s 
and T, = 113 s. 

SUMMARY 

It is a common misconception that after a pulse, the net magnetization vector simply tips 
backwards toward the z axis, while maintaining a constant length. Instead, under the normal 
conditions when T,' is less than TI, the resultant first shrinks, and then grows back toward its 
initial value as it tips back toward the z axis. This behavior is clearly shown by examining the 
basic equations that describe both the decay of the magnetization in the xy plane and its growth 
up along the z axis. From these equations, the magnitudes of the xy and z components, as well 
as their vectors sums, can be calculated as a function of time. This same behavior is 
demonstrated even when T,' is equal to TI - the resultant still does not maintain a constant value 
of 1.0 as it tips back. 

The resultant does not exceed 1.0 at any time during the relaxation if the T,/T, ratio does 
not exceed 2. However, experimental evidence has been obtained that shows that the ratio can 
be greater than 1. 
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